Angiogenesis and wound repair: when enough is enough

Review on novel concepts in wound angiogenesis; although more capillaries are generally considered better, new studies suggest otherwise. All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate healing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of leukocyte biology Jg. 100; H. 5; S. 979 - 984
1. Verfasser: DiPietro, Luisa A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States John Wiley and Sons Inc 01.11.2016
Schlagworte:
ISSN:0741-5400, 1938-3673, 1938-3673
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Review on novel concepts in wound angiogenesis; although more capillaries are generally considered better, new studies suggest otherwise. All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate healing is the creation of a new vasculature via angiogenesis. As adult skin wounds heal, a period of rapid and robust capillary growth creates a vascular bed that has many fold more capillaries than does normal tissue. Over time, most of the newly formed capillaries regress, resulting in a final vascular density similar to that of normal skin. Certainly, new capillaries are necessary to bring nutrients, immune cells, and oxygen to healing wounds. Yet, the presumed functional importance of an overabundance of capillaries has recently been challenged, creating questions about whether excess capillary growth is truly necessary for healing. In particular, studies of wounds that heal exceptionally quickly and with less scar formation, such as those in fetal skin and oral mucosa, show that these tissues heal with a reduced angiogenic burst composed of more mature vessels that provide better oxygenation. The level of angiogenesis in wounds often correlates with the inflammatory response, largely because inflammatory cells produce an abundance of proangiogenic mediators. Both the selective reduction of inflammation and the selective reduction of angiogenesis have now been suggested as ways to improve scarring. These concepts link excessive inflammation and the production of a dense but poorly perfused capillary bed to inferior healing outcomes.
AbstractList All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate healing is the creation of a new vasculature via angiogenesis. As adult skin wounds heal, a period of rapid and robust capillary growth creates a vascular bed that has many fold more capillaries than does normal tissue. Over time, most of the newly formed capillaries regress, resulting in a final vascular density similar to that of normal skin. Certainly, new capillaries are necessary to bring nutrients, immune cells, and oxygen to healing wounds. Yet, the presumed functional importance of an overabundance of capillaries has recently been challenged, creating questions about whether excess capillary growth is truly necessary for healing. In particular, studies of wounds that heal exceptionally quickly and with less scar formation, such as those in fetal skin and oral mucosa, show that these tissues heal with a reduced angiogenic burst composed of more mature vessels that provide better oxygenation. The level of angiogenesis in wounds often correlates with the inflammatory response, largely because inflammatory cells produce an abundance of proangiogenic mediators. Both the selective reduction of inflammation and the selective reduction of angiogenesis have now been suggested as ways to improve scarring. These concepts link excessive inflammation and the production of a dense but poorly perfused capillary bed to inferior healing outcomes.
Review on novel concepts in wound angiogenesis; although more capillaries are generally considered better, new studies suggest otherwise. All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate healing is the creation of a new vasculature via angiogenesis. As adult skin wounds heal, a period of rapid and robust capillary growth creates a vascular bed that has many fold more capillaries than does normal tissue. Over time, most of the newly formed capillaries regress, resulting in a final vascular density similar to that of normal skin. Certainly, new capillaries are necessary to bring nutrients, immune cells, and oxygen to healing wounds. Yet, the presumed functional importance of an overabundance of capillaries has recently been challenged, creating questions about whether excess capillary growth is truly necessary for healing. In particular, studies of wounds that heal exceptionally quickly and with less scar formation, such as those in fetal skin and oral mucosa, show that these tissues heal with a reduced angiogenic burst composed of more mature vessels that provide better oxygenation. The level of angiogenesis in wounds often correlates with the inflammatory response, largely because inflammatory cells produce an abundance of proangiogenic mediators. Both the selective reduction of inflammation and the selective reduction of angiogenesis have now been suggested as ways to improve scarring. These concepts link excessive inflammation and the production of a dense but poorly perfused capillary bed to inferior healing outcomes.
Review on novel concepts in wound angiogenesis; although more capillaries are generally considered better, new studies suggest otherwise. All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate healing is the creation of a new vasculature via angiogenesis. As adult skin wounds heal, a period of rapid and robust capillary growth creates a vascular bed that has many fold more capillaries than does normal tissue. Over time, most of the newly formed capillaries regress, resulting in a final vascular density similar to that of normal skin. Certainly, new capillaries are necessary to bring nutrients, immune cells, and oxygen to healing wounds. Yet, the presumed functional importance of an overabundance of capillaries has recently been challenged, creating questions about whether excess capillary growth is truly necessary for healing. In particular, studies of wounds that heal exceptionally quickly and with less scar formation, such as those in fetal skin and oral mucosa, show that these tissues heal with a reduced angiogenic burst composed of more mature vessels that provide better oxygenation. The level of angiogenesis in wounds often correlates with the inflammatory response, largely because inflammatory cells produce an abundance of proangiogenic mediators. Both the selective reduction of inflammation and the selective reduction of angiogenesis have now been suggested as ways to improve scarring. These concepts link excessive inflammation and the production of a dense but poorly perfused capillary bed to inferior healing outcomes.
All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate healing is the creation of a new vasculature via angiogenesis. As adult skin wounds heal, a period of rapid and robust capillary growth creates a vascular bed that has many fold more capillaries than does normal tissue. Over time, most of the newly formed capillaries regress, resulting in a final vascular density similar to that of normal skin. Certainly, new capillaries are necessary to bring nutrients, immune cells, and oxygen to healing wounds. Yet, the presumed functional importance of an overabundance of capillaries has recently been challenged, creating questions about whether excess capillary growth is truly necessary for healing. In particular, studies of wounds that heal exceptionally quickly and with less scar formation, such as those in fetal skin and oral mucosa, show that these tissues heal with a reduced angiogenic burst composed of more mature vessels that provide better oxygenation. The level of angiogenesis in wounds often correlates with the inflammatory response, largely because inflammatory cells produce an abundance of proangiogenic mediators. Both the selective reduction of inflammation and the selective reduction of angiogenesis have now been suggested as ways to improve scarring. These concepts link excessive inflammation and the production of a dense but poorly perfused capillary bed to inferior healing outcomes.All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate healing is the creation of a new vasculature via angiogenesis. As adult skin wounds heal, a period of rapid and robust capillary growth creates a vascular bed that has many fold more capillaries than does normal tissue. Over time, most of the newly formed capillaries regress, resulting in a final vascular density similar to that of normal skin. Certainly, new capillaries are necessary to bring nutrients, immune cells, and oxygen to healing wounds. Yet, the presumed functional importance of an overabundance of capillaries has recently been challenged, creating questions about whether excess capillary growth is truly necessary for healing. In particular, studies of wounds that heal exceptionally quickly and with less scar formation, such as those in fetal skin and oral mucosa, show that these tissues heal with a reduced angiogenic burst composed of more mature vessels that provide better oxygenation. The level of angiogenesis in wounds often correlates with the inflammatory response, largely because inflammatory cells produce an abundance of proangiogenic mediators. Both the selective reduction of inflammation and the selective reduction of angiogenesis have now been suggested as ways to improve scarring. These concepts link excessive inflammation and the production of a dense but poorly perfused capillary bed to inferior healing outcomes.
Author DiPietro, Luisa A.
AuthorAffiliation 1 Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, Illinois
AuthorAffiliation_xml – name: 1 Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, Illinois
Author_xml – sequence: 1
  givenname: Luisa A.
