Precise physical models of protein-DNA interaction from high-throughput data
A cell's ability to regulate gene transcription depends in large part on the energy with which transcription factors (TFs) bind their DNA regulatory sites. Obtaining accurate models of this binding energy is therefore an important goal for quantitative biology. In this article, we present a pri...
Saved in:
| Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 104; no. 2; p. 501 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
09.01.2007
|
| Subjects: | |
| ISSN: | 0027-8424 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A cell's ability to regulate gene transcription depends in large part on the energy with which transcription factors (TFs) bind their DNA regulatory sites. Obtaining accurate models of this binding energy is therefore an important goal for quantitative biology. In this article, we present a principled likelihood-based approach for inferring physical models of TF-DNA binding energy from the data produced by modern high-throughput binding assays. Central to our analysis is the ability to assess the relative likelihood of different model parameters given experimental observations. We take a unique approach to this problem and show how to compute likelihood without any explicit assumptions about the noise that inevitably corrupts such measurements. Sampling possible choices for model parameters according to this likelihood function, we can then make probabilistic predictions for the identities of binding sites and their physical binding energies. Applying this procedure to previously published data on the Saccharomyces cerevisiae TF Abf1p, we find models of TF binding whose parameters are determined with remarkable precision. Evidence for the accuracy of these models is provided by an astonishing level of phylogenetic conservation in the predicted energies of putative binding sites. Results from in vivo and in vitro experiments also provide highly consistent characterizations of Abf1p, a result that contrasts with a previous analysis of the same data. |
|---|---|
| AbstractList | A cell's ability to regulate gene transcription depends in large part on the energy with which transcription factors (TFs) bind their DNA regulatory sites. Obtaining accurate models of this binding energy is therefore an important goal for quantitative biology. In this article, we present a principled likelihood-based approach for inferring physical models of TF-DNA binding energy from the data produced by modern high-throughput binding assays. Central to our analysis is the ability to assess the relative likelihood of different model parameters given experimental observations. We take a unique approach to this problem and show how to compute likelihood without any explicit assumptions about the noise that inevitably corrupts such measurements. Sampling possible choices for model parameters according to this likelihood function, we can then make probabilistic predictions for the identities of binding sites and their physical binding energies. Applying this procedure to previously published data on the Saccharomyces cerevisiae TF Abf1p, we find models of TF binding whose parameters are determined with remarkable precision. Evidence for the accuracy of these models is provided by an astonishing level of phylogenetic conservation in the predicted energies of putative binding sites. Results from in vivo and in vitro experiments also provide highly consistent characterizations of Abf1p, a result that contrasts with a previous analysis of the same data.A cell's ability to regulate gene transcription depends in large part on the energy with which transcription factors (TFs) bind their DNA regulatory sites. Obtaining accurate models of this binding energy is therefore an important goal for quantitative biology. In this article, we present a principled likelihood-based approach for inferring physical models of TF-DNA binding energy from the data produced by modern high-throughput binding assays. Central to our analysis is the ability to assess the relative likelihood of different model parameters given experimental observations. We take a unique approach to this problem and show how to compute likelihood without any explicit assumptions about the noise that inevitably corrupts such measurements. Sampling possible choices for model parameters according to this likelihood function, we can then make probabilistic predictions for the identities of binding sites and their physical binding energies. Applying this procedure to previously published data on the Saccharomyces cerevisiae TF Abf1p, we find models of TF binding whose parameters are determined with remarkable precision. Evidence for the accuracy of these models is provided by an astonishing level of phylogenetic conservation in the predicted energies of putative binding sites. Results from in vivo and in vitro experiments also provide highly consistent