Angiogenesis and wound repair: when enough is enough
Review on novel concepts in wound angiogenesis; although more capillaries are generally considered better, new studies suggest otherwise. All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate healing...
Saved in:
| Published in: | Journal of leukocyte biology Vol. 100; no. 5; pp. 979 - 984 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
John Wiley and Sons Inc
01.11.2016
|
| Subjects: | |
| ISSN: | 0741-5400, 1938-3673, 1938-3673 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Review on novel concepts in wound angiogenesis; although more capillaries are generally considered better, new studies suggest otherwise.
All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate healing is the creation of a new vasculature via angiogenesis. As adult skin wounds heal, a period of rapid and robust capillary growth creates a vascular bed that has many fold more capillaries than does normal tissue. Over time, most of the newly formed capillaries regress, resulting in a final vascular density similar to that of normal skin. Certainly, new capillaries are necessary to bring nutrients, immune cells, and oxygen to healing wounds. Yet, the presumed functional importance of an overabundance of capillaries has recently been challenged, creating questions about whether excess capillary growth is truly necessary for healing. In particular, studies of wounds that heal exceptionally quickly and with less scar formation, such as those in fetal skin and oral mucosa, show that these tissues heal with a reduced angiogenic burst composed of more mature vessels that provide better oxygenation. The level of angiogenesis in wounds often correlates with the inflammatory response, largely because inflammatory cells produce an abundance of proangiogenic mediators. Both the selective reduction of inflammation and the selective reduction of angiogenesis have now been suggested as ways to improve scarring. These concepts link excessive inflammation and the production of a dense but poorly perfused capillary bed to inferior healing outcomes. |
|---|---|
| AbstractList | All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate healing is the creation of a new vasculature via angiogenesis. As adult skin wounds heal, a period of rapid and robust capillary growth creates a vascular bed that has many fold more capillaries than does normal tissue. Over time, most of the newly formed capillaries regress, resulting in a final vascular density similar to that of normal skin. Certainly, new capillaries are necessary to bring nutrients, immune cells, and oxygen to healing wounds. Yet, the presumed functional importance of an overabundance of capillaries has recently been challenged, creating questions about whether excess capillary growth is truly necessary for healing. In particular, studies of wounds that heal exceptionally quickly and with less scar formation, such as those in fetal skin and oral mucosa, show that these tissues heal with a reduced angiogenic burst composed of more mature vessels that provide better oxygenation. The level of angiogenesis in wounds often correlates with the inflammatory response, largely because inflammatory cells produce an abundance of proangiogenic mediators. Both the selective reduction of inflammation and the selective reduction of angiogenesis have now been suggested as ways to improve scarring. These concepts link excessive inflammation and the production of a dense but poorly perfused capillary bed to inferior healing outcomes. Review on novel concepts in wound angiogenesis; although more capillaries are generally considered better, new studies suggest otherwise. All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate healing is the creation of a new vasculature via angiogenesis. As adult skin wounds heal, a period of rapid and robust capillary growth creates a vascular bed that has many fold more capillaries than does normal tissue. Over time, most of the newly formed capillaries regress, resulting in a final vascular density similar to that of normal skin. Certainly, new capillaries are necessary to bring nutrients, immune cells, and oxygen to healing wounds. Yet, the presumed functional importance of an overabundance of capillaries has recently been challenged, creating questions about whether excess capillary growth is truly necessary for healing. In particular, studies of wounds that heal exceptionally quickly and with less scar formation, such as those in fetal skin and oral mucosa, show that these tissues heal with a reduced angiogenic burst composed of more mature vessels that provide better oxygenation. The level of angiogenesis in wounds often correlates with the inflammatory response, largely because inflammatory cells produce an abundance of proangiogenic mediators. Both the selective reduction of inflammation and the selective reduction of angiogenesis have now been suggested as ways to improve scarring. These concepts link excessive inflammation and the production of a dense but poorly perfused capillary bed to inferior healing outcomes. Review on novel concepts in wound angiogenesis; although more capillaries are generally considered better, new studies suggest otherwise. All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate healing is the creation of a new vasculature via angiogenesis. As adult skin wounds heal, a period of rapid and robust capillary growth creates a vascular bed that has many fold more capillaries than does normal tissue. Over time, most of the newly formed capillaries regress, resulting in a final vascular density similar to that of normal skin. Certainly, new capillaries are necessary to bring nutrients, immune cells, and oxygen to healing wounds. Yet, the presumed functional importance of an overabundance of capillaries has recently been challenged, creating questions about whether excess capillary growth is truly necessary for healing. In particular, studies of wounds that heal exceptionally quickly and with less scar formation, such as those in fetal skin and oral mucosa, show that these tissues heal with a reduced angiogenic burst composed of more mature vessels that provide better oxygenation. The level of angiogenesis in wounds often correlates with the inflammatory response, largely because inflammatory cells produce an abundance of