  surname: DiPietro
  fullname: DiPietro, Luisa A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27406995$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1PGzEQxS0EggC9c6r22MvS8X6M7R6QALVQlAoJtWfL9s4mRhs7XWcb8d93o6QIONCLx5J_7z1r3jHbDzEQY2cczjmX6vNjZ8-rHw9Qcsw5FA97bMJVKfMSRbnPJiAqntcVwBE7TukRAMoC4ZAdFaICVKqesOoyzHycUaDkU2ZCk63jMJ49LY3vv2TrOYWMQhxm82wEtrdTdtCaLtGH3Txhv759_Xl9m0_vb75fX05zVwup8qZVxtUkaiergtBgqywaY01hSFhXOtmgQNvWyI2qybRWOpDc2kZgY8GVJ-xi67sc7IIaR2HVm04ve78w_ZOOxuvXL8HP9Sz-0YggAXE0-LQz6OPvgdJKL3xy1HUmUByS5rJAwaWs1Ih-fJn1HPJvVSMAW8D1MaWe2meEg960occ29K4NvWljlOAbifMrs_Jx81vfvSest8K17-jpv0H6bnoFSqjyL139ocA
CitedBy_id crossref_primary_10_1186_s40580_022_00349_z
crossref_primary_10_3389_fbioe_2024_1441053
crossref_primary_10_3390_s22239414
crossref_primary_10_1007_s11538_020_00696_0
crossref_primary_10_1002_adfm_202300710
crossref_primary_10_1089_scd_2018_0094
crossref_primary_10_3390_biomedicines10112960
crossref_primary_10_3390_ijms222111709
crossref_primary_10_1590_acb399624
crossref_primary_10_1097_BRS_0000000000003333
crossref_primary_10_1002_advs_202004226
crossref_primary_10_3892_mmr_2023_13042
crossref_primary_10_1093_rb_rbad081
crossref_primary_10_1016_j_ejpb_2021_09_007
crossref_primary_10_4239_wjd_v14_i1_35
crossref_primary_10_1097_SHK_0000000000001643
crossref_primary_10_3390_molecules30173568
crossref_primary_10_1016_j_ymthe_2022_07_016
crossref_primary_10_1109_ACCESS_2021_3055221
crossref_primary_10_1093_asj_sjad342
crossref_primary_10_1002_jbm_a_37166
crossref_primary_10_3390_ph15111441
crossref_primary_10_3390_bioengineering9110636
crossref_primary_10_2478_sjecr_2020_0013
crossref_primary_10_1007_s10853_022_07056_4
crossref_primary_10_1016_j_cellsig_2025_111615
crossref_primary_10_1016_j_biomaterials_2021_120954
crossref_primary_10_3390_ijms21010109
crossref_primary_10_1016_j_ijpharm_2024_124590
crossref_primary_10_3389_fphar_2020_01332
crossref_primary_10_12688_f1000research_111159_1
crossref_primary_10_1016_j_wndm_2020_100190
crossref_primary_10_3389_fonc_2021_637823
crossref_primary_10_1007_s10456_019_09689_7
crossref_primary_10_1016_j_heliyon_2023_e23003
crossref_primary_10_3390_ijms18071419
crossref_primary_10_1016_j_ejphar_2020_173354
crossref_primary_10_1126_scitranslmed_adk2101
crossref_primary_10_1016_j_ijbiomac_2020_04_176
crossref_primary_10_3389_fimmu_2022_1010700
crossref_primary_10_1038_s41467_022_31890_4
crossref_primary_10_1007_s10561_022_10023_7
crossref_primary_10_1051_bioconf_20214107001
crossref_primary_10_2147_IJN_S531396
crossref_primary_10_4103_japtr_JAPTR_128_20
crossref_primary_10_1016_j_mtchem_2024_102235
crossref_primary_10_1111_cpr_13316
crossref_primary_10_1016_j_schres_2016_11_015
crossref_primary_10_3390_molecules30071513
crossref_primary_10_1016_j_apsusc_2024_162149
crossref_primary_10_3390_biom11081165
crossref_primary_10_3390_cells8121479
crossref_primary_10_1016_j_ijbiomac_2023_129033
crossref_primary_10_1016_j_heliyon_2023_e15755
crossref_primary_10_1111_odi_13163
crossref_primary_10_1007_s11033_023_09074_0
crossref_primary_10_1186_s12886_022_02249_6
crossref_primary_10_1063_5_0014519
crossref_primary_10_1093_burnst_tkae072
crossref_primary_10_3390_cancers16020350
crossref_primary_10_1007_s10853_024_09493_9
crossref_primary_10_1038_s41368_024_00321_z
crossref_primary_10_1038_s41401_023_01193_5
crossref_primary_10_1016_j_urology_2022_03_038
crossref_primary_10_3390_ijms22168643
crossref_primary_10_1016_j_mvr_2020_104014
crossref_primary_10_1016_j_apsb_2020_09_001
crossref_primary_10_1111_iwj_70015
crossref_primary_10_1089_wound_2021_0010
crossref_primary_10_1111_srt_12812
crossref_primary_10_1186_s12951_022_01549_9
crossref_primary_10_1016_j_cej_2022_134690
crossref_primary_10_1111_jocd_15466
crossref_primary_10_3389_fimmu_2024_1303776
crossref_primary_10_1007_s10029_020_02135_4
crossref_primary_10_1016_j_clnves_2025_100043
crossref_primary_10_1016_j_engreg_2024_06_003
crossref_primary_10_1002_jbm_a_37105
crossref_primary_10_1016_j_ijbiomac_2023_129044
crossref_primary_10_1111_wrr_12999
crossref_primary_10_3390_cancers13112850
crossref_primary_10_1002_eji_202451205
crossref_primary_10_1016_j_omtn_2020_07_010
crossref_primary_10_1016_j_carbpol_2024_122111
crossref_primary_10_3389_fcell_2020_578384
crossref_primary_10_12688_f1000research_51297_1
crossref_primary_10_12688_f1000research_51297_2
crossref_primary_10_3390_cells12050678
crossref_primary_10_1016_j_biopha_2020_110700
crossref_primary_10_1007_s00403_018_1851_7
crossref_primary_10_1002_lsm_23366
crossref_primary_10_1016_j_preteyeres_2022_101091
crossref_primary_10_1111_wrr_12885
crossref_primary_10_1089_wound_2021_0028
crossref_primary_10_1002_advs_202416267
crossref_primary_10_1186_s13287_019_1415_6
crossref_primary_10_3389_fmed_2022_858824
crossref_primary_10_3390_cells9071586
crossref_primary_10_1186_s12964_023_01346_3
crossref_primary_10_3390_ijms232012539
crossref_primary_10_1096_fj_202202001RR
crossref_primary_10_1007_s00266_024_03871_z
crossref_primary_10_3389_fmed_2017_00083
crossref_primary_10_1039_C9RA05030B
crossref_primary_10_1016_j_ijbiomac_2019_08_171
crossref_primary_10_1038_s41598_023_35558_x
crossref_primary_10_1089_wound_2018_0827
crossref_primary_10_14202_vetworld_2018_939_943
crossref_primary_10_1002_jez_b_22925
crossref_primary_10_3390_ph15121586
crossref_primary_10_1155_2020_3509859
crossref_primary_10_1016_j_ccr_2024_216205
crossref_primary_10_1016_j_matdes_2024_112717
crossref_primary_10_1080_10520295_2025_2513948
crossref_primary_10_1080_13880209_2020_1803369
crossref_primary_10_1186_s42490_019_0005_0
crossref_primary_10_1063_5_0173663
crossref_primary_10_3390_ph15060702
crossref_primary_10_1016_j_ydbio_2018_10_013
crossref_primary_10_3390_cells12141840
crossref_primary_10_1016_j_isci_2023_108092
crossref_primary_10_3892_etm_2019_7546
crossref_primary_10_1016_j_cej_2020_126273
crossref_primary_10_1093_burnst_tkae082
crossref_primary_10_1002_adfm_201809110
crossref_primary_10_1016_j_ijbiomac_2025_145680
crossref_primary_10_1016_j_jddst_2024_106212
crossref_primary_10_1039_C8BM01377B
crossref_primary_10_1007_s11033_024_10166_8
crossref_primary_10_1002_adhm_202403129
crossref_primary_10_1007_s00192_021_05031_2
crossref_primary_10_1016_j_omtn_2022_08_020
crossref_primary_10_1016_j_mtbio_2025_101912
crossref_primary_10_1152_ajprenal_00059_2025
crossref_primary_10_3390_microbiolres16010025
crossref_primary_10_3390_jcm9041085
crossref_primary_10_3390_bioengineering12040327
crossref_primary_10_1016_j_jep_2022_115464
crossref_primary_10_1016_j_neuroscience_2017_12_026
crossref_primary_10_1007_s42242_024_00270_w
crossref_primary_10_3892_mmr_2025_13643
crossref_primary_10_1089_ten_teb_2019_0351
crossref_primary_10_1016_j_jconrel_2020_10_035
crossref_primary_10_1111_bph_15139
crossref_primary_10_3390_ijms232315089
crossref_primary_10_1016_j_biotechadv_2017_07_002
crossref_primary_10_30699_ijmm_15_5_552
crossref_primary_10_1016_j_matdes_2025_114698
crossref_primary_10_1096_fj_202500492RR
crossref_primary_10_1177_08987564251360326
crossref_primary_10_1038_s41598_021_89313_1
crossref_primary_10_2147_DMSO_S410986
crossref_primary_10_2147_CCID_S430852
crossref_primary_10_1186_s12903_021_01445_y
crossref_primary_10_3390_ijms18081786
crossref_primary_10_1002_adfm_202308145
crossref_primary_10_1016_j_bpc_2025_107458
crossref_primary_10_1088_1758_5090_ad28f0
crossref_primary_10_1177_0300060518764210
crossref_primary_10_1016_j_actbio_2025_02_046
crossref_primary_10_1016_j_biomaterials_2020_119821
crossref_primary_10_1186_s12964_023_01214_0
crossref_primary_10_1016_j_injury_2022_09_041
crossref_primary_10_1007_s44174_024_00236_7
crossref_primary_10_1016_j_jvs_2018_06_195
crossref_primary_10_1016_j_jep_2022_115321
crossref_primary_10_1016_j_matdes_2023_111885
crossref_primary_10_1016_j_ijpharm_2025_125231
crossref_primary_10_1007_s10815_021_02292_0
crossref_primary_10_1016_j_jse_2025_05_001
crossref_primary_10_1039_D2BM01329K
crossref_primary_10_1096_fj_201800588RR
crossref_primary_10_1111_wrr_12860
crossref_primary_10_1016_j_bioactmat_2025_02_029
crossref_primary_10_1111_wrr_12866
crossref_primary_10_1016_j_ijbiomac_2025_144699
crossref_primary_10_1016_j_neuron_2023_10_025
crossref_primary_10_3390_cells10113242
crossref_primary_10_1002_lary_31616
crossref_primary_10_1039_D5TB00029G
crossref_primary_10_3390_ijms241612820
crossref_primary_10_2147_CCID_S389380
crossref_primary_10_3389_fcvm_2024_1386177
crossref_primary_10_1016_j_ijpharm_2023_122800
crossref_primary_10_1016_j_acthis_2023_152027
crossref_primary_10_1016_j_compositesb_2022_109790
crossref_primary_10_1016_j_ijbiomac_2024_134342
crossref_primary_10_1186_s12951_024_02893_8
crossref_primary_10_1016_j_addr_2018_09_010
crossref_primary_10_3390_ijms232315176
crossref_primary_10_1002_adhm_202303674
crossref_primary_10_1208_s12249_023_02632_6
crossref_primary_10_1016_j_compositesb_2021_109569
crossref_primary_10_1038_s41598_025_06419_6
crossref_primary_10_3390_ijms20112828
crossref_primary_10_1016_j_actbio_2025_02_015
crossref_primary_10_1097_PAS_0000000000001595
crossref_primary_10_1111_wrr_12800
crossref_primary_10_1016_j_injury_2021_05_035
crossref_primary_10_1038_s41419_017_0016_5
crossref_primary_10_1016_j_ydbio_2017_08_007
crossref_primary_10_3390_molecules25214982
crossref_primary_10_1016_j_biomaterials_2020_120608
crossref_primary_10_1111_prd_12546
crossref_primary_10_4239_wjd_v16_i1_99755
crossref_primary_10_1016_j_carbpol_2021_118996
crossref_primary_10_1002_anbr_202200177
crossref_primary_10_3390_biom12111689
crossref_primary_10_1186_s12951_022_01354_4
crossref_primary_10_3390_molecules26133834
crossref_primary_10_1007_s13346_020_00715_6
crossref_primary_10_1007_s40883_022_00252_3
crossref_primary_10_1038_s41419_021_04294_3
