A systematic review on cough sound analysis for Covid-19 diagnosis and screening: is my cough sound COVID-19?

For COVID-19, the need for robust, inexpensive, and accessible screening becomes critical. Even though symptoms present differently, cough is still taken as one of the primary symptoms in severe and non-severe infections alike. For mass screening in resource-constrained regions, artificial intellige...

Full description

Saved in:
Bibliographic Details
Published in:PeerJ. Computer science Vol. 8; p. e958
Main Authors: Santosh, KC, Rasmussen, Nicholas, Mamun, Muntasir, Aryal, Sunil
Format: Journal Article
Language:English
Published: United States PeerJ. Ltd 25.04.2022
PeerJ, Inc
PeerJ Inc
Subjects:
ISSN:2376-5992, 2376-5992
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For COVID-19, the need for robust, inexpensive, and accessible screening becomes critical. Even though symptoms present differently, cough is still taken as one of the primary symptoms in severe and non-severe infections alike. For mass screening in resource-constrained regions, artificial intelligence (AI)-guided tools have progressively contributed to detect/screen COVID-19 infections using cough sounds. Therefore, in this article, we review state-of-the-art works in both years 2020 and 2021 by considering AI-guided tools to analyze cough sound for COVID-19 screening primarily based on machine learning algorithms. In our study, we used PubMed central repository and Web of Science with key words: (Cough OR Cough Sounds OR Speech) AND (Machine learning OR Deep learning OR Artificial intelligence) AND (COVID-19 OR Coronavirus). For better meta-analysis, we screened for appropriate dataset (size and source), algorithmic factors (both shallow learning and deep learning models) and corresponding performance scores. Further, in order not to miss up-to-date experimental research-based articles, we also included articles outside of PubMed and Web of Science, but pre-print articles were strictly avoided as they are not peer-reviewed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2376-5992
2376-5992
DOI:10.7717/peerj-cs.958