Bite Weight Prediction From Acoustic Recognition of Chewing

Automatic dietary monitoring (ADM) offers new perspectives to reduce the self-reporting burden for participants in diet coaching programs. This paper presents an approach to predict weight of individual bites taken. We utilize a pattern recognition procedure to spot chewing cycles and food type in c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on biomedical engineering Ročník 56; číslo 6; s. 1663 - 1672
Hlavní autoři: Amft, Oliver, Kusserow, Martin, Troster, Gerhard
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.06.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9294, 1558-2531, 1558-2531
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Automatic dietary monitoring (ADM) offers new perspectives to reduce the self-reporting burden for participants in diet coaching programs. This paper presents an approach to predict weight of individual bites taken. We utilize a pattern recognition procedure to spot chewing cycles and food type in continuous data from an ear-pad chewing sound sensor. The recognized information is used to predict bite weight. We present our recognition procedure and demonstrate its operation on a set of three selected foods of different bite weights. Our evaluation is based on chewing sensor data of eight healthy study participants performing 504 habitual bites in total. The sound-based chewing recognition achieved recalls of 80% at 60%-70% precision. Food classification of chewing sequences resulted in an average accuracy of 94%. In total, 50 variables were derived from the chewing microstructure, and were analyzed for correlations between chewing behavior and bite weight. A subset of four variables was selected to predict bite weight using linear food-specific models. Mean weight prediction error was lowest for apples (19.4%) and largest for lettuce (31%) using the sound-based recognition. We conclude that bite weight prediction using acoustic chewing recordings is a feasible approach for solid foods, and should be further investigated.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2009.2015873