proangiogenic mediators. Both the selective reduction of inflammation and the selective reduction of angiogenesis have now been suggested as ways to improve scarring. These concepts link excessive inflammation and the production of a dense but poorly perfused capillary bed to inferior healing outcomes. All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate healing is the creation of a new vasculature via angiogenesis. As adult skin wounds heal, a period of rapid and robust capillary growth creates a vascular bed that has many fold more capillaries than does normal tissue. Over time, most of the newly formed capillaries regress, resulting in a final vascular density similar to that of normal skin. Certainly, new capillaries are necessary to bring nutrients, immune cells, and oxygen to healing wounds. Yet, the presumed functional importance of an overabundance of capillaries has recently been challenged, creating questions about whether excess capillary growth is truly necessary for healing. In particular, studies of wounds that heal exceptionally quickly and with less scar formation, such as those in fetal skin and oral mucosa, show that these tissues heal with a reduced angiogenic burst composed of more mature vessels that provide better oxygenation. The level of angiogenesis in wounds often correlates with the inflammatory response, largely because inflammatory cells produce an abundance of proangiogenic mediators. Both the selective reduction of inflammation and the selective reduction of angiogenesis have now been suggested as ways to improve scarring. These concepts link excessive inflammation and the production of a dense but poorly perfused capillary bed to inferior healing outcomes.All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate healing is the creation of a new vasculature via angiogenesis. As adult skin wounds heal, a period of rapid and robust capillary growth creates a vascular bed that has many fold more capillaries than does normal tissue. Over time, most of the newly formed capillaries regress, resulting in a final vascular density similar to that of normal skin. Certainly, new capillaries are necessary to bring nutrients, immune cells, and oxygen to healing wounds. Yet, the presumed functional importance of an overabundance of capillaries has recently been challenged, creating questions about whether excess capillary growth is truly necessary for healing. In particular, studies of wounds that heal exceptionally quickly and with less scar formation, such as those in fetal skin and oral mucosa, show that these tissues heal with a reduced angiogenic burst composed of more mature vessels that provide better oxygenation. The level of angiogenesis in wounds often correlates with the inflammatory response, largely because inflammatory cells produce an abundance of proangiogenic mediators. Both the selective reduction of inflammation and the selective reduction of angiogenesis have now been suggested as ways to improve scarring. These concepts link excessive inflammation and the production of a dense but poorly perfused capillary bed to inferior healing outcomes. |
| Author | DiPietro, Luisa A. |
| AuthorAffiliation | 1 Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, Illinois |
| AuthorAffiliation_xml | – name: 1 Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, Illinois |
| Author_xml | – sequence: 1 givenname: Luisa A. surname: DiPietro fullname: DiPietro, Luisa A. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27406995$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1PGzEQxS0EggC9c6r22MvS8X6M7R6QALVQlAoJtWfL9s4mRhs7XWcb8d93o6QIONCLx5J_7z1r3jHbDzEQY2cczjmX6vNjZ8-rHw9Qcsw5FA97bMJVKfMSRbnPJiAqntcVwBE7TukRAMoC4ZAdFaICVKqesOoyzHycUaDkU2ZCk63jMJ49LY3vv2TrOYWMQhxm82wEtrdTdtCaLtGH3Txhv759_Xl9m0_vb75fX05zVwup8qZVxtUkaiergtBgqywaY01hSFhXOtmgQNvWyI2qybRWOpDc2kZgY8GVJ-xi67sc7IIaR2HVm04ve78w_ZOOxuvXL8HP9Sz-0YggAXE0-LQz6OPvgdJKL3xy1HUmUByS5rJAwaWs1Ih-fJn1HPJvVSMAW8D1MaWe2meEg960occ29K4NvWljlOAbifMrs_Jx81vfvSest8K17-jpv0H6bnoFSqjyL139ocA |
| CitedBy_id | crossref_primary_10_1186_s40580_022_00349_z crossref_primary_10_3389_fbioe_2024_1441053 crossref_primary_10_3390_s22239414 crossref_primary_10_1007_s11538_020_00696_0 crossref_primary_10_1002_adfm_202300710 crossref_primary_10_1089_scd_2018_0094 crossref_primary_10_3390_biomedicines10112960 crossref_primary_10_3390_ijms222111709 crossref_primary_10_1590_acb399624 crossref_primary_10_1097_BRS_0000000000003333 crossref_primary_10_1002_advs_202004226 crossref_primary_10_3892_mmr_2023_13042 crossref_primary_10_1093_rb_rbad081 crossref_primary_10_1016_j_ejpb_2021_09_007 crossref_primary_10_4239_wjd_v14_i1_35 crossref_primary_10_1097_SHK_0000000000001643 crossref_primary_10_3390_molecules30173568 crossref_primary_10_1016_j_ymthe_2022_07_016 crossref_primary_10_1109_ACCESS_2021_3055221 crossref_primary_10_1093_asj_sjad342 crossref_primary_10_1002_jbm_a_37166 crossref_primary_10_3390_ph15111441 crossref_primary_10_3390_bioengineering9110636 crossref_primary_10_2478_sjecr_2020_0013 crossref_primary_10_1007_s10853_022_07056_4 crossref_primary_10_1016_j_cellsig_2025_111615 crossref_primary_10_1016_j_biomaterials_2021_120954 crossref_primary_10_3390_ijms21010109 crossref_primary_10_1016_j_ijpharm_2024_124590 crossref_primary_10_3389_fphar_2020_01332 crossref_primary_10_12688_f1000research_111159_1 crossref_primary_10_1016_j_wndm_2020_100190 crossref_primary_10_3389_fonc_2021_637823 crossref_primary_10_1007_s10456_019_09689_7 crossref_primary_10_1016_j_heliyon_2023_e23003 crossref_primary_10_3390_ijms18071419 crossref_primary_10_1016_j_ejphar_2020_173354 crossref_primary_10_1126_scitranslmed_adk2101 crossref_primary_10_1016_j_ijbiomac_2020_04_176 crossref_primary_10_3389_fimmu_2022_1010700 crossref_primary_10_1038_s41467_022_31890_4 crossref_primary_10_1007_s10561_022_10023_7 crossref_primary_10_1051_bioconf_20214107001 crossref_primary_10_2147_IJN_S531396 crossref_primary_10_4103_japtr_JAPTR_128_20 crossref_primary_10_1016_j_mtchem_2024_102235 crossref_primary_10_1111_cpr_13316 crossref_primary_10_1016_j_schres_2016_11_015 crossref_primary_10_3390_molecules30071513 crossref_primary_10_1016_j_apsusc_2024_162149 crossref_primary_10_3390_biom11081165 crossref_primary_10_3390_cells8121479 crossref_primary_10_1016_j_ijbiomac_2023_129033 crossref_primary_10_1016_j_heliyon_2023_e15755 crossref_primary_10_1111_odi_13163 crossref_primary_10_1007_s11033_023_09074_0 crossref_primary_10_1186_s12886_022_02249_6 crossref_primary_10_1063_5_0014519 crossref_primary_10_1093_burnst_tkae072 crossref_primary_10_3390_cancers16020350 crossref_primary_10_1007_s10853_024_09493_9 crossref_primary_10_1038_s41368_024_00321_z crossref_primary_10_1038_s41401_023_01193_5 crossref_primary_10_1016_j_urology_2022_03_038 crossref_primary_10_3390_ijms22168643 crossref_primary_10_1016_j_mvr_2020_104014 crossref_primary_10_1016_j_apsb_2020_09_001 crossref_primary_10_1111_iwj_70015 crossref_primary_10_1089_wound_2021_0010 crossref_primary_10_1111_srt_12812 crossref_primary_10_1186_s12951_022_01549_9 crossref_primary_10_1016_j_cej_2022_134690 crossref_primary_10_1111_jocd_15466 crossref_primary_10_3389_fimmu_2024_1303776 crossref_primary_10_1007_s10029_020_02135_4 crossref_primary_10_1016_j_clnves_2025_100043 crossref_primary_10_1016_j_engreg_2024_06_003 crossref_primary_10_1002_jbm_a_37105 crossref_primary_10_1016_j_ijbiomac_2023_129044 crossref_primary_10_1111_wrr_12999 crossref_primary_10_3390_cancers13112850 crossref_primary_10_1002_eji_202451205 crossref_primary_10_1016_j_omtn_2020_07_010 crossref_primary_10_1016_j_carbpol_2024_122111 crossref_primary_10_3389_fcell_2020_578384 crossref_primary_10_12688_f1000research_51297_1 crossref_primary_10_12688_f1000research_51297_2 crossref_primary_10_3390_cells12050678 crossref_primary_10_1016_j_biopha_2020_110700 crossref_primary_10_1007_s00403_018_1851_7 crossref_primary_10_1002_lsm_23366 crossref_primary_10_1016_j_preteyeres_2022_101091 crossref_primary_10_1111_wrr_12885 crossref_primary_10_1089_wound_2021_0028 crossref_primary_10_1002_advs_202416267 crossref_primary_10_1186_s13287_019_1415_6 crossref_primary_10_3389_fmed_2022_858824 crossref_primary_10_3390_cells9071586 crossref_primary_10_1186_s12964_023_01346_3 crossref_primary_10_3390_ijms232012539 crossref_primary_10_1096_fj_202202001RR crossref_primary_10_1007_s00266_024_03871_z crossref_primary_10_3389_fmed_2017_00083 crossref_primary_10_1039_C9RA05030B crossref_primary_10_1016_j_ijbiomac_2019_08_171 crossref_primary_10_1038_s41598_023_35558_x crossref_primary_10_1089_wound_2018_0827 crossref_primary_10_14202_vetworld_2018_939_943 crossref_primary_10_1002_jez_b_22925 crossref_primary_10_3390_ph15121586 crossref_primary_10_1155_2020_3509859 crossref_primary_10_1016_j_ccr_2024_216205 crossref_primary_10_1016_j_matdes_2024_112717 crossref_primary_10_1080_10520295_2025_2513948 crossref_primary_10_1080_13880209_2020_1803369 crossref_primary_10_1186_s42490_019_0005_0 crossref_primary_10_1063_5_0173663 crossref_primary_10_3390_ph15060702 crossref_primary_10_1016_j_ydbio_2018_10_013 crossref_primary_10_3390_cells12141840 crossref_primary_10_1016_j_isci_2023_108092 crossref_primary_10_3892_etm_2019_7546 crossref_primary_10_1016_j_cej_2020_126273 crossref_primary_10_1093_burnst_tkae082 crossref_primary_10_1002_adfm_201809110 crossref_primary_10_1016_j_ijbiomac_2025_145680 crossref_primary_10_1016_j_jddst_2024_106212 crossref_primary_10_1039_C8BM01377B crossref_primary_10_1007_s11033_024_10166_8 crossref_primary_10_1002_adhm_202403129 crossref_primary_10_1007_s00192_021_05031_2 crossref_primary_10_1016_j_omtn_2022_08_020 crossref_primary_10_1016_j_mtbio_2025_101912 crossref_primary_10_1152_ajprenal_00059_2025 crossref_primary_10_3390_microbiolres16010025 crossref_primary_10_3390_jcm9041085 crossref_primary_10_3390_bioengineering12040327 crossref_primary_10_1016_j_jep_2022_115464 crossref_primary_10_1016_j_neuroscience_2017_12_026 crossref_primary_10_1007_s42242_024_00270_w crossref_primary_10_3892_mmr_2025_13643 crossref_primary_10_1089_ten_teb_2019_0351 crossref_primary_10_1016_j_jconrel_2020_10_035 crossref_primary_10_1111_bph_15139 crossref_primary_10_3390_ijms232315089 crossref_primary_10_1016_j_biotechadv_2017_07_002 crossref_primary_10_30699_ijmm_15_5_552 crossref_primary_10_1016_j_matdes_2025_114698 crossref_primary_10_1096_fj_202500492RR crossref_primary_10_1177_08987564251360326 crossref_primary_10_1038_s41598_021_89313_1 crossref_primary_10_2147_DMSO_S410986 crossref_primary_10_2147_CCID_S430852 crossref_primary_10_1186_s12903_021_01445_y crossref_primary_10_3390_ijms18081786 crossref_primary_10_1002_adfm_202308145 crossref_primary_10_1016_j_bpc_2025_107458 crossref_primary_10_1088_1758_5090_ad28f0 crossref_primary_10_1177_0300060518764210 crossref_primary_10_1016_j_actbio_2025_02_046 crossref_primary_10_1016_j_biomaterials_2020_119821 crossref_primary_10_1186_s12964_023_01214_0 crossref_primary_10_1016_j_injury_2022_09_041 crossref_primary_10_1007_s44174_024_00236_7 crossref_primary_10_1016_j_jvs_2018_06_195 crossref_primary_10_1016_j_jep_2022_115321 crossref_primary_10_1016_j_matdes_2023_111885 crossref_primary_10_1016_j_ijpharm_2025_125231 crossref_primary_10_1007_s10815_021_02292_0 crossref_primary_10_1016_j_jse_2025_05_001 crossref_primary_10_1039_D2BM01329K crossref_primary_10_1096_fj_201800588RR crossref_primary_10_1111_wrr_12860 crossref_primary_10_1016_j_bioactmat_2025_02_029 crossref_primary_10_1111_wrr_12866 crossref_primary_10_1016_j_ijbiomac_2025_144699 crossref_primary_10_1016_j_neuron_2023_10_025 crossref_primary_10_3390_cells10113242 crossref_primary_10_1002_lary_31616 crossref_primary_10_1039_D5TB00029G crossref_primary_10_3390_ijms241612820 crossref_primary_10_2147_CCID_S389380 crossref_primary_10_3389_fcvm_2024_1386177 crossref_primary_10_1016_j_ijpharm_2023_122800 crossref_primary_10_1016_j_acthis_2023_152027 crossref_primary_10_1016_j_compositesb_2022_109790 crossref_primary_10_1016_j_ijbiomac_2024_134342 crossref_primary_10_1186_s12951_024_02893_8 crossref_primary_10_1016_j_addr_2018_09_010 crossref_primary_10_3390_ijms232315176 crossref_primary_10_1002_adhm_202303674 crossref_primary_10_1208_s12249_023_02632_6 crossref_primary_10_1016_j_compositesb_2021_109569 crossref_primary_10_1038_s41598_025_06419_6 crossref_primary_10_3390_ijms20112828 crossref_primary_10_1016_j_actbio_2025_02_015 crossref_primary_10_1097_PAS_0000000000001595 crossref_primary_10_1111_wrr_12800 crossref_primary_10_1016_j_injury_2021_05_035 crossref_primary_10_1038_s41419_017_0016_5 crossref_primary_10_1016_j_ydbio_2017_08_007 crossref_primary_10_3390_molecules25214982 crossref_primary_10_1016_j_biomaterials_2020_120608 crossref_primary_10_1111_prd_12546 