characterizations of Abf1p, a result that contrasts with a previous analysis of the same data. A cell's ability to regulate gene transcription depends in large part on the energy with which transcription factors (TFs) bind their DNA regulatory sites. Obtaining accurate models of this binding energy is therefore an important goal for quantitative biology. In this article, we present a principled likelihood-based approach for inferring physical models of TF-DNA binding energy from the data produced by modern high-throughput binding assays. Central to our analysis is the ability to assess the relative likelihood of different model parameters given experimental observations. We take a unique approach to this problem and show how to compute likelihood without any explicit assumptions about the noise that inevitably corrupts such measurements. Sampling possible choices for model parameters according to this likelihood function, we can then make probabilistic predictions for the identities of binding sites and their physical binding energies. Applying this procedure to previously published data on the Saccharomyces cerevisiae TF Abf1p, we find models of TF binding whose parameters are determined with remarkable precision. Evidence for the accuracy of these models is provided by an astonishing level of phylogenetic conservation in the predicted energies of putative binding sites. Results from in vivo and in vitro experiments also provide highly consistent characterizations of Abf1p, a result that contrasts with a previous analysis of the same data. |
| Author | Kinney, Justin B Callan, Jr, Curtis G Tkacik, Gasper |
| Author_xml | – sequence: 1 givenname: Justin B surname: Kinney fullname: Kinney, Justin B organization: Physics Department and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA – sequence: 2 givenname: Gasper surname: Tkacik fullname: Tkacik, Gasper – sequence: 3 givenname: Curtis G surname: Callan, Jr fullname: Callan, Jr, Curtis G |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17197415$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1zz1PwzAYBGAPRfQDZjbkiS3lteMk9liVTykCBpgj27EboyQOtjP031OJMt3y6HS3RovRjwahGwJbAlV-P40ybqEEIYATYAu0AqBVxhllS7SO8RsARMHhEi1JRUTFSLFC9Ucw2kWDp-4YnZY9Hnxr-oi9xVPwybgxe3jbYTcmE6ROzo_YBj_gzh26LHXBz4dumhNuZZJX6MLKPprrc27Q19Pj5_4lq9-fX_e7OtNFJVImVFuAEooSUFQpWdI8LwRtreZc5aCV5FoorpnhVlYFtbas1Mlb0baMFSXdoLu_3tPCn9nE1AwuatP3cjR-jk3JGckpsBO8PcNZDaZtpuAGGY7N_3_6C3W2Xk0 |
| CitedBy_id | crossref_primary_10_1016_j_tig_2009_01_002 crossref_primary_10_1371_journal_pone_0026105 crossref_primary_10_1109_TCBB_2012_106 crossref_primary_10_1038_s44320_025_00086_5 crossref_primary_10_1186_1471_2105_10_345 crossref_primary_10_1186_s12864_016_2533_5 crossref_primary_10_1371_journal_pone_0199771 crossref_primary_10_1093_nar_gkp394 crossref_primary_10_1093_nar_gkn573 crossref_primary_10_1146_annurev_conmatphys_031214_014803 crossref_primary_10_1007_s10955_010_0102_x crossref_primary_10_1371_journal_pcbi_1004141 crossref_primary_10_1073_pnas_1309933111 crossref_primary_10_1088_1478_3975_11_2_026005 crossref_primary_10_1529_biophysj_107_114074 crossref_primary_10_1186_s13059_022_02661_7 crossref_primary_10_1146_annurev_genom_083118_014845 crossref_primary_10_1186_1472_6807_9_30 crossref_primary_10_1371_journal_pcbi_1012818 crossref_primary_10_1038_nbt_2486 crossref_primary_10_1073_pnas_1004290107 crossref_primary_10_1007_s10955_015_1398_3 crossref_primary_10_1016_j_jtbi_2015_06_010 crossref_primary_10_1073_pnas_0805909105 crossref_primary_10_1089_cmb_2009_0142 crossref_primary_10_1186_1472_6750_8_94 crossref_primary_10_1016_j_tig_2009_08_003 crossref_primary_10_1371_journal_pcbi_1006921 crossref_primary_10_7554_eLife_06397 crossref_primary_10_1016_j_bbagrm_2016_09_002 crossref_primary_10_1371_journal_pcbi_1006226 crossref_primary_10_1103_PhysRevResearch_7_023005 crossref_primary_10_1016_j_gene_2008_07_038 crossref_primary_10_1162_NECO_a_00568 crossref_primary_10_1007_s10955_015_1388_5 crossref_primary_10_1261_rna_079541_122 crossref_primary_10_1073_pnas_1518958112 crossref_primary_10_1371_journal_pcbi_1000590 crossref_primary_10_1073_pnas_1010868108 crossref_primary_10_1162_NECO_a_00463 crossref_primary_10_3109_0954898X_2011_566303 crossref_primary_10_1039_b910888m crossref_primary_10_1080_09548980902950891 crossref_primary_10_1091_mbc_e07_12_1242 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.0609908104 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| ExternalDocumentID | 17197415 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P50 GM071508 – fundername: NIGMS NIH HHS grantid: P50GM071508 |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DOOOF DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA VXZ W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YIF YIN YKV YSK ZCA ~02 ~KM 7X8 ADQXQ ADXHL |
| ID | FETCH-LOGICAL-c579t-9bd50b9b210b2bba6233592dfc88b30cba8c9b8c4e8fa752ff67bb9bf9dd44562 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 52 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000243445400020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0027-8424 |