crossref_primary_10_1159_000454919
crossref_primary_10_1007_s00403_025_04277_w
crossref_primary_10_1093_jb_mvad024
crossref_primary_10_1002_bab_2273
crossref_primary_10_3390_ijms21093242
crossref_primary_10_1111_ahe_12588
crossref_primary_10_1111_jdv_19496
crossref_primary_10_1096_fj_202002078R
crossref_primary_10_1088_1748_605X_ac3c3c
crossref_primary_10_1016_j_jep_2023_116200
crossref_primary_10_1007_s11696_024_03785_9
crossref_primary_10_1098_rsos_201618
crossref_primary_10_1093_burnst_tkab049
crossref_primary_10_1039_D2BM01588A
crossref_primary_10_1016_j_ijbiomac_2024_130073
crossref_primary_10_2174_0109298665347753241028072130
crossref_primary_10_1089_ten_teb_2021_0114
crossref_primary_10_1016_j_ijpharm_2025_126026
crossref_primary_10_1038_s41598_025_18174_9
crossref_primary_10_1089_wound_2023_0050
crossref_primary_10_3390_gels11010038
crossref_primary_10_1177_20417314221143240
crossref_primary_10_1016_j_xcrm_2025_102030
crossref_primary_10_1016_j_cej_2025_164350
crossref_primary_10_1002_jbm_a_37712
crossref_primary_10_1111_iwj_14090
crossref_primary_10_1016_j_envpol_2022_119115
crossref_primary_10_1016_j_actbio_2019_05_002
crossref_primary_10_1016_j_ejps_2024_106978
crossref_primary_10_1038_s41598_022_15227_1
crossref_primary_10_1111_exd_15038
crossref_primary_10_3390_ijms22094871
crossref_primary_10_3390_pharmaceutics12111003
crossref_primary_10_1134_S1990519X19040084
crossref_primary_10_1002_jbm_a_36959
crossref_primary_10_1002_jbm_a_36835
crossref_primary_10_1039_D0BM01747G
crossref_primary_10_3390_biomedicines12112483
crossref_primary_10_1016_j_ajps_2025_101057
crossref_primary_10_3390_ijms21155463
crossref_primary_10_1016_j_jid_2021_12_018
crossref_primary_10_1016_j_intimp_2021_108094
crossref_primary_10_3390_biomedicines9040395
crossref_primary_10_3390_pharmaceutics13040510
crossref_primary_10_1016_j_ijbiomac_2024_133420
crossref_primary_10_1177_03635465211039865
crossref_primary_10_3389_fgene_2018_00038
crossref_primary_10_1111_micc_70014
crossref_primary_10_1097_GOX_0000000000004056
crossref_primary_10_1111_jcmm_70292
crossref_primary_10_1016_j_bioactmat_2024_08_016
crossref_primary_10_4049_jimmunol_2000574
crossref_primary_10_1038_s41598_022_24957_1
crossref_primary_10_1016_j_jid_2023_02_019
crossref_primary_10_3390_biomedicines8120632
crossref_primary_10_1002_jcb_30344
crossref_primary_10_3390_ijms25073790
crossref_primary_10_1016_j_jddst_2022_103425
crossref_primary_10_1016_j_wem_2020_07_003
crossref_primary_10_1016_j_jcyt_2021_07_016
crossref_primary_10_1371_journal_pone_0197223
crossref_primary_10_3389_fmed_2025_1562407
crossref_primary_10_1007_s10856_020_06366_w
crossref_primary_10_3390_ijms23095256
crossref_primary_10_3390_pharmaceutics14112358
crossref_primary_10_1155_2020_4952372
crossref_primary_10_2217_rme_2019_0087
crossref_primary_10_1002_admi_202201719
crossref_primary_10_1016_j_ijbiomac_2022_02_003
crossref_primary_10_3390_cells11233892
crossref_primary_10_1155_2020_2483187
crossref_primary_10_1016_j_jtbi_2018_09_020
crossref_primary_10_1016_j_tibtech_2019_08_005
crossref_primary_10_1002_term_2521
crossref_primary_10_21518_ms2025_268
crossref_primary_10_1186_s13287_024_04069_5
crossref_primary_10_1186_s12967_025_06913_5
crossref_primary_10_1002_smll_202407112
crossref_primary_10_1016_j_biopha_2017_04_021
crossref_primary_10_1021_acsapm_5c00934
crossref_primary_10_1016_j_jot_2025_07_006
crossref_primary_10_3389_fphys_2024_1429247
crossref_primary_10_3390_ph16111532
crossref_primary_10_1242_dev_199640
crossref_primary_10_1016_j_trsl_2021_05_001
crossref_primary_10_1088_1758_5090_ad89ff
crossref_primary_10_1208_s12249_024_03009_z
crossref_primary_10_1016_S1875_5364_23_60419_4
crossref_primary_10_1016_j_biopha_2022_113174
crossref_primary_10_3389_fimmu_2022_1028410
crossref_primary_10_1002_cnr2_70351
crossref_primary_10_1016_j_fsi_2020_02_071
crossref_primary_10_1016_j_ijbiomac_2022_01_144
crossref_primary_10_1039_D0BM01608J
crossref_primary_10_1038_s41598_020_64532_0
crossref_primary_10_3390_cells13070624
crossref_primary_10_1371_journal_pone_0331785
crossref_primary_10_1039_D3RA03477A
crossref_primary_10_1007_s41745_020_00219_9
crossref_primary_10_1016_j_msec_2021_112560
crossref_primary_10_1089_wound_2019_1037
crossref_primary_10_1016_j_lfs_2022_120578
crossref_primary_10_1016_j_bioadv_2023_213360
crossref_primary_10_1002_advs_202307746
crossref_primary_10_1111_jocd_13231
crossref_primary_10_1186_s13287_025_04207_7
crossref_primary_10_1177_1534734617706636
crossref_primary_10_1002_adfm_202003777
crossref_primary_10_3390_cells11152287
crossref_primary_10_3390_ijms25063543
crossref_primary_10_1016_j_sajb_2023_01_031
crossref_primary_10_1016_j_bioactmat_2024_04_019
crossref_primary_10_1002_adfm_202315590
crossref_primary_10_1038_s41598_020_77783_8
crossref_primary_10_3390_biom12091222
crossref_primary_10_2478_acb_2023_0001
crossref_primary_10_1177_0300060520935326
crossref_primary_10_3390_biom11050702
crossref_primary_10_1111_wrr_13154
crossref_primary_10_1016_j_bbagen_2021_130059
crossref_primary_10_1016_j_compositesb_2022_110010
crossref_primary_10_1016_j_cej_2020_128140
crossref_primary_10_1016_j_dci_2021_104185
crossref_primary_10_1093_jbcr_irac003
crossref_primary_10_1016_j_bioactmat_2024_04_007
crossref_primary_10_3390_jfb15100294
crossref_primary_10_1002_mabi_202300376
crossref_primary_10_1016_j_ijbiomac_2020_05_127
crossref_primary_10_1016_j_neuroscience_2023_05_029
crossref_primary_10_1016_j_jep_2023_116394
crossref_primary_10_1002_adfm_202307711
crossref_primary_10_1302_2046_3758_114_BJR_2021_0364_R1
crossref_primary_10_1007_s10456_023_09899_0
crossref_primary_10_1016_j_ydbio_2018_11_010
crossref_primary_10_1016_j_ijbiomac_2025_145085
crossref_primary_10_3389_fimmu_2019_02178
crossref_primary_10_3390_jfb13040249
crossref_primary_10_1016_j_surg_2021_05_023
crossref_primary_10_1007_s13770_024_00681_x
crossref_primary_10_1016_j_bioadv_2022_213023
crossref_primary_10_1007_s12247_023_09710_z
crossref_primary_10_1016_j_mtcomm_2023_105426
crossref_primary_10_1186_s13287_022_03095_5
crossref_primary_10_3389_fphys_2024_1427113
crossref_primary_10_1016_j_jid_2025_02_134
crossref_primary_10_1186_s40001_025_03056_7
crossref_primary_10_1038_s41467_022_30197_8
crossref_primary_10_1016_j_phrs_2025_107796
crossref_primary_10_1002_jcp_26494
crossref_primary_10_1080_14712598_2020_1677603
crossref_primary_10_2217_rme_2021_0170
crossref_primary_10_1007_s00018_017_2641_7
crossref_primary_10_3390_cells11213453
crossref_primary_10_1002_btm2_10562
crossref_primary_10_1080_10520295_2022_2115554
crossref_primary_10_1186_s12893_021_01298_w
crossref_primary_10_3390_antiox13010068
crossref_primary_10_3390_jcm14134486
crossref_primary_10_1016_j_omtn_2021_03_015
crossref_primary_10_1038_s41598_022_16376_z
crossref_primary_10_1097_PRS_0000000000007093
crossref_primary_10_3390_ijms25095035
crossref_primary_10_1515_znc_2025_0020
crossref_primary_10_1007_s11010_020_04022_z
crossref_primary_10_3390_cells14080581
crossref_primary_10_1111_jcmm_18130
crossref_primary_10_3389_fimmu_2023_1216321
crossref_primary_10_3389_fbioe_2019_00418
crossref_primary_10_1016_j_bioadv_2022_213163
crossref_primary_10_1016_j_bioadv_2024_213761
crossref_primary_10_1016_j_cej_2023_148432
crossref_primary_10_2174_0115680266299112240514103048
crossref_primary_10_1007_s11926_019_0825_x
crossref_primary_10_1089_wound_2018_0796
crossref_primary_10_3389_fcell_2021_714271
crossref_primary_10_3390_jcm9113501
crossref_primary_10_1016_j_intimp_2025_114050
crossref_primary_10_3390_ph14111168
crossref_primary_10_1002_adfm_202009258
crossref_primary_10_1155_2017_7614685
crossref_primary_10_1016_j_jid_2021_11_026
crossref_primary_10_3390_jcm11020376
crossref_primary_10_3390_pharmaceutics17030389
Cites_doi 10.1016/j.proghi.2007.06.001
10.4049/jimmunol.0903356
10.1089/wound.2012.0397
10.1097/BOR.0b013e32835b13b6
10.1016/S0002-9440(10)62254-7
10.1089/wound.2014.0546
10.1078/0344-0338-00447
10.1007/s10456-008-9099-z
10.1055/s-0038-1657610
10.1016/S0022-3468(05)80165-4
10.1631/jzus.B1200077
10.4254/wjh.v7.i3.377
10.1017/S1462399411001943
10.1038/jid.2010.420
10.1016/j.lfs.2013.04.001
10.1016/S0039-6060(96)80148-6
10.1016/j.burns.2010.01.014
10.1073/pnas.79.24.7773
10.1016/S0140-6736(15)01088-0
10.1152/ajpheart.00244.2010
10.1046/j.0022-202x.2001.01519.x
10.1084/jem.176.5.1375
10.1371/journal.pone.0085226
10.1093/qjmed/hcu067
10.1111/j.1524-475X.2011.00709.x
10.1242/jcs.048793
10.1038/sj.jid.5701232
10.1089/ars.2014.6065
10.1177/154405910308200810
10.1006/jsre.2000.5890
10.1097/MOP.0b013e3283535790
10.1089/wound.2011.0308
10.1046/j.1524-475X.1999.00375.x
10.1038/sj.jid.5700811
10.1038/labinvest.2008.36
10.1016/j.jaad.2003.11.061
10.1126/scitranslmed.aad0286
10.1517/14656566.2015.1067679
10.1046/j.1087-0024.2000.00014.x
10.3389/fphys.2016.00047
10.1016/j.biomaterials.2014.02.012
10.1182/blood-2004-04-1485
10.1111/j.1524-475X.2011.00692.x
10.1111/j.1524-475X.2008.00363.x
10.1097/SLA.0b013e31820563a8
10.1016/S0140-6736(05)67700-8
10.1177/154405910508400403
10.1084/jem.20071412
10.1159/000236988
10.2353/ajpath.2009.081002
10.1371/journal.pone.0101480
10.1165/rcmb.2010-0365TR
10.1006/jsre.1998.5551
10.1016/j.tcb.2010.06.006
10.1016/j.imlet.2014.08.017
10.1089/wound.2013.0456
10.1096/fj.00-0490fje
10.4049/jimmunol.1400625
10.1016/0022-4804(79)90031-3
10.1152/ajpheart.00153.2015
10.1126/scitranslmed.3009337
10.1111/micc.12107
10.1016/0014-4800(70)90084-5
10.1016/j.biocel.2012.06.031
10.1158/2326-6066.CIR-14-0209
10.1038/ijos.2013.46
10.1038/nature07039
10.1038/cdd.2009.124
10.1096/fj.12-214189
10.1111/j.1743-6109.2006.00142.x
10.1006/jsre.2002.6444
ContentType Journal Article
Copyright 2016 Society for Leukocyte Biology
Society for Leukocyte Biology.
Copyright_xml – notice: 2016 Society for Leukocyte Biology
– notice: Society for Leukocyte Biology.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1189/jlb.4MR0316-102R
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1938-3673
EndPage 984
ExternalDocumentID PMC6608066
27406995
10_1189_jlb_4MR0316_102R
JLB0979
Genre reviewArticle
Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: U.S. National Institutes of Health (NIH)
– fundername: National Institute of General Medicine
  funderid: R01‐GM50875
– fundername: National Institute of Dental Research
  funderid: R21‐DE025926
– fundername: NIDCR NIH HHS
  grantid: R21 DE025926
– fundername: NIGMS NIH HHS
  grantid: R01 GM050875
– fundername: National Institute of General Medicine
  grantid: R01‐GM50875
– fundername: National Institute of Dental Research
  grantid: R21‐DE025926
GroupedDBID ---
.GJ
0R~
0VX
18M
1OB
1OC
29K
2WC
33P
4.4
53G
5GY
5RE
5WD
AABZA
AACZT
AAHHS
AAPGJ
AAPXW
AARHZ
AASGY
AAUAY
AAVAP
AAWDT
AAXRX
AAZKR
ABCUV
ABDFA
ABEFU
ABEJV
ABJNI
ABLJU
ABMNT
ABNHQ
ABPQP
ABPTD
ABWST
ABXVV
ACAHQ
ACCFJ
ACCZN
ACFRR
ACGFO
ACGFS
ACPOU
ACPRK
ACUTJ
ACXBN
ACXQS
ACZBC
ADBBV
ADIPN
ADKYN
ADOZA
ADQBN
ADVEK
ADVOB
ADXAS
ADZMN
AEEZP
AENEX
AEQDE
AFFNX
AFGWE
AFRAH
AFYAG
AGMDO
AGQXC
AHMMS
AI.
AIURR
AIWBW
AJAOE
AJBDE
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ANFBD
APJGH
ATGXG
AVNTJ
BCRHZ
C45
CS3
D-I
DCZOG
DRFUL
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
F5P
F9R
GX1
H13
HZ~
K-O
KOP
L7B
LATKE
LEEKS
LUTES
LYRES
O9-
OBOKY
OCZFY
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P2W
RHI
RJQFR
ROL
ROX
SJN
SUPJJ
TCN
TEORI
TMA
TR2
TSL
VH1
W8F
WOHZO
WOQ
YHG
ZGI
ZXP
ZZTAW
AAMMB
AAYXX
ABGNP
ABVGC
ABXZS
ADGKP
ADNBA
AEFGJ
AGXDD
AIDQK
AIDYY
AJBYB
AJNCP
ALXQX
CITATION
AFFQV
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
5PM
ID FETCH-LOGICAL-c5789-df9ac5e75c842e6a6f9b6aaba2ae7bc3c8d676bf561a95eafb8c081bbd76db0c3
IEDL.DBID DRFUL
ISICitedReferencesCount 484
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386007500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0741-5400
1938-3673
IngestDate Tue Sep 30 16:37:19 EDT 2025
Sun Sep 28 06:09:35 EDT 2025
Wed Feb 19 02:33:22 EST 2025
Tue Nov 18 21:53:04 EST 2025
Sat Nov 29 01:44:45 EST 2025
Wed Jan 22 16:53:06 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords wound healing
fibrosis
scar
capillary
inflammation
VEGF
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
Society for Leukocyte Biology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5789-df9ac5e75c842e6a6f9b6aaba2ae7bc3c8d676bf561a95eafb8c081bbd76db0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://jlb.onlinelibrary.wiley.com/doi/pdfdirect/10.1189/jlb.4MR0316-102R
PMID 27406995
PQID 1826718849
PQPubID 23479
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6608066
proquest_miscellaneous_1826718849
pubmed_primary_27406995
crossref_primary_10_1189_jlb_4MR0316_102R
crossref_citationtrail_10_1189_jlb_4MR0316_102R
wiley_primary_10_1189_jlb_4MR0316_102R_JLB0979
PublicationCentury 2000
PublicationDate November 2016
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: November 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of leukocyte biology
PublicationTitleAlternate J Leukoc Biol
PublicationYear 2016
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References 2013; 25
2013; 27
2000; 5
2010; 17
1988; 266
2015; 309
2011; 13
2015; 108
2000; 91
2010; 184
1999; 82
2011; 19
2013; 5
2003; 199
2014; 21
1998; 152
2010; 20
2013; 14
1979; 26
2014; 3
2000; 14
2009; 122
2002; 105
2014; 162
2003; 82
2014; 9
2012; 24
2014; 6
1982; 79
2004; 104
2015; 16
2007; 127
2010; 36
2015; 4
2015; 3
2006; 14
2008; 16
2005; 84
2008; 128
2008; 205
2013; 92
2008; 11
2009; 175
2014; 193
2007; 53
1999; 7
2015; 7
2011; 253
1970; 13
2011; 131
2011; 300
2016; 7
2004; 50
1990; 25
2012; 1
2005; 166
1992; 176
2005; 366
2015; 22
1997; 78
1995; 107
2014; 35
2016
2008; 88
2011; 45
2008; 453
2007; 42
2012; 44
1996; 119
2001; 117
Dvorak (2023011710424143200_B36) 2015; 3
Turabelidze (2023011710424143200_B68) 2014; 9
Costa (2023011710424143200_B51) 2013; 92
Wietecha (2023011710424143200_B17) 2015; 309
Uutela (2023011710424143200_B13) 2004; 104
Bloch (2023011710424143200_B28) 2000; 14
Bodnar (2023011710424143200_B18) 2009; 122
Farkas (2023011710424143200_B59) 2011; 45
Elpek (2023011710424143200_B60) 2015; 7
Banda (2023011710424143200_B5) 1982; 79
Tonnesen (2023011710424143200_B23) 2000; 5
Gallant-Behm (2023011710424143200_B49) 2008; 16
Szpaderska (2023011710424143200_B35) 2005; 84
Santarelli (2023011710424143200_B65) 2015; 16
Pardali (2023011710424143200_B14) 2010; 20
Van der Veer (2023011710424143200_B58) 2011; 19
Demidova-Rice (2023011710424143200_B53) 2012; 1
Xu (2023011710424143200_B69) 2015; 7
Spiller (2023011710424143200_B40) 2014; 35
Sinha (2023011710424143200_B19) 2015; 22
Zgheib (2023011710424143200_B47) 2014; 3
Diao (2023011710424143200_B54) 2010; 36
Klein (2023011710424143200_B27) 1999; 82
Mori (2023011710424143200_B46) 2008; 205
Peranteau (2023011710424143200_B45) 2008; 128
Greenhalgh (2023011710424143200_B61) 2015; 108
Falanga (2023011710424143200_B52) 2005; 366
Lucas (2023011710424143200_B43) 2010; 184
Dvorak (2023011710424143200_B8) 1995; 107
Lange-Asschenfeldt (2023011710424143200_B24) 2001; 117
Thakral (2023011710424143200_B39) 1979; 26
Shi (2023011710424143200_B11) 2005; 166
Gallant-Behm (2023011710424143200_B48) 2011; 131
Longaker (2023011710424143200_B31) 1990; 25
Misic (2023011710424143200_B72) 2014; 3
Stramer (2023011710424143200_B44) 2007; 127
Mustoe (2023011710424143200_B67) 2011; 19
Roman (2023011710424143200_B26) 2002; 105
Leung (2023011710424143200_B32) 2012; 24
Ren (2023011710424143200_B55) 2013; 14
Jayson (2023011710424143200_B66) 2016
Jones (2023011710424143200_B70) 2013; 5
Brown (2023011710424143200_B7) 1992; 176
Koh (2023011710424143200_B42) 2011; 13
Berger (2023011710424143200_B25) 2000; 91
Chen (2023011710424143200_B50) 2014; 9
Costalonga (2023011710424143200_B71) 2014; 162
Gurtner (2023011710424143200_B1) 2008; 453
DiPietro (2023011710424143200_B4) 2013; 25
Laplante (2023011710424143200_B62) 2010; 17
Nissen (2023011710424143200_B6) 1998; 152
Erba (2023011710424143200_B38) 2011; 253
Johnson (2023011710424143200_B64) 2013; 27
Eming (2023011710424143200_B3) 2007; 42
Iruela-Arispe (2023011710424143200_B15) 1997; 78
Nagy (2023011710424143200_B9) 2008; 11
Szpaderska (2023011710424143200_B34) 2003; 82
Bluff (2023011710424143200_B37) 2006; 14
Wietecha (2023011710424143200_B16) 2011; 300
Gira (2023011710424143200_B56) 2004; 50
Amadeu (2023011710424143200_B57) 2003; 199
Nissen (2023011710424143200_B10) 1996; 119
Goren (2023011710424143200_B41) 2009; 175
Wilgus (2023011710424143200_B30) 2008; 88
Wilgus (2023011710424143200_B33) 2007; 53
Holmes (2023011710424143200_B73) 2015; 4
Crocker (2023011710424143200_B22) 1970; 13
Wang (2023011710424143200_B63) 2016; 7
Canesso (2023011710424143200_B74) 2014; 193
Jang (2023011710424143200_B29) 1999; 7
Kelly-Goss (2023011710424143200_B20) 2014; 21
Dulmovits (2023011710424143200_B21) 2012; 44
Grotendorst (2023011710424143200_B12) 1988; 266
Eming (2023011710424143200_B2) 2014; 6
References_xml – volume: 45
  start-page: 1
  year: 2011
  end-page: 15
  article-title: Pulmonary hypertension and idiopathic pulmonary fibrosis: a tale of angiogenesis, apoptosis, and growth factors
  publication-title: Am. J. Respir. Cell Mol. Biol.
– volume: 309
  start-page: H812
  year: 2015
  end-page: H826
  article-title: Pigment epithelium‐derived factor as a multifunctional regulator of wound healing
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 117
  start-page: 1036
  year: 2001
  end-page: 1041
  article-title: The angiogenesis inhibitor vasostatin does not impair wound healing at tumor‐inhibiting doses
  publication-title: J. Invest. Dermatol.
– volume: 9
  start-page: e85226
  year: 2014
  article-title: Blockade of mast cell activation reduces cutaneous scar formation
  publication-title: PLoS One
– volume: 193
  start-page: 5171
  year: 2014
  end-page: 5180
  article-title: Skin wound healing is accelerated and scarless in the absence of commensal microbiota
  publication-title: J. Immunol.
– volume: 5
  start-page: 40
  year: 2000
  end-page: 46
  article-title: Angiogenesis in wound healing
  publication-title: J. Investig. Dermatol. Symp. Proc.
– volume: 3
  start-page: 1
  year: 2015
  end-page: 11
  article-title: Tumors: wounds that do not heal‐redux
  publication-title: Cancer Immunol. Res.
– volume: 9
  start-page: e101480
  year: 2014
  article-title: Intrinsic differences between oral and skin keratinocytes
  publication-title: PLoS One
– volume: 88
  start-page: 579
  year: 2008
  end-page: 590
  article-title: Regulation of scar formation by vascular endothelial growth factor
  publication-title: Lab. Invest.
– volume: 7
  start-page: 377
  year: 2015
  end-page: 391
  article-title: Angiogenesis and liver fibrosis
  publication-title: World J. Hepatol.
– volume: 25
  start-page: 87
  year: 2013
  end-page: 91
  article-title: Angiogenesis and scar formation in healing wounds
  publication-title: Curr. Opin. Rheumatol.
– volume: 91
  start-page: 26
  year: 2000
  end-page: 31
  article-title: The angiogenesis inhibitor, endostatin, does not affect murine cutaneous wound healing
  publication-title: J. Surg. Res.
– volume: 1
  start-page: 17
  year: 2012
  end-page: 22
  article-title: Wound healing angiogenesis: innovations and challenges in acute and chronic wound healing
  publication-title: Adv. Wound Care (New Rochelle)
– volume: 108
  start-page: 3
  year: 2015
  end-page: 7
  article-title: Healing scars: targeting pericytes to treat fibrosis
  publication-title: QJM
– volume: 24
  start-page: 371
  year: 2012
  end-page: 378
  article-title: Fetal wound healing: implications for minimal scar formation
  publication-title: Curr. Opin. Pediatr.
– volume: 16
  start-page: 226
  year: 2008
  end-page: 233
  article-title: The mast cell stabilizer ketotifen prevents development of excessive skin wound contraction and fibrosis in red Duroc pigs
  publication-title: Wound Repair Regen.
– volume: 7
  start-page: 312ra177
  year: 2015
  article-title: Sodium channel Nax is a regulator in epithelial sodium homeostasis
  publication-title: Sci. Transl. Med.
– volume: 20
  start-page: 556
  year: 2010
  end-page: 567
  article-title: Signaling by members of the TGF‐beta family in vascular morphogenesis and disease
  publication-title: Trends Cell Biol.
– volume: 3
  start-page: 502
  year: 2014
  end-page: 510
  article-title: The wound microbiome: modern approaches to examining the role of microorganisms in impaired chronic wound healing
  publication-title: Adv. Wound Care (New Rochelle)
– volume: 19
  start-page: s16
  issue: Suppl 1
  year: 2011
  end-page: s21
  article-title: The role of the epidermis and the mechanism of action of occlusive dressings in scarring
  publication-title: Wound Repair Regen.
– volume: 4
  start-page: 24
  year: 2015
  end-page: 37
  article-title: Dynamic role of host stress responses in modulating the cutaneous microbiome: implications for wound healing and infection
  publication-title: Adv. Wound Care (New Rochelle)
– volume: 300
  start-page: H459
  year: 2011
  end-page: H467
  article-title: Sprouty2 downregulates angiogenesis during mouse skin wound healing
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 14
  start-page: 434
  year: 2006
  end-page: 442
  article-title: The microcirculation in acute murine cutaneous incisional wounds shows a spatial and temporal variation in the functionality of vessels
  publication-title: Wound Repair Regen.
– volume: 205
  start-page: 43
  year: 2008
  end-page: 51
  article-title: Molecular mechanisms linking wound inflammation and fibrosis: knockdown of osteopontin leads to rapid repair and reduced scarring
  publication-title: J. Exp. Med.
– volume: 119
  start-page: 457
  year: 1996
  end-page: 465
  article-title: Basic fibroblast growth factor mediates angiogenic activity in early surgical wounds
  publication-title: Surgery
– volume: 253
  start-page: 402
  year: 2011
  end-page: 409
  article-title: Angiogenesis in wounds treated by microdeformational wound therapy
  publication-title: Ann. Surg.
– year: 2016
  article-title: Antiangiogenic therapy in oncology: current status and future directions
  publication-title: Lancet
– volume: 107
  start-page: 233
  year: 1995
  end-page: 235
  article-title: Vascular permeability factor/vascular endothelial growth factor: an important mediator of angiogenesis in malignancy and inflammation
  publication-title: Int. Arch. Allergy Immunol.
– volume: 82
  start-page: 268
  year: 1999
  end-page: 274
  article-title: Angiogenesis inhibitor TNP‐470 inhibits murine cutaneous wound healing
  publication-title: J. Surg. Res.
– volume: 14
  start-page: 2373
  year: 2000
  end-page: 2376
  article-title: The angiogenesis inhibitor endostatin impairs blood vessel maturation during wound healing
  publication-title: FASEB J.
– volume: 21
  start-page: 345
  year: 2014
  end-page: 357
  article-title: Targeting pericytes for angiogenic therapies
  publication-title: Microcirculation
– volume: 7
  start-page: 47
  year: 2016
  article-title: Promising therapy candidates for liver fibrosis
  publication-title: Front. Physiol.
– volume: 27
  start-page: 3893
  year: 2013
  end-page: 3901
  article-title: Apoptosis and angiogenesis: an evolving mechanism for fibrosis
  publication-title: FASEB J.
– volume: 3
  start-page: 344
  year: 2014
  end-page: 355
  article-title: Targeting inflammatory cytokines and extracellular matrix composition to promote wound regeneration
  publication-title: Adv. Wound Care (New Rochelle)
– volume: 5
  start-page: 121
  year: 2013
  end-page: 129
  article-title: Oral epithelial stem cells in tissue maintenance and disease: the first steps in a long journey
  publication-title: Int. J. Oral Sci.
– volume: 13
  start-page: e23
  year: 2011
  article-title: Inflammation and wound healing: the role of the macrophage
  publication-title: Expert Rev. Mol. Med.
– volume: 17
  start-page: 291
  year: 2010
  end-page: 303
  article-title: Caspase‐3‐mediated secretion of connective tissue growth factor by apoptotic endothelial cells promotes fibrosis
  publication-title: Cell Death Differ.
– volume: 453
  start-page: 314
  year: 2008
  end-page: 321
  article-title: Wound repair and regeneration
  publication-title: Nature
– volume: 128
  start-page: 1852
  year: 2008
  end-page: 1860
  article-title: IL‐10 overexpression decreases inflammatory mediators and promotes regenerative healing in an adult model of scar formation
  publication-title: J. Invest. Dermatol.
– volume: 166
  start-page: 303
  year: 2005
  end-page: 312
  article-title: CARP, a cardiac ankyrin repeat protein, is up‐regulated during wound healing and induces angiogenesis in experimental granulation tissue
  publication-title: Am. J. Pathol.
– volume: 366
  start-page: 1736
  year: 2005
  end-page: 1743
  article-title: Wound healing and its impairment in the diabetic foot
  publication-title: Lancet
– volume: 11
  start-page: 109
  year: 2008
  end-page: 119
  article-title: Vascular permeability, vascular hyperpermeability and angiogenesis
  publication-title: Angiogenesis
– volume: 7
  start-page: 375
  year: 1999
  end-page: 380
  article-title: Role of alpha(v) integrins and angiogenesis during wound repair
  publication-title: Wound Repair Regen.
– volume: 36
  start-page: 1136
  year: 2010
  end-page: 1137
  article-title: Bevacizumab: a potential agent for prevention and treatment of hypertrophic scar
  publication-title: Burns
– volume: 79
  start-page: 7773
  year: 1982
  end-page: 7777
  article-title: Isolation of a nonmitogenic angiogenesis factor from wound fluid
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 176
  start-page: 1375
  year: 1992
  end-page: 1379
  article-title: Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing
  publication-title: J. Exp. Med.
– volume: 53
  start-page: 16
  year: 2007
  end-page: 31
  article-title: Regenerative healing in fetal skin: a review of the literature
  publication-title: Ostomy Wound Manage.
– volume: 19
  start-page: 292
  year: 2011
  end-page: 301
  article-title: Time course of the angiogenic response during normotrophic and hypertrophic scar formation in humans
  publication-title: Wound Repair Regen.
– volume: 78
  start-page: 672
  year: 1997
  end-page: 677
  article-title: Angiogenesis: a dynamic balance of stimulators and inhibitors
  publication-title: Thromb. Haemost.
– volume: 25
  start-page: 63
  year: 1990
  end-page: 68
  article-title: Studies in fetal wound healing, VI, second and early third trimester fetal wounds demonstrate rapid collagen deposition without scar formation
  publication-title: J. Pediatr. Surg.
– volume: 175
  start-page: 132
  year: 2009
  end-page: 147
  article-title: A transgenic mouse model of inducible macrophage depletion: effects of diphtheria toxin‐driven lysozyme M‐specific cell lineage ablation on wound inflammatory, angiogenic, and contractive processes
  publication-title: Am. J. Pathol.
– volume: 16
  start-page: 1769
  year: 2015
  end-page: 1781
  article-title: Advances in pharmacotherapy for wet age‐related macular degeneration
  publication-title: Expert Opin. Pharmacother.
– volume: 162
  start-page: 22
  year: 2014
  end-page: 38
  article-title: The oral microbiome and the immunobiology of periodontal disease and caries
  publication-title: Immunol. Lett.
– volume: 122
  start-page: 2064
  year: 2009
  end-page: 2077
  article-title: IP‐10 induces dissociation of newly formed blood vessels
  publication-title: J. Cell Sci.
– volume: 22
  start-page: 1257
  year: 2015
  end-page: 1272
  article-title: microRNA‐200b as a switch for inducible adult angiogenesis
  publication-title: Antioxid. Redox Signal.
– volume: 92
  start-page: 1037
  year: 2013
  end-page: 1045
  article-title: Neovascularization in diabetes and its complications: unraveling the angiogenic paradox
  publication-title: Life Sci.
– volume: 42
  start-page: 115
  year: 2007
  end-page: 170
  article-title: Regulation of angiogenesis: wound healing as a model
  publication-title: Prog. Histochem. Cytochem.
– volume: 105
  start-page: 43
  year: 2002
  end-page: 47
  article-title: Vascular endothelial growth factor‐mediated angiogenesis inhibition and postoperative wound healing in rats
  publication-title: J. Surg. Res.
– volume: 184
  start-page: 3964
  year: 2010
  end-page: 3977
  article-title: Differential roles of macrophages in diverse phases of skin repair
  publication-title: J. Immunol.
– volume: 35
  start-page: 4477
  year: 2014
  end-page: 4488
  article-title: The role of macrophage phenotype in vascularization of tissue engineering scaffolds
  publication-title: Biomaterials
– volume: 50
  start-page: 850
  year: 2004
  end-page: 853
  article-title: Keloids demonstrate high‐level epidermal expression of vascular endothelial growth factor
  publication-title: J. Am. Acad. Dermatol.
– volume: 266
  start-page: 47
  year: 1988
  end-page: 54
  article-title: Production of growth factors (PDGF & TGF‐beta) at the site of tissue repair
  publication-title: Prog. Clin. Biol. Res.
– volume: 14
  start-page: 224
  year: 2013
  end-page: 230
  article-title: Endostatin inhibits hypertrophic scarring in a rabbit ear model
  publication-title: J. Zhejiang Univ. Sci. B
– volume: 127
  start-page: 1009
  year: 2007
  end-page: 1017
  article-title: The inflammation‐fibrosis link? A Jekyll and Hyde role for blood cells during wound repair
  publication-title: J. Invest. Dermatol.
– volume: 199
  start-page: 469
  year: 2003
  end-page: 473
  article-title: Vascularization pattern in hypertrophic scars and keloids: a stereological analysis
  publication-title: Pathol. Res. Pract.
– volume: 13
  start-page: 51
  year: 1970
  end-page: 65
  article-title: Role of the pericyte in wound healing: an ultrastructural study
  publication-title: Exp. Mol. Pathol.
– volume: 104
  start-page: 3198
  year: 2004
  end-page: 3204
  article-title: PDGF‐D induces macrophage recruitment, increased interstitial pressure, and blood vessel maturation during angiogenesis
  publication-title: Blood
– volume: 152
  start-page: 1445
  year: 1998
  end-page: 1452
  article-title: Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing
  publication-title: Am. J. Pathol.
– volume: 84
  start-page: 309
  year: 2005
  end-page: 314
  article-title: Distinct patterns of angiogenesis in oral and skin wounds
  publication-title: J. Dent. Res.
– volume: 6
  start-page: 265sr6
  year: 2014
  article-title: Wound repair and regeneration: mechanisms, signaling, and translation
  publication-title: Sci. Transl. Med.
– volume: 82
  start-page: 621
  year: 2003
  end-page: 626
  article-title: Differential injury responses in oral mucosal and cutaneous wounds
  publication-title: J. Dent. Res.
– volume: 131
  start-page: 892
  year: 2011
  end-page: 899
  article-title: Epithelial regulation of mesenchymal tissue behavior
  publication-title: J. Invest. Dermatol.
– volume: 26
  start-page: 430
  year: 1979
  end-page: 436
  article-title: Stimulation of wound blood vessel growth by wound macrophages
  publication-title: J. Surg. Res.
– volume: 44
  start-page: 1800
  year: 2012
  end-page: 1812
  article-title: Microvascular remodeling and wound healing: a role for pericytes
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 42
  start-page: 115
  year: 2007
  ident: 2023011710424143200_B3
  article-title: Regulation of angiogenesis: wound healing as a model
  publication-title: Prog. Histochem. Cytochem.
  doi: 10.1016/j.proghi.2007.06.001
– volume: 184
  start-page: 3964
  year: 2010
  ident: 2023011710424143200_B43
  article-title: Differential roles of macrophages in diverse phases of skin repair
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0903356
– volume: 3
  start-page: 502
  year: 2014
  ident: 2023011710424143200_B72
  article-title: The wound microbiome: modern approaches to examining the role of microorganisms in impaired chronic wound healing
  publication-title: Adv. Wound Care (New Rochelle)
  doi: 10.1089/wound.2012.0397
– volume: 25
  start-page: 87
  year: 2013
  ident: 2023011710424143200_B4
  article-title: Angiogenesis and scar formation in healing wounds
  publication-title: Curr. Opin. Rheumatol.
  doi: 10.1097/BOR.0b013e32835b13b6
– volume: 166
  start-page: 303
  year: 2005
  ident: 2023011710424143200_B11
  article-title: CARP, a cardiac ankyrin repeat protein, is up-regulated during wound healing and induces angiogenesis in experimental granulation tissue
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)62254-7
– volume: 4
  start-page: 24
  year: 2015
  ident: 2023011710424143200_B73
  article-title: Dynamic role of host stress responses in modulating the cutaneous microbiome: implications for wound healing and infection
  publication-title: Adv. Wound Care (New Rochelle)
  doi: 10.1089/wound.2014.0546
– volume: 199
  start-page: 469
  year: 2003
  ident: 2023011710424143200_B57
  article-title: Vascularization pattern in hypertrophic scars and keloids: a stereological analysis
  publication-title: Pathol. Res. Pract.
  doi: 10.1078/0344-0338-00447
– volume: 11
  start-page: 109
  year: 2008
  ident: 2023011710424143200_B9
  article-title: Vascular permeability, vascular hyperpermeability and angiogenesis
  publication-title: Angiogenesis
  doi: 10.1007/s10456-008-9099-z
– volume: 78
  start-page: 672
  year: 1997
  ident: 2023011710424143200_B15
  article-title: Angiogenesis: a dynamic balance of stimulators and inhibitors
  publication-title: Thromb. Haemost.
  doi: 10.1055/s-0038-1657610
– volume: 25
  start-page: 63
  year: 1990
  ident: 2023011710424143200_B31
  article-title: Studies in fetal wound healing, VI, second and early third trimester fetal wounds demonstrate rapid collagen deposition without scar formation
  publication-title: J. Pediatr. Surg.
  doi: 10.1016/S0022-3468(05)80165-4
– volume: 14
  start-page: 224
  year: 2013
  ident: 2023011710424143200_B55
  article-title: Endostatin inhibits hypertrophic scarring in a rabbit ear model
  publication-title: J. Zhejiang Univ. Sci. B
  doi: 10.1631/jzus.B1200077
– volume: 7
  start-page: 377
  year: 2015
  ident: 2023011710424143200_B60
  article-title: Angiogenesis and liver fibrosis
  publication-title: World J. Hepatol.
  doi: 10.4254/wjh.v7.i3.377
– volume: 13
  start-page: e23
  year: 2011
  ident: 2023011710424143200_B42
  article-title: Inflammation and wound healing: the role of the macrophage
  publication-title: Expert Rev. Mol. Med.
  doi: 10.1017/S1462399411001943
– volume: 131
  start-page: 892
  year: 2011
  ident: 2023011710424143200_B48
  article-title: Epithelial regulation of mesenchymal tissue behavior
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/jid.2010.420
– volume: 92
  start-page: 1037
  year: 2013
  ident: 2023011710424143200_B51
  article-title: Neovascularization in diabetes and its complications: unraveling the angiogenic paradox
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2013.04.001
– volume: 119
  start-page: 457
  year: 1996
  ident: 2023011710424143200_B10
  article-title: Basic fibroblast growth factor mediates angiogenic activity in early surgical wounds
  publication-title: Surgery
  doi: 10.1016/S0039-6060(96)80148-6
– volume: 36
  start-page: 1136
  year: 2010
  ident: 2023011710424143200_B54
  article-title: Bevacizumab: a potential agent for prevention and treatment of hypertrophic scar
  publication-title: Burns
  doi: 10.1016/j.burns.2010.01.014
– volume: 79
  start-page: 7773
  year: 1982
  ident: 2023011710424143200_B5
  article-title: Isolation of a nonmitogenic angiogenesis factor from wound fluid
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.79.24.7773
– volume: 266
  start-page: 47
  year: 1988
  ident: 2023011710424143200_B12
  article-title: Production of growth factors (PDGF & TGF-beta) at the site of tissue repair
  publication-title: Prog. Clin. Biol. Res.
– year: 2016
  ident: 2023011710424143200_B66
  article-title: Antiangiogenic therapy in oncology: current status and future directions
  publication-title: Lancet
  doi: 10.1016/S0140-6736(15)01088-0
– volume: 300
  start-page: H459
  year: 2011
  ident: 2023011710424143200_B16
  article-title: Sprouty2 downregulates angiogenesis during mouse skin wound healing
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00244.2010
– volume: 117
  start-page: 1036
  year: 2001
  ident: 2023011710424143200_B24
  article-title: The angiogenesis inhibitor vasostatin does not impair wound healing at tumor-inhibiting doses
  publication-title: J. Invest. Dermatol.
  doi: 10.1046/j.0022-202x.2001.01519.x
– volume: 176
  start-page: 1375
  year: 1992
  ident: 2023011710424143200_B7
  article-title: Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.176.5.1375
– volume: 9
  start-page: e85226
  year: 2014
  ident: 2023011710424143200_B50
  article-title: Blockade of mast cell activation reduces cutaneous scar formation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0085226
– volume: 108
  start-page: 3
  year: 2015
  ident: 2023011710424143200_B61
  article-title: Healing scars: targeting pericytes to treat fibrosis
  publication-title: QJM
  doi: 10.1093/qjmed/hcu067
– volume: 19
  start-page: s16
  issue: Suppl 1
  year: 2011
  ident: 2023011710424143200_B67
  article-title: The role of the epidermis and the mechanism of action of occlusive dressings in scarring
  publication-title: Wound Repair Regen.
  doi: 10.1111/j.1524-475X.2011.00709.x
– volume: 122
  start-page: 2064
  year: 2009
  ident: 2023011710424143200_B18
  article-title: IP-10 induces dissociation of newly formed blood vessels
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.048793
– volume: 53
  start-page: 16
  year: 2007
  ident: 2023011710424143200_B33
  article-title: Regenerative healing in fetal skin: a review of the literature
  publication-title: Ostomy Wound Manage.
– volume: 128
  start-page: 1852
  year: 2008
  ident: 2023011710424143200_B45
  article-title: IL-10 overexpression decreases inflammatory mediators and promotes regenerative healing in an adult model of scar formation
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/sj.jid.5701232
– volume: 22
  start-page: 1257
  year: 2015
  ident: 2023011710424143200_B19
  article-title: microRNA-200b as a switch for inducible adult angiogenesis
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2014.6065
– volume: 82
  start-page: 621
  year: 2003
  ident: 2023011710424143200_B34
  article-title: Differential injury responses in oral mucosal and cutaneous wounds
  publication-title: J. Dent. Res.
  doi: 10.1177/154405910308200810
– volume: 91
  start-page: 26
  year: 2000
  ident: 2023011710424143200_B25
  article-title: The angiogenesis inhibitor, endostatin, does not affect murine cutaneous wound healing
  publication-title: J. Surg. Res.
  doi: 10.1006/jsre.2000.5890
– volume: 24
  start-page: 371
  year: 2012
  ident: 2023011710424143200_B32
  article-title: Fetal wound healing: implications for minimal scar formation
  publication-title: Curr. Opin. Pediatr.
  doi: 10.1097/MOP.0b013e3283535790
– volume: 1
  start-page: 17
  year: 2012
  ident: 2023011710424143200_B53
  article-title: Wound healing angiogenesis: innovations and challenges in acute and chronic wound healing
  publication-title: Adv. Wound Care (New Rochelle)
  doi: 10.1089/wound.2011.0308
– volume: 7
  start-page: 375
  year: 1999
  ident: 2023011710424143200_B29
  article-title: Role of alpha(v) integrins and angiogenesis during wound repair
  publication-title: Wound Repair Regen.
  doi: 10.1046/j.1524-475X.1999.00375.x
– volume: 127
  start-page: 1009
  year: 2007
  ident: 2023011710424143200_B44
  article-title: The inflammation-fibrosis link? A Jekyll and Hyde role for blood cells during wound repair
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/sj.jid.5700811
– volume: 88
  start-page: 579
  year: 2008
  ident: 2023011710424143200_B30
  article-title: Regulation of scar formation by vascular endothelial growth factor
  publication-title: Lab. Invest.
  doi: 10.1038/labinvest.2008.36
– volume: 50
  start-page: 850
  year: 2004
  ident: 2023011710424143200_B56
  article-title: Keloids demonstrate high-level epidermal expression of vascular endothelial growth factor
  publication-title: J. Am. Acad. Dermatol.
  doi: 10.1016/j.jaad.2003.11.061
– volume: 7
  start-page: 312ra177
  year: 2015
  ident: 2023011710424143200_B69
  article-title: Sodium channel Nax is a regulator in epithelial sodium homeostasis
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aad0286
– volume: 16
  start-page: 1769
  year: 2015
  ident: 2023011710424143200_B65
  article-title: Advances in pharmacotherapy for wet age-related macular degeneration
  publication-title: Expert Opin. Pharmacother.
  doi: 10.1517/14656566.2015.1067679
– volume: 5
  start-page: 40
  year: 2000
  ident: 2023011710424143200_B23
  article-title: Angiogenesis in wound healing
  publication-title: J. Investig. Dermatol. Symp. Proc.
  doi: 10.1046/j.1087-0024.2000.00014.x
– volume: 7
  start-page: 47
  year: 2016
  ident: 2023011710424143200_B63
  article-title: Promising therapy candidates for liver fibrosis
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2016.00047
– volume: 35
  start-page: 4477
  year: 2014
  ident: 2023011710424143200_B40
  article-title: The role of macrophage phenotype in vascularization of tissue engineering scaffolds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.02.012
– volume: 104
  start-page: 3198
  year: 2004
  ident: 2023011710424143200_B13
  article-title: PDGF-D induces macrophage recruitment, increased interstitial pressure, and blood vessel maturation during angiogenesis
  publication-title: Blood
  doi: 10.1182/blood-2004-04-1485
– volume: 19
  start-page: 292
  year: 2011
  ident: 2023011710424143200_B58
  article-title: Time course of the angiogenic response during normotrophic and hypertrophic scar formation in humans
  publication-title: Wound Repair Regen.
  doi: 10.1111/j.1524-475X.2011.00692.x
– volume: 16
  start-page: 226
  year: 2008
  ident: 2023011710424143200_B49
  article-title: The mast cell stabilizer ketotifen prevents development of excessive skin wound contraction and fibrosis in red Duroc pigs
  publication-title: Wound Repair Regen.
  doi: 10.1111/j.1524-475X.2008.00363.x
– volume: 253
  start-page: 402
  year: 2011
  ident: 2023011710424143200_B38
  article-title: Angiogenesis in wounds treated by microdeformational wound therapy
  publication-title: Ann. Surg.
  doi: 10.1097/SLA.0b013e31820563a8
– volume: 366
  start-page: 1736
  year: 2005
  ident: 2023011710424143200_B52
  article-title: Wound healing and its impairment in the diabetic foot
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)67700-8
– volume: 84
  start-page: 309
  year: 2005
  ident: 2023011710424143200_B35
  article-title: Distinct patterns of angiogenesis in oral and skin wounds
  publication-title: J. Dent. Res.
  doi: 10.1177/154405910508400403
– volume: 205
  start-page: 43
  year: 2008
  ident: 2023011710424143200_B46
  article-title: Molecular mechanisms linking wound inflammation and fibrosis: knockdown of osteopontin leads to rapid repair and reduced scarring
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20071412
– volume: 107
  start-page: 233
  year: 1995
  ident: 2023011710424143200_B8
  article-title: Vascular permeability factor/vascular endothelial growth factor: an important mediator of angiogenesis in malignancy and inflammation
  publication-title: Int. Arch. Allergy Immunol.
  doi: 10.1159/000236988
– volume: 152
  start-page: 1445
  year: 1998
  ident: 2023011710424143200_B6
  article-title: Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing
  publication-title: Am. J. Pathol.
– volume: 175
  start-page: 132
  year: 2009
  ident: 2023011710424143200_B41
  article-title: A transgenic mouse model of inducible macrophage depletion: effects of diphtheria toxin-driven lysozyme M-specific cell lineage ablation on wound inflammatory, angiogenic, and contractive processes
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2009.081002
– volume: 9
  start-page: e101480
  year: 2014
  ident: 2023011710424143200_B68
  article-title: Intrinsic differences between oral and skin keratinocytes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0101480
– volume: 45
  start-page: 1
  year: 2011
  ident: 2023011710424143200_B59
  article-title: Pulmonary hypertension and idiopathic pulmonary fibrosis: a tale of angiogenesis, apoptosis, and growth factors
  publication-title: Am. J. Respir. Cell Mol. Biol.
  doi: 10.1165/rcmb.2010-0365TR
– volume: 82
  start-page: 268
  year: 1999
  ident: 2023011710424143200_B27
  article-title: Angiogenesis inhibitor TNP-470 inhibits murine cutaneous wound healing
  publication-title: J. Surg. Res.
  doi: 10.1006/jsre.1998.5551
– volume: 20
  start-page: 556
  year: 2010
  ident: 2023011710424143200_B14
  article-title: Signaling by members of the TGF-beta family in vascular morphogenesis and disease
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2010.06.006
– volume: 162
  start-page: 22
  year: 2014
  ident: 2023011710424143200_B71
  article-title: The oral microbiome and the immunobiology of periodontal disease and caries
  publication-title: Immunol. Lett.
  doi: 10.1016/j.imlet.2014.08.017
– volume: 3
  start-page: 344
  year: 2014
  ident: 2023011710424143200_B47
  article-title: Targeting inflammatory cytokines and extracellular matrix composition to promote wound regeneration
  publication-title: Adv. Wound Care (New Rochelle)
  doi: 10.1089/wound.2013.0456
– volume: 14
  start-page: 2373
  year: 2000
  ident: 2023011710424143200_B28
  article-title: The angiogenesis inhibitor endostatin impairs blood vessel maturation during wound healing
  publication-title: FASEB J.
  doi: 10.1096/fj.00-0490fje
– volume: 193
  start-page: 5171
  year: 2014
  ident: 2023011710424143200_B74
  article-title: Skin wound healing is accelerated and scarless in the absence of commensal microbiota
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1400625
– volume: 26
  start-page: 430
  year: 1979
  ident: 2023011710424143200_B39
  article-title: Stimulation of wound blood vessel growth by wound macrophages
  publication-title: J. Surg. Res.
  doi: 10.1016/0022-4804(79)90031-3
– volume: 309
  start-page: H812
  year: 2015
  ident: 2023011710424143200_B17
  article-title: Pigment epithelium-derived factor as a multifunctional regulator of wound healing
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00153.2015
– volume: 6
  start-page: 265sr6
  year: 2014
  ident: 2023011710424143200_B2
  article-title: Wound repair and regeneration: mechanisms, signaling, and translation
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3009337
– volume: 21
  start-page: 345
  year: 2014
  ident: 2023011710424143200_B20
  article-title: Targeting pericytes for angiogenic therapies
  publication-title: Microcirculation
  doi: 10.1111/micc.12107
– volume: 13
  start-page: 51
  year: 1970
  ident: 2023011710424143200_B22
  article-title: Role of the pericyte in wound healing: an ultrastructural study
  publication-title: Exp. Mol. Pathol.
  doi: 10.1016/0014-4800(70)90084-5
– volume: 44
  start-page: 1800
  year: 2012
  ident: 2023011710424143200_B21
  article-title: Microvascular remodeling and wound healing: a role for pericytes
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2012.06.031
– volume: 3
  start-page: 1
  year: 2015
  ident: 2023011710424143200_B36
  article-title: Tumors: wounds that do not heal-redux
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-14-0209
– volume: 5
  start-page: 121
  year: 2013
  ident: 2023011710424143200_B70
  article-title: Oral epithelial stem cells in tissue maintenance and disease: the first steps in a long journey
  publication-title: Int. J. Oral Sci.
  doi: 10.1038/ijos.2013.46
– volume: 453
  start-page: 314
  year: 2008
  ident: 2023011710424143200_B1
  article-title: Wound repair and regeneration
  publication-title: Nature
  doi: 10.1038/nature07039
– volume: 17
  start-page: 291
  year: 2010
  ident: 2023011710424143200_B62
  article-title: Caspase-3-mediated secretion of connective tissue growth factor by apoptotic endothelial cells promotes fibrosis
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2009.124
– volume: 27
  start-page: 3893
  year: 2013
  ident: 2023011710424143200_B64
  article-title: Apoptosis and angiogenesis: an evolving mechanism for fibrosis
  publication-title: FASEB J.
  doi: 10.1096/fj.12-214189
– volume: 14
  start-page: 434
  year: 2006
  ident: 2023011710424143200_B37
  article-title: The microcirculation in acute murine cutaneous incisional wounds shows a spatial and temporal variation in the functionality of vessels
  publication-title: Wound Repair Regen.
  doi: 10.1111/j.1743-6109.2006.00142.x
– volume: 105
  start-page: 43
  year: 2002
  ident: 2023011710424143200_B26
  article-title: Vascular endothelial growth factor-mediated angiogenesis inhibition and postoperative wound healing in rats
  publication-title: J. Surg. Res.
  doi: 10.1006/jsre.2002.6444
SSID ssj0003260
Score 2.6579044
SecondaryResourceType review_article
Snippet Review on novel concepts in wound angiogenesis; although more capillaries are generally considered better, new studies suggest otherwise. All animals heal, and...
All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate...
Review on novel concepts in wound angiogenesis; although more capillaries are generally considered better, new studies suggest otherwise. All animals heal, and...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 979
SubjectTerms Angiogenic Proteins - physiology
Animals
Capillaries - physiology
capillary
Cicatrix - physiopathology
Cicatrix - prevention & control
Endothelial Cells - physiology
Fetus - physiology
Fibrosis
Humans
inflammation
Inflammation - physiopathology
Mouth Mucosa - blood supply
Mouth Mucosa - injuries
Mouth Mucosa - physiology
Neovascularization, Physiologic - physiology
Pericytes - physiology
Prenatal Injuries - physiopathology
Regeneration - physiology
Review
Reviews
scar
Skin - blood supply
Skin - injuries
VEGF
wound healing
Wound Healing - physiology
Title Angiogenesis and wound repair: when enough is enough
URI https://onlinelibrary.wiley.com/doi/abs/10.1189%2Fjlb.4MR0316-102R
https://www.ncbi.nlm.nih.gov/pubmed/27406995
https://www.proquest.com/docview/1826718849
https://pubmed.ncbi.nlm.nih.gov/PMC6608066
Volume 100
WOSCitedRecordID wos000386007500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1938-3673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003260
  issn: 0741-5400
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEB_0bMEXa7W1aatsoRT6kBrvNvvRt6t6lGJ9OCrcW9iv3KXontxpxf_e2WwueBUqBd8C2V2SmZ2Z3-zHbwA-OodBy_I8DdEwpRTTncCbluZOs_zAMIM2VReb4KenYjSS9-_CRH6IdsEtWEbtr4OBK91UIRGBI_P3uf5Cfw5xUjL0Jd3hKqx1cfrSDqwdDQdnJ60_RoCSRTLOg3AMIFtsVgq5__cYy8HpAeJ8eHDyPqCtI9LgxVP8yyZsNHiU9OMEegkrzm_Bdt9jLn5xSz6R-oRovfS-Bc9j4crbbaB9P66m4-AnqzlR3pKbUJ6JzDC4VbOv5GbiPAnsr-MJwQbx6RWcDY5_HX5Pm_oLqUE7lqktpTK547kRtOuYYqXUTCmtuspxbXpGWMaZLhGCKZk7VWphEGFobTmzOjO919DxU-_eAMEs0irrdMlcj1prlWMYOUtqVEYREpUJ7C8EX5iGnDzUyDgv6iRFyAJFVDQiKoKIEvjc9riMxBz_aPthocsCrSdsiSjvptfzImRXGJ0FlQnsRN22o2G-njEp8wT4ktbbBoGZe_mNryY1QzdjCMQZSyBq_dEPLH6cfMskl2__t8M7WEcEx-LlyPfQuZpdu114Zv5cVfPZHqzykdhr7OEOpswOOg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dTxNBEJ9g0ciLIqgcKKyJMfHh4Gj39m59q2gDWhrTQMLbZr-uPYNb0vIR_ntmb68XKonGxLdLbvc-ZnZmfrMfvwF4by0GLZOlsY-GMaWY7njetDi1iqX7mmm0qarYRDYY5Gdn_McSHMzPwgR-iGbCzVtG5a-9gfsJ6WDluSfJ_HmudunxEEclQ2fSHj6CZYpvTFuw_GXYO-03DhkRShLYOPf9PoBkvlqZ873fn7EYnR5Azoc7J-8j2iok9Z7_l59ZhWc1IiXdMIRewJJ1a7DedZiN_7olH0i1R7SafF-DJ6F05e060K4blZOR95TljEhnyI0v0ESmGN7K6SdyM7aOeP7X0Zhgg3D1Ek57X08ODuO6AkOs0ZJ5bAoudWqzVOe0bZlkBVdMSiXb0mZKd3RuWMZUgSBM8tTKQuUaMYZSJmNGJbrzClpu4uwGEMwjjTRWFcx2qDFGWoaxs6BaJhRBURHB3lzyQtf05L5Kxrmo0pScCxSRqEUkvIgi-Nj0uAjUHH9o-26uTIH24xdFpLOTq5nw-RXG55zyCF4H5TZPw4w9YZynEWQLam8aeG7uxTuuHFcc3YwhFGcsgqD2v36g-Nb_nPCMb_5rhx14enhy3Bf9o8H3LVhBPMfCUck30LqcXtm38FhfX5az6XZtFndrYBFC
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Za9tAEB7SpC156ZG0iXpuoRT6oESxVyNt35ykpodrgmkgb8teslUSOdhJQ_59Z7WyiBtoKfRNoN1FmtmZ-WaPbwDeOkdBy2Zp7KNhzDmlO543LU6dxnTPoCGbqotNZMNhfnIijlbgYHEXJvBDtAtu3jJqf-0N3J3bIlh57kkyf5zqHf5tRLMSyZl0RndgjacCyTrXDkf940HrkAmhJIGNc8-fA0gWu5W52P19jOXodAty3j45eRPR1iGp__C__MwjeNAgUtYLU-gxrLhqAzZ7FWXjZ9fsHavPiNaL7xtwL5SuvN4E3qvG5XTsPWU5Z6qy7MoXaGIzCm_l7AO7mriKef7X8YRRg_D0BI77H78ffIqbCgyxIUsWsS2EMqnLUpPzjkOFhdColFYd5TJtuia3mKEuCIQpkTpV6NwQxtDaZmh1YrpPYbWaVm4bGOWRVlmnC3Rdbq1VDil2FtyohBMoKiLYXUhemoae3FfJOJV1mpILSSKSjYikF1EE79se54Ga4w9t3yyUKcl-_KaIqtz0ci59fkXxOecigq2g3HY0ytgTFCKNIFtSe9vAc3Mvv6nKSc3RjUhQHDGCoPa_fqD8MthPRCae_WuH13D_6LAvB5-HX5_DOsE5DDclX8DqxezSvYS75udFOZ-9aqziF98sEL0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Angiogenesis+and+wound+repair%3A+when+enough+is+enough&rft.jtitle=Journal+of+leukocyte+biology&rft.au=DiPietro%2C+Luisa+A&rft.date=2016-11-01&rft.eissn=1938-3673&rft.volume=100&rft.issue=5&rft.spage=979&rft_id=info:doi/10.1189%2Fjlb.4mr0316-102r&rft_id=info%3Apmid%2F27406995&rft.externalDocID=27406995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-5400&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-5400&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-5400&client=summon