Ancient plant DNA in lake sediments

Recent advances in sequencing technologies now permit the analyses of plant DNA from fossil samples (ancient plant DNA, plant aDNA), and thus enable the molecular reconstruction of palaeofloras.Hitherto, ancient frozen soils have proved excellent in preservingDNAmolecules, and have thus been the mos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist Jg. 214; H. 3; S. 924 - 942
Hauptverfasser: Parducci, Laura, Bennett, Keith D., Ficetola, Gentile Francesco, Alsos, Inger Greve, Suyama, Yoshihisa, Wood, Jamie R., Pedersen, Mikkel Winther
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England New Phytologist Trust 01.05.2017
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0028-646X, 1469-8137, 1469-8137
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent advances in sequencing technologies now permit the analyses of plant DNA from fossil samples (ancient plant DNA, plant aDNA), and thus enable the molecular reconstruction of palaeofloras.Hitherto, ancient frozen soils have proved excellent in preservingDNAmolecules, and have thus been the most commonly used source of plant aDNA. However, DNA from soil mainly represents taxa growing a fewmetres fromthe sampling point. Lakes have larger catchment areas and recent studies have suggested that plant aDNAfromlake sediments is a more powerful tool for palaeofloristic reconstruction. Furthermore, lakes can be found globally in nearly all environments, and are therefore not limited to perennially frozen areas. Here,we review the latest approaches and methods for the study of plant aDNA from lake sediments and discuss the progressmade up to the present.Weargue that aDNAanalyses add newand additional perspectives for the study of ancient plant populations and, in time, will provide higher taxonomic resolution and more precise estimation of abundance. Despite this, key questions and challenges remain for such plant aDNA studies. Finally, we provide guidelines on technical issues, including lake selection, and we suggest directions for future research on plant aDNA studies in lake sediments.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:0028-646X
1469-8137
1469-8137
DOI:10.1111/nph.14470