| IngestDate | Fri Sep 05 10:47:58 EDT 2025 Wed Feb 19 01:46:38 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c579t-9bd50b9b210b2bba6233592dfc88b30cba8c9b8c4e8fa752ff67bb9bf9dd44562 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/doi/pdf/10.1073/pnas.0609908104 |
| PMID | 17197415 |
| PQID | 68413204 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_68413204 pubmed_primary_17197415 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-01-09 |
| PublicationDateYYYYMMDD | 2007-01-09 |
| PublicationDate_xml | – month: 01 year: 2007 text: 2007-01-09 day: 09 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2007 |
| References | 9581503 - Trends Biochem Sci. 1998 Mar;23(3):109-13 3612791 - J Mol Biol. 1987 Feb 20;193(4):723-50 16873464 - Bioinformatics. 2006 Jul 15;22(14):e141-9 12748633 - Nature. 2003 May 15;423(6937):241-54 16418267 - Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):867-72 11404456 - Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7158-63 12399584 - Science. 2002 Oct 25;298(5594):799-804 11125145 - Science. 2000 Dec 22;290(5500):2306-9 16207358 - Genome Biol. 2005;6(10):R87 15511291 - BMC Evol Biol. 2004 Oct 28;4:42 16083878 - FEBS Lett. 2005 Aug 15;579(20):4535-40 15543148 - Nat Genet. 2004 Dec;36(12):1331-9 10929718 - Cell. 2000 Jul 7;102(1):109-26 10812473 - Bioinformatics. 2000 Jan;16(1):16-23 15637633 - Nat Biotechnol. 2005 Jan;23(1):137-44 16236723 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15936-41 10385322 - Nat Biotechnol. 1999 Jun;17(6):573-7 12384591 - Nucleic Acids Res. 2002 Oct 15;30(20):4442-51 |
| References_xml | – reference: 10812473 - Bioinformatics. 2000 Jan;16(1):16-23 – reference: 3612791 - J Mol Biol. 1987 Feb 20;193(4):723-50 – reference: 16083878 - FEBS Lett. 2005 Aug 15;579(20):4535-40 – reference: 16207358 - Genome Biol. 2005;6(10):R87 – reference: 11125145 - Science. 2000 Dec 22;290(5500):2306-9 – reference: 16873464 - Bioinformatics. 2006 Jul 15;22(14):e141-9 – reference: 10385322 - Nat Biotechnol. 1999 Jun;17(6):573-7 – reference: 12399584 - Science. 2002 Oct 25;298(5594):799-804 – reference: 16418267 - Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):867-72 – reference: 10929718 - Cell. 2000 Jul 7;102(1):109-26 – reference: 9581503 - Trends Biochem Sci. 1998 Mar;23(3):109-13 – reference: 15543148 - Nat Genet. 2004 Dec;36(12):1331-9 – reference: 12748633 - Nature. 2003 May 15;423(6937):241-54 – reference: 11404456 - Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7158-63 – reference: 15511291 - BMC Evol Biol. 2004 Oct 28;4:42 – reference: 15637633 - Nat Biotechnol. 2005 Jan;23(1):137-44 – reference: 16236723 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15936-41 – reference: 12384591 - Nucleic Acids Res. 2002 Oct 15;30(20):4442-51 |
| SSID | ssj0009580 |
| Score | 2.1221092 |
| Snippet | A cell's ability to regulate gene transcription depends in large part on the energy with which transcription factors (TFs) bind their DNA regulatory sites.... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 501 |
| SubjectTerms | Binding Sites Biophysical Phenomena Biophysics DNA - chemistry DNA - metabolism DNA, Fungal - chemistry DNA, Fungal - metabolism DNA-Binding Proteins - chemistry DNA-Binding Proteins - metabolism Likelihood Functions Models, Chemical Protein Array Analysis Protein Binding Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Thermodynamics Transcription Factors - chemistry Transcription Factors - metabolism |
| Title | Precise physical models of protein-DNA interaction from high-throughput data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/17197415 https://www.proquest.com/docview/68413204 |
| Volume | 104 |
| WOSCitedRecordID | wos000243445400020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4VysAClGd5emCAwTQPxw8JCVVAxQBRB5C6VfFL6pKEpuX3Y-chsSAGFk-xFJ3vzmefv-8DuHaxHBipApyFlmFCDcFZrAWmIlSG8ITKSNZiEyxN-Wwmpj2477Aw_llllxPrRK0L5e_IR5QTj_YlD-Un9ppRvrfaCmhsQD92hYz3aTbjPyh3eQNAiVweJhHpiH1YPCrzrLoLqG8K8bDWaPuluqx3mcnu__5vD3ba6hKNG3cYQM_k-zBo47dCNy3J9O0BvE49rUVlUNkuFKo1cSpUWFRzNyxy_JSOkaeTWDbgB-ShKMjzG-NW3adcr5B_YnoIH5Pn98cX3CorYJUwscJC6iSQQrrznlsLmbkaKE5EpK3iXMaBkhlXQnJFDLcZSyJrKZPueyu0Jv7MdASbeZGbE0Au5FWitUykVy7JKFfauh2Pi0hREmoxhKvOXnPnub4dkeWmWFfzzmJDOG5MPi8bgo15yELhK53TP-eewXZz2RriQJxD37qYNRewpb5Wi2p5WTuEG9Pp2zebQ8Go |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precise+physical+models+of+protein-DNA+interaction+from+high-throughput+data&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kinney%2C+Justin+B&rft.au=Tkacik%2C+Gasper&rft.au=Callan%2C+Jr%2C+Curtis+G&rft.date=2007-01-09&rft.issn=0027-8424&rft.volume=104&rft.issue=2&rft.spage=501&rft_id=info:doi/10.1073%2Fpnas.0609908104&rft_id=info%3Apmid%2F17197415&rft_id=info%3Apmid%2F17197415&rft.externalDocID=17197415 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |