Optimal Dimensioning and Power Management of a Fuel Cell/Battery Hybrid Bus via Convex Programming

This paper is concerned with the simultaneous optimal component sizing and power management of a fuel cell/battery hybrid bus. Existing studies solve the combined plant/controller optimization problem for fuel cell hybrid vehicles (FCHVs) by using methods with disadvantages of heavy computational bu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ASME transactions on mechatronics Vol. 20; no. 1; pp. 457 - 468
Main Authors: Hu, Xiaosong, Murgovski, Nikolce, Johannesson, Lars Mardh, Egardt, Bo
Format: Journal Article
Language:English
Published: New York IEEE 01.02.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1083-4435, 1941-014X, 1941-014X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper is concerned with the simultaneous optimal component sizing and power management of a fuel cell/battery hybrid bus. Existing studies solve the combined plant/controller optimization problem for fuel cell hybrid vehicles (FCHVs) by using methods with disadvantages of heavy computational burden and/or suboptimality, for which only a single driving profile was often considered. This paper adds three important contributions to the FCHVs-related literature. First, convex programming is extended to rapidly and efficiently optimize both the power management strategy and sizes of the fuel cell system (FCS) and the battery pack in the hybrid bus. The main purpose is to encourage more researchers and engineers in FCHVs field to utilize the new effective tool. Second, the influence of the driving pattern on the optimization result (both the component sizes and hydrogen economy) of the bus is systematically investigated by considering three different bus driving routes, including two standard testing cycles and a realistic bus line cycle with slope information in Gothenburg, Sweden. Finally, the sensitivity of the optimization outcome to the potential price decreases of the FCS and the battery is quantitatively examined.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1083-4435
1941-014X
1941-014X
DOI:10.1109/TMECH.2014.2336264