crossref_primary_10_4239_wjd_v16_i1_99755 crossref_primary_10_1016_j_carbpol_2021_118996 crossref_primary_10_1002_anbr_202200177 crossref_primary_10_3390_biom12111689 crossref_primary_10_1186_s12951_022_01354_4 crossref_primary_10_3390_molecules26133834 crossref_primary_10_1007_s13346_020_00715_6 crossref_primary_10_1007_s40883_022_00252_3 crossref_primary_10_1038_s41419_021_04294_3 crossref_primary_10_1159_000454919 crossref_primary_10_1007_s00403_025_04277_w crossref_primary_10_1093_jb_mvad024 crossref_primary_10_1002_bab_2273 crossref_primary_10_3390_ijms21093242 crossref_primary_10_1111_ahe_12588 crossref_primary_10_1111_jdv_19496 crossref_primary_10_1096_fj_202002078R crossref_primary_10_1088_1748_605X_ac3c3c crossref_primary_10_1016_j_jep_2023_116200 crossref_primary_10_1007_s11696_024_03785_9 crossref_primary_10_1098_rsos_201618 crossref_primary_10_1093_burnst_tkab049 crossref_primary_10_1039_D2BM01588A crossref_primary_10_1016_j_ijbiomac_2024_130073 crossref_primary_10_2174_0109298665347753241028072130 crossref_primary_10_1089_ten_teb_2021_0114 crossref_primary_10_1016_j_ijpharm_2025_126026 crossref_primary_10_1038_s41598_025_18174_9 crossref_primary_10_1089_wound_2023_0050 crossref_primary_10_3390_gels11010038 crossref_primary_10_1177_20417314221143240 crossref_primary_10_1016_j_xcrm_2025_102030 crossref_primary_10_1016_j_cej_2025_164350 crossref_primary_10_1002_jbm_a_37712 crossref_primary_10_1111_iwj_14090 crossref_primary_10_1016_j_envpol_2022_119115 crossref_primary_10_1016_j_actbio_2019_05_002 crossref_primary_10_1016_j_ejps_2024_106978 crossref_primary_10_1038_s41598_022_15227_1 crossref_primary_10_1111_exd_15038 crossref_primary_10_3390_ijms22094871 crossref_primary_10_3390_pharmaceutics12111003 crossref_primary_10_1134_S1990519X19040084 crossref_primary_10_1002_jbm_a_36959 crossref_primary_10_1002_jbm_a_36835 crossref_primary_10_1039_D0BM01747G crossref_primary_10_3390_biomedicines12112483 crossref_primary_10_1016_j_ajps_2025_101057 crossref_primary_10_3390_ijms21155463 crossref_primary_10_1016_j_jid_2021_12_018 crossref_primary_10_1016_j_intimp_2021_108094 crossref_primary_10_3390_biomedicines9040395 crossref_primary_10_3390_pharmaceutics13040510 crossref_primary_10_1016_j_ijbiomac_2024_133420 crossref_primary_10_1177_03635465211039865 crossref_primary_10_3389_fgene_2018_00038 crossref_primary_10_1111_micc_70014 crossref_primary_10_1097_GOX_0000000000004056 crossref_primary_10_1111_jcmm_70292 crossref_primary_10_1016_j_bioactmat_2024_08_016 crossref_primary_10_4049_jimmunol_2000574 crossref_primary_10_1038_s41598_022_24957_1 crossref_primary_10_1016_j_jid_2023_02_019 crossref_primary_10_3390_biomedicines8120632 crossref_primary_10_1002_jcb_30344 crossref_primary_10_3390_ijms25073790 crossref_primary_10_1016_j_jddst_2022_103425 crossref_primary_10_1016_j_wem_2020_07_003 crossref_primary_10_1016_j_jcyt_2021_07_016 crossref_primary_10_1371_journal_pone_0197223 crossref_primary_10_3389_fmed_2025_1562407 crossref_primary_10_1007_s10856_020_06366_w crossref_primary_10_3390_ijms23095256 crossref_primary_10_3390_pharmaceutics14112358 crossref_primary_10_1155_2020_4952372 crossref_primary_10_2217_rme_2019_0087 crossref_primary_10_1002_admi_202201719 crossref_primary_10_1016_j_ijbiomac_2022_02_003 crossref_primary_10_3390_cells11233892 crossref_primary_10_1155_2020_2483187 crossref_primary_10_1016_j_jtbi_2018_09_020 crossref_primary_10_1016_j_tibtech_2019_08_005 crossref_primary_10_1002_term_2521 crossref_primary_10_21518_ms2025_268 crossref_primary_10_1186_s13287_024_04069_5 crossref_primary_10_1186_s12967_025_06913_5 crossref_primary_10_1002_smll_202407112 crossref_primary_10_1016_j_biopha_2017_04_021 crossref_primary_10_1021_acsapm_5c00934 crossref_primary_10_1016_j_jot_2025_07_006 crossref_primary_10_3389_fphys_2024_1429247 crossref_primary_10_3390_ph16111532 crossref_primary_10_1242_dev_199640 crossref_primary_10_1016_j_trsl_2021_05_001 crossref_primary_10_1088_1758_5090_ad89ff crossref_primary_10_1208_s12249_024_03009_z crossref_primary_10_1016_S1875_5364_23_60419_4 crossref_primary_10_1016_j_biopha_2022_113174 crossref_primary_10_3389_fimmu_2022_1028410 crossref_primary_10_1002_cnr2_70351 crossref_primary_10_1016_j_fsi_2020_02_071 crossref_primary_10_1016_j_ijbiomac_2022_01_144 crossref_primary_10_1039_D0BM01608J crossref_primary_10_1038_s41598_020_64532_0 crossref_primary_10_3390_cells13070624 crossref_primary_10_1371_journal_pone_0331785 crossref_primary_10_1039_D3RA03477A crossref_primary_10_1007_s41745_020_00219_9 crossref_primary_10_1016_j_msec_2021_112560 crossref_primary_10_1089_wound_2019_1037 crossref_primary_10_1016_j_lfs_2022_120578 crossref_primary_10_1016_j_bioadv_2023_213360 crossref_primary_10_1002_advs_202307746 crossref_primary_10_1111_jocd_13231 crossref_primary_10_1186_s13287_025_04207_7 crossref_primary_10_1177_1534734617706636 crossref_primary_10_1002_adfm_202003777 crossref_primary_10_3390_cells11152287 crossref_primary_10_3390_ijms25063543 crossref_primary_10_1016_j_sajb_2023_01_031 crossref_primary_10_1016_j_bioactmat_2024_04_019 crossref_primary_10_1002_adfm_202315590 crossref_primary_10_1038_s41598_020_77783_8 crossref_primary_10_3390_biom12091222 crossref_primary_10_2478_acb_2023_0001 crossref_primary_10_1177_0300060520935326 crossref_primary_10_3390_biom11050702 crossref_primary_10_1111_wrr_13154 crossref_primary_10_1016_j_bbagen_2021_130059 crossref_primary_10_1016_j_compositesb_2022_110010 crossref_primary_10_1016_j_cej_2020_128140 crossref_primary_10_1016_j_dci_2021_104185 crossref_primary_10_1093_jbcr_irac003 crossref_primary_10_1016_j_bioactmat_2024_04_007 crossref_primary_10_3390_jfb15100294 crossref_primary_10_1002_mabi_202300376 crossref_primary_10_1016_j_ijbiomac_2020_05_127 crossref_primary_10_1016_j_neuroscience_2023_05_029 crossref_primary_10_1016_j_jep_2023_116394 crossref_primary_10_1002_adfm_202307711 crossref_primary_10_1302_2046_3758_114_BJR_2021_0364_R1 crossref_primary_10_1007_s10456_023_09899_0 crossref_primary_10_1016_j_ydbio_2018_11_010 crossref_primary_10_1016_j_ijbiomac_2025_145085 crossref_primary_10_3389_fimmu_2019_02178 crossref_primary_10_3390_jfb13040249 crossref_primary_10_1016_j_surg_2021_05_023 crossref_primary_10_1007_s13770_024_00681_x crossref_primary_10_1016_j_bioadv_2022_213023 crossref_primary_10_1007_s12247_023_09710_z crossref_primary_10_1016_j_mtcomm_2023_105426 crossref_primary_10_1186_s13287_022_03095_5 crossref_primary_10_3389_fphys_2024_1427113 crossref_primary_10_1016_j_jid_2025_02_134 crossref_primary_10_1186_s40001_025_03056_7 crossref_primary_10_1038_s41467_022_30197_8 crossref_primary_10_1016_j_phrs_2025_107796 crossref_primary_10_1002_jcp_26494 crossref_primary_10_1080_14712598_2020_1677603 crossref_primary_10_2217_rme_2021_0170 crossref_primary_10_1007_s00018_017_2641_7 crossref_primary_10_3390_cells11213453 crossref_primary_10_1002_btm2_10562 crossref_primary_10_1080_10520295_2022_2115554 crossref_primary_10_1186_s12893_021_01298_w crossref_primary_10_3390_antiox13010068 crossref_primary_10_3390_jcm14134486 crossref_primary_10_1016_j_omtn_2021_03_015 crossref_primary_10_1038_s41598_022_16376_z crossref_primary_10_1097_PRS_0000000000007093 crossref_primary_10_3390_ijms25095035 crossref_primary_10_1515_znc_2025_0020 crossref_primary_10_1007_s11010_020_04022_z crossref_primary_10_3390_cells14080581 crossref_primary_10_1111_jcmm_18130 crossref_primary_10_3389_fimmu_2023_1216321 crossref_primary_10_3389_fbioe_2019_00418 crossref_primary_10_1016_j_bioadv_2022_213163 crossref_primary_10_1016_j_bioadv_2024_213761 crossref_primary_10_1016_j_cej_2023_148432 crossref_primary_10_2174_0115680266299112240514103048 crossref_primary_10_1007_s11926_019_0825_x crossref_primary_10_1089_wound_2018_0796 crossref_primary_10_3389_fcell_2021_714271 crossref_primary_10_3390_jcm9113501 crossref_primary_10_1016_j_intimp_2025_114050 crossref_primary_10_3390_ph14111168 crossref_primary_10_1002_adfm_202009258 crossref_primary_10_1155_2017_7614685 crossref_primary_10_1016_j_jid_2021_11_026 crossref_primary_10_3390_jcm11020376 crossref_primary_10_3390_pharmaceutics17030389 |
| Cites_doi | 10.1016/j.proghi.2007.06.001 10.4049/jimmunol.0903356 10.1089/wound.2012.0397 10.1097/BOR.0b013e32835b13b6 10.1016/S0002-9440(10)62254-7 10.1089/wound.2014.0546 10.1078/0344-0338-00447 10.1007/s10456-008-9099-z 10.1055/s-0038-1657610 10.1016/S0022-3468(05)80165-4 10.1631/jzus.B1200077 10.4254/wjh.v7.i3.377 10.1017/S1462399411001943 10.1038/jid.2010.420 10.1016/j.lfs.2013.04.001 10.1016/S0039-6060(96)80148-6 10.1016/j.burns.2010.01.014 10.1073/pnas.79.24.7773 10.1016/S0140-6736(15)01088-0 10.1152/ajpheart.00244.2010 10.1046/j.0022-202x.2001.01519.x 10.1084/jem.176.5.1375 10.1371/journal.pone.0085226 10.1093/qjmed/hcu067 10.1111/j.1524-475X.2011.00709.x 10.1242/jcs.048793 10.1038/sj.jid.5701232 10.1089/ars.2014.6065 10.1177/154405910308200810 10.1006/jsre.2000.5890 10.1097/MOP.0b013e3283535790 10.1089/wound.2011.0308 10.1046/j.1524-475X.1999.00375.x 10.1038/sj.jid.5700811 10.1038/labinvest.2008.36 10.1016/j.jaad.2003.11.061 10.1126/scitranslmed.aad0286 10.1517/14656566.2015.1067679 10.1046/j.1087-0024.2000.00014.x 10.3389/fphys.2016.00047 10.1016/j.biomaterials.2014.02.012 10.1182/blood-2004-04-1485 10.1111/j.1524-475X.2011.00692.x 10.1111/j.1524-475X.2008.00363.x 10.1097/SLA.0b013e31820563a8 10.1016/S0140-6736(05)67700-8 10.1177/154405910508400403 10.1084/jem.20071412 10.1159/000236988 10.2353/ajpath.2009.081002 10.1371/journal.pone.0101480 10.1165/rcmb.2010-0365TR 10.1006/jsre.1998.5551 10.1016/j.tcb.2010.06.006 10.1016/j.imlet.2014.08.017 10.1089/wound.2013.0456 10.1096/fj.00-0490fje 10.4049/jimmunol.1400625 10.1016/0022-4804(79)90031-3 10.1152/ajpheart.00153.2015 10.1126/scitranslmed.3009337 10.1111/micc.12107 10.1016/0014-4800(70)90084-5 10.1016/j.biocel.2012.06.031 10.1158/2326-6066.CIR-14-0209 10.1038/ijos.2013.46 10.1038/nature07039 10.1038/cdd.2009.124 10.1096/fj.12-214189 10.1111/j.1743-6109.2006.00142.x 10.1006/jsre.2002.6444 |
| ContentType | Journal Article |
| Copyright | 2016 Society for Leukocyte Biology Society for Leukocyte Biology. |
| Copyright_xml | – notice: 2016 Society for Leukocyte Biology – notice: Society for Leukocyte Biology. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1189/jlb.4MR0316-102R |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Biology |
| EISSN | 1938-3673 |
| EndPage | 984 |
| ExternalDocumentID | PMC6608066 27406995 10_1189_jlb_4MR0316_102R JLB0979 |
| Genre | reviewArticle Journal Article Review Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: U.S. National Institutes of Health (NIH) – fundername: National Institute of General Medicine funderid: R01‐GM50875 – fundername: National Institute of Dental Research funderid: R21‐DE025926 – fundername: NIDCR NIH HHS grantid: R21 DE025926 – fundername: NIGMS NIH HHS grantid: R01 GM050875 – fundername: National Institute of General Medicine grantid: R01‐GM50875 – fundername: National Institute of Dental Research grantid: R21‐DE025926 |
| GroupedDBID | --- .GJ 0R~ 0VX 18M 1OB 1OC 29K 2WC 33P 4.4 53G 5GY 5RE 5WD AABZA AACZT AAHHS AAPGJ AAPXW AARHZ AASGY AAUAY AAVAP AAWDT AAXRX AAZKR ABCUV ABDFA ABEFU ABEJV ABJNI ABLJU ABMNT ABNHQ ABPQP ABPTD ABWST ABXVV ACAHQ ACCFJ ACCZN ACFRR ACGFO ACGFS ACPOU ACPRK ACUTJ ACXBN ACXQS ACZBC ADBBV ADIPN ADKYN ADOZA ADQBN ADVEK ADVOB ADXAS ADZMN AEEZP AENEX AEQDE AFFNX AFGWE AFRAH AFYAG AGMDO AGQXC AHMMS AI. AIURR AIWBW AJAOE AJBDE AJEEA ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ANFBD APJGH ATGXG AVNTJ BCRHZ C45 CS3 D-I DCZOG DRFUL DRSTM DU5 E3Z EBS EJD EMOBN F5P F9R GX1 H13 HZ~ K-O KOP L7B LATKE LEEKS LUTES LYRES O9- OBOKY OCZFY OJZSN OK1 OPAEJ OVD OWPYF P2P P2W RHI RJQFR ROL ROX SJN SUPJJ TCN TEORI TMA TR2 TSL VH1 W8F WOHZO WOQ YHG ZGI ZXP ZZTAW AAMMB AAYXX ABGNP ABVGC ABXZS ADGKP ADNBA AEFGJ AGXDD AIDQK AIDYY AJBYB AJNCP ALXQX CITATION AFFQV CGR CUY CVF ECM EIF NPM PKN 7X8 5PM |
| ID | FETCH-LOGICAL-c5789-df9ac5e75c842e6a6f9b6aaba2ae7bc3c8d676bf561a95eafb8c081bbd76db0c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 484 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386007500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0741-5400 1938-3673 |
| IngestDate | Tue Sep 30 16:37:19 EDT 2025 Sun Sep 28 06:09:35 EDT 2025 Wed Feb 19 02:33:22 EST 2025 Tue Nov 18 21:53:04 EST 2025 Sat Nov 29 01:44:45 EST 2025 Wed Jan 22 16:53:06 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | wound healing fibrosis scar capillary inflammation VEGF |
| Language | English |
| License | https://academic.oup.com/pages/standard-publication-reuse-rights Society for Leukocyte Biology. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5789-df9ac5e75c842e6a6f9b6aaba2ae7bc3c8d676bf561a95eafb8c081bbd76db0c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://jlb.onlinelibrary.wiley.com/doi/pdfdirect/10.1189/jlb.4MR0316-102R |
| PMID | 27406995 |
| PQID | 1826718849 |
| PQPubID | 23479 |
| PageCount | 6 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6608066 proquest_miscellaneous_1826718849 pubmed_primary_27406995 crossref_primary_10_1189_jlb_4MR0316_102R crossref_citationtrail_10_1189_jlb_4MR0316_102R wiley_primary_10_1189_jlb_4MR0316_102R_JLB0979 |
| PublicationCentury | 2000 |
| PublicationDate | November 2016 |
| PublicationDateYYYYMMDD | 2016-11-01 |
| PublicationDate_xml | – month: 11 year: 2016 text: November 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Journal of leukocyte biology |
| PublicationTitleAlternate | J Leukoc Biol |
| PublicationYear | 2016 |
| Publisher | John Wiley and Sons Inc |
| Publisher_xml | – name: John Wiley and Sons Inc |
| References | 2013; 25 2013; 27 2000; 5 2010; 17 1988; 266 2015; 309 2011; 13 2015; 108 2000; 91 2010; 184 1999; 82 2011; 19 2013; 5 2003; 199 2014; 21 1998; 152 2010; 20 2013; 14 1979; 26 2014; 3 2000; 14 2009; 122 2002; 105 2014; 162 2003; 82 2014; 9 2012; 24 2014; 6 1982; 79 2004; 104 2015; 16 2007; 127 2010; 36 2015; 4 2015; 3 2006; 14 2008; 16 2005; 84 2008; 128 2008; 205 2013; 92 2008; 11 2009; 175 2014; 193 2007; 53 1999; 7 2015; 7 2011; 253 1970; 13 2011; 131 2011; 300 2016; 7 2004; 50 1990; 25 2012; 1 2005; 166 1992; 176 2005; 366 2015; 22 1997; 78 1995; 107 2014; 35 2016 2008; 88 2011; 45 2008; 453 2007; 42 2012; 44 1996; 119 2001; 117 Dvorak (2023011710424143200_B36) 2015; 3 Turabelidze (2023011710424143200_B68) 2014; 9 Costa (2023011710424143200_B51) 2013; 92 Wietecha (2023011710424143200_B17) 2015; 309 Uutela (2023011710424143200_B13) 2004; 104 Bloch (2023011710424143200_B28) 2000; 14 Bodnar (2023011710424143200_B18) 2009; 122 Farkas (2023011710424143200_B59) 2011; 45 Elpek (2023011710424143200_B60) 2015; 7 Banda (2023011710424143200_B5) 1982; 79 Tonnesen (2023011710424143200_B23) 2000; 5 Gallant-Behm (2023011710424143200_B49) 2008; 16 Szpaderska (2023011710424143200_B35) 2005; 84 Santarelli (2023011710424143200_B65) 2015; 16 Pardali (2023011710424143200_B14) 2010; 20 Van der Veer (2023011710424143200_B58) 2011; 19 Demidova-Rice (2023011710424143200_B53) 2012; 1 Xu (2023011710424143200_B69) 2015; 7 Spiller (2023011710424143200_B40) 2014; 35 Sinha (2023011710424143200_B19) 2015; 22 Zgheib (2023011710424143200_B47) 2014; 3 Diao (2023011710424143200_B54) 2010; 36 Klein (2023011710424143200_B27) 1999; 82 Mori (2023011710424143200_B46) 2008; 205 Peranteau (2023011710424143200_B45) 2008; 128 Greenhalgh (2023011710424143200_B61) 2015; 108 Falanga (2023011710424143200_B52) 2005; 366 Lucas (2023011710424143200_B43) 2010; 184 Dvorak (2023011710424143200_B8) 1995; 107 Lange-Asschenfeldt (2023011710424143200_B24) 2001; 117 Thakral (2023011710424143200_B39) 1979; 26 Shi (2023011710424143200_B11) 2005; 166 Gallant-Behm (2023011710424143200_B48) 2011; 131 Longaker (2023011710424143200_B31) 1990; 25 Misic (2023011710424143200_B72) 2014; 3 Stramer (2023011710424143200_B44) 2007; 127 Mustoe (2023011710424143200_B67) 2011; 19 Roman (2023011710424143200_B26) 2002; 105 Leung (2023011710424143200_B32) 2012; 24 Ren (2023011710424143200_B55) 2013; 14 Jayson (2023011710424143200_B66) 2016 Jones (2023011710424143200_B70) 2013; 5 Brown (2023011710424143200_B7) 1992; 176 Koh (2023011710424143200_B42) 2011; 13 Berger (2023011710424143200_B25) 2000; 91 Chen (2023011710424143200_B50) 2014; 9 Costalonga (2023011710424143200_B71) 2014; 162 Gurtner (2023011710424143200_B1) 2008; 453 DiPietro (2023011710424143200_B4) 2013; 25 Laplante (2023011710424143200_B62) 2010; 17 Nissen (2023011710424143200_B6) 1998; 152 Erba (2023011710424143200_B38) 2011; 253 Johnson (2023011710424143200_B64) 2013; 27 Eming (2023011710424143200_B3) 2007; 42 Iruela-Arispe (2023011710424143200_B15) 1997; 78 Nagy (2023011710424143200_B9) 2008; 11 Szpaderska (2023011710424143200_B34) 2003; 82 Bluff (2023011710424143200_B37) 2006; 14 Wietecha (2023011710424143200_B16) 2011; 300 Gira (2023011710424143200_B56) 2004; 50 Amadeu (2023011710424143200_B57) 2003; 199 Nissen (2023011710424143200_B10) 1996; 119 Goren (2023011710424143200_B41) 2009; 175 Wilgus (2023011710424143200_B30) 2008; 88 Wilgus (2023011710424143200_B33) 2007; 53 Holmes (2023011710424143200_B73) 2015; 4 Crocker (2023011710424143200_B22) 1970; 13 Wang (2023011710424143200_B63) 2016; 7 Canesso (2023011710424143200_B74) 2014; 193 Jang (2023011710424143200_B29) 1999; 7 Kelly-Goss (2023011710424143200_B20) 2014; 21 Dulmovits (2023011710424143200_B21) 2012; 44 Grotendorst (2023011710424143200_B12) 1988; 266 Eming (2023011710424143200_B2) 2014; 6 |
| References_xml | – volume: 45 start-page: 1 year: 2011 end-page: 15 article-title: Pulmonary hypertension and idiopathic pulmonary fibrosis: a tale of angiogenesis, apoptosis, and growth factors publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 309 start-page: H812 year: 2015 end-page: H826 article-title: Pigment epithelium‐derived factor as a multifunctional regulator of wound healing publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 117 start-page: 1036 year: 2001 end-page: 1041 article-title: The angiogenesis inhibitor vasostatin does not impair wound healing at tumor‐inhibiting doses publication-title: J. Invest. Dermatol. – volume: 9 start-page: e85226 year: 2014 article-title: Blockade of mast cell activation reduces cutaneous scar formation publication-title: PLoS One – volume: 193 start-page: 5171 year: 2014 end-page: 5180 article-title: Skin wound healing is accelerated and scarless in the absence of commensal microbiota publication-title: J. Immunol. – volume: 5 start-page: 40 year: 2000 end-page: 46 article-title: Angiogenesis in wound healing publication-title: J. Investig. Dermatol. Symp. Proc. – volume: 3 start-page: 1 year: 2015 end-page: 11 article-title: Tumors: wounds that do not heal‐redux publication-title: Cancer Immunol. Res. – volume: 9 start-page: e101480 year: 2014 article-title: Intrinsic differences between oral and skin keratinocytes publication-title: PLoS One – volume: 88 start-page: 579 year: 2008 end-page: 590 article-title: Regulation of scar formation by vascular endothelial growth factor publication-title: Lab. Invest. – volume: 7 start-page: 377 year: 2015 end-page: 391 article-title: Angiogenesis and liver fibrosis publication-title: World J. Hepatol. – volume: 25 start-page: 87 year: 2013 end-page: 91 article-title: Angiogenesis and scar formation in healing wounds publication-title: Curr. Opin. Rheumatol. – volume: 91 start-page: 26 year: 2000 end-page: 31 article-title: The angiogenesis inhibitor, endostatin, does not affect murine cutaneous wound healing publication-title: J. Surg. Res. – volume: 1 start-page: 17 year: 2012 end-page: 22 article-title: Wound healing angiogenesis: innovations and challenges in acute and chronic wound healing publication-title: Adv. Wound Care (New Rochelle) – volume: 108 start-page: 3 year: 2015 end-page: 7 article-title: Healing scars: targeting pericytes to treat fibrosis publication-title: QJM – volume: 24 start-page: 371 year: 2012 end-page: 378 article-title: Fetal wound healing: implications for minimal scar formation publication-title: Curr. Opin. Pediatr. – volume: 16 start-page: 226 year: 2008 end-page: 233 article-title: The mast cell stabilizer ketotifen prevents development of excessive skin wound contraction and fibrosis in red Duroc pigs publication-title: Wound Repair Regen. – volume: 7 start-page: 312ra177 year: 2015 article-title: Sodium channel Nax is a regulator in epithelial sodium homeostasis publication-title: Sci. Transl. Med. – volume: 20 start-page: 556 year: 2010 end-page: 567 article-title: Signaling by members of the TGF‐beta family in vascular morphogenesis and disease publication-title: Trends Cell Biol. – volume: 3 start-page: 502 year: 2014 end-page: 510 article-title: The wound microbiome: modern approaches to examining the role of microorganisms in impaired chronic wound healing publication-title: Adv. Wound Care (New Rochelle) – volume: 19 start-page: s16 issue: Suppl 1 year: 2011 end-page: s21 article-title: The role of the epidermis and the mechanism of action of occlusive dressings in scarring publication-title: Wound Repair Regen. – volume: 4 start-page: 24 year: 2015 end-page: 37 article-title: Dynamic role of host stress responses in modulating the cutaneous microbiome: implications for wound healing and infection publication-title: Adv. Wound Care (New Rochelle) – volume: 300 start-page: H459 year: 2011 end-page: H467 article-title: Sprouty2 downregulates angiogenesis during mouse skin wound healing publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 14 start-page: 434 year: 2006 end-page: 442 article-title: The microcirculation in acute murine cutaneous incisional wounds shows a spatial and temporal variation in the functionality of vessels publication-title: Wound Repair Regen. – volume: 205 start-page: 43 year: 2008 end-page: 51 article-title: Molecular mechanisms linking wound inflammation and fibrosis: knockdown of osteopontin leads to rapid repair and reduced scarring publication-title: J. Exp. Med. – volume: 119 start-page: 457 year: 1996 end-page: 465 article-title: Basic fibroblast growth factor mediates angiogenic activity in early surgical wounds publication-title: Surgery – volume: 253 start-page: 402 year: 2011 end-page: 409 article-title: Angiogenesis in wounds treated by microdeformational wound therapy publication-title: Ann. Surg. – year: 2016 article-title: Antiangiogenic therapy in oncology: current status and future directions publication-title: Lancet – volume: 107 start-page: 233 year: 1995 end-page: 235 article-title: Vascular permeability factor/vascular endothelial growth factor: an important mediator of angiogenesis in malignancy and inflammation publication-title: Int. Arch. Allergy Immunol. – volume: 82 start-page: 268 year: 1999 end-page: 274 article-title: Angiogenesis inhibitor TNP‐470 inhibits murine cutaneous wound healing publication-title: J. Surg. Res. – volume: 14 start-page: 2373 year: 2000 end-page: 2376 article-title: The angiogenesis inhibitor endostatin impairs blood vessel maturation during wound healing publication-title: FASEB J. – volume: 21 start-page: 345 year: 2014 end-page: 357 article-title: Targeting pericytes for angiogenic therapies publication-title: Microcirculation – volume: 7 start-page: 47 year: 2016 article-title: Promising therapy candidates for liver fibrosis publication-title: Front. Physiol. – volume: 27 start-page: 3893 year: 2013 end-page: 3901 article-title: Apoptosis and angiogenesis: an evolving mechanism for fibrosis publication-title: FASEB J. – volume: 3 start-page: 344 year: 2014 end-page: 355 article-title: Targeting inflammatory cytokines and extracellular matrix composition to promote wound regeneration publication-title: Adv. Wound Care (New Rochelle) – volume: 5 start-page: 121 year: 2013 end-page: 129 article-title: Oral epithelial stem cells in tissue maintenance and disease: the first steps in a long journey publication-title: Int. J. Oral Sci. – volume: 13 start-page: e23 year: 2011 article-title: Inflammation and wound healing: the role of the macrophage publication-title: Expert Rev. Mol. Med. – volume: 17 start-page: 291 year: 2010 end-page: 303 article-title: Caspase‐3‐mediated secretion of connective tissue growth factor by apoptotic endothelial cells promotes fibrosis publication-title: Cell Death Differ. – volume: 453 start-page: 314 year: 2008 end-page: 321 article-title: Wound repair and regeneration publication-title: Nature – volume: 128 start-page: 1852 year: 2008 end-page: 1860 article-title: IL‐10 overexpression decreases inflammatory mediators and promotes regenerative healing in an adult model of scar formation publication-title: J. Invest. Dermatol. – volume: 166 start-page: 303 year: 2005 end-page: 312 article-title: CARP, a cardiac ankyrin repeat protein, is up‐regulated during wound healing and induces angiogenesis in experimental granulation tissue publication-title: Am. J. Pathol. – volume: 366 start-page: 1736 year: 2005 end-page: 1743 article-title: Wound healing and its impairment in the diabetic foot publication-title: Lancet – volume: 11 start-page: 109 year: 2008 end-page: 119 article-title: Vascular permeability, vascular hyperpermeability and angiogenesis publication-title: Angiogenesis – volume: 7 start-page: 375 year: 1999 end-page: 380 article-title: Role of alpha(v) integrins and angiogenesis during wound repair publication-title: Wound Repair Regen. – volume: 36 start-page: 1136 year: 2010 end-page: 1137 article-title: Bevacizumab: a potential agent for prevention and treatment of hypertrophic scar publication-title: Burns – volume: 79 start-page: 7773 year: 1982 end-page: 7777 article-title: Isolation of a nonmitogenic angiogenesis factor from wound fluid publication-title: Proc. Natl. Acad. Sci. USA – volume: 176 start-page: 1375 year: 1992 end-page: 1379 article-title: Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing publication-title: J. Exp. Med. – volume: 53 start-page: 16 year: 2007 end-page: 31 article-title: Regenerative healing in fetal skin: a review of the literature publication-title: Ostomy Wound Manage. – volume: 19 start-page: 292 year: 2011 end-page: 301 article-title: Time course of the angiogenic response during normotrophic and hypertrophic scar formation in humans publication-title: Wound Repair Regen. – volume: 78 start-page: 672 year: 1997 end-page: 677 article-title: Angiogenesis: a dynamic balance of stimulators and inhibitors publication-title: Thromb. Haemost. – volume: 25 start-page: 63 year: 1990 end-page: 68 article-title: Studies in fetal wound healing, VI, second and early third trimester fetal wounds demonstrate rapid collagen deposition without scar formation publication-title: J. Pediatr. Surg. – volume: 175 start-page: 132 year: 2009 end-page: 147 article-title: A transgenic mouse model of inducible macrophage depletion: effects of diphtheria toxin‐driven lysozyme M‐specific cell lineage ablation on wound inflammatory, angiogenic, and contractive processes publication-title: Am. J. Pathol. – volume: 16 start-page: 1769 year: 2015 end-page: 1781 article-title: Advances in pharmacotherapy for wet age‐related macular degeneration publication-title: Expert Opin. Pharmacother. – volume: 162 start-page: 22 year: 2014 end-page: 38 article-title: The oral microbiome and the immunobiology of periodontal disease and caries publication-title: Immunol. Lett. – volume: 122 start-page: 2064 year: 2009 end-page: 2077 article-title: IP‐10 induces dissociation of newly formed blood vessels publication-title: J. Cell Sci. – volume: 22 start-page: 1257 year: 2015 end-page: 1272 article-title: microRNA‐200b as a switch for inducible adult angiogenesis publication-title: Antioxid. Redox Signal. – volume: 92 start-page: 1037 year: 2013 end-page: 1045 article-title: Neovascularization in diabetes and its complications: unraveling the angiogenic paradox publication-title: Life Sci. – volume: 42 start-page: 115 year: 2007 end-page: 170 article-title: Regulation of angiogenesis: wound healing as a model publication-title: Prog. Histochem. Cytochem. – volume: 105 start-page: 43 year: 2002 end-page: 47 article-title: Vascular endothelial growth factor‐mediated angiogenesis inhibition and postoperative wound healing in rats publication-title: J. Surg. Res. – volume: 184 start-page: 3964 year: 2010 end-page: 3977 article-title: Differential roles of macrophages in diverse phases of skin repair publication-title: J. Immunol. – volume: 35 start-page: 4477 year: 2014 end-page: 4488 article-title: The role of macrophage phenotype in vascularization of tissue engineering scaffolds publication-title: Biomaterials – volume: 50 start-page: 850 year: 2004 end-page: 853 article-title: Keloids demonstrate high‐level epidermal expression of vascular endothelial growth factor publication-title: J. Am. Acad. Dermatol. – volume: 266 start-page: 47 year: 1988 end-page: 54 article-title: Production of growth factors (PDGF & TGF‐beta) at the site of tissue repair publication-title: Prog. Clin. Biol. Res. – volume: 14 start-page: 224 year: 2013 end-page: 230 article-title: Endostatin inhibits hypertrophic scarring in a rabbit ear model publication-title: J. Zhejiang Univ. Sci. B – volume: 127 start-page: 1009 year: 2007 end-page: 1017 article-title: The inflammation‐fibrosis link? A Jekyll and Hyde role for blood cells during wound repair publication-title: J. Invest. Dermatol. – volume: 199 start-page: 469 year: 2003 end-page: 473 article-title: Vascularization pattern in hypertrophic scars and keloids: a stereological analysis publication-title: Pathol. Res. Pract. – volume: 13 start-page: 51 year: 1970 end-page: 65 article-title: Role of the pericyte in wound healing: an ultrastructural study publication-title: Exp. Mol. Pathol. – volume: 104 start-page: 3198 year: 2004 end-page: 3204 article-title: PDGF‐D induces macrophage recruitment, increased interstitial pressure, and blood vessel maturation during angiogenesis publication-title: Blood – volume: 152 start-page: 1445 year: 1998 end-page: 1452 article-title: Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing publication-title: Am. J. Pathol. – volume: 84 start-page: 309 year: 2005 end-page: 314 article-title: Distinct patterns of angiogenesis in oral and skin wounds publication-title: J. Dent. Res. – volume: 6 start-page: 265sr6 year: 2014 article-title: Wound repair and regeneration: mechanisms, signaling, and translation publication-title: Sci. Transl. Med. – volume: 82 start-page: 621 year: 2003 end-page: 626 article-title: Differential injury responses in oral mucosal and cutaneous wounds publication-title: J. Dent. Res. – volume: 131 start-page: 892 year: 2011 end-page: 899 article-title: Epithelial regulation of mesenchymal tissue behavior publication-title: J. Invest. Dermatol. – volume: 26 start-page: 430 year: 1979 end-page: 436 article-title: Stimulation of wound blood vessel growth by wound macrophages publication-title: J. Surg. Res. – volume: 44 start-page: 1800 year: 2012 end-page: 1812 article-title: Microvascular remodeling and wound healing: a role for pericytes publication-title: Int. J. Biochem. Cell Biol. – volume: 42 start-page: 115 year: 2007 ident: 2023011710424143200_B3 article-title: Regulation of angiogenesis: wound healing as a model publication-title: Prog. Histochem. Cytochem. doi: 10.1016/j.proghi.2007.06.001 – volume: 184 start-page: 3964 year: 2010 ident: 2023011710424143200_B43 article-title: Differential roles of macrophages in diverse phases of skin repair publication-title: J. Immunol. doi: 10.4049/jimmunol.0903356 – volume: 3 start-page: 502 year: 2014 ident: 2023011710424143200_B72 article-title: The wound microbiome: modern approaches to examining the role of microorganisms in impaired chronic wound healing publication-title: Adv. Wound Care (New Rochelle) doi: 10.1089/wound.2012.0397 – volume: 25 start-page: 87 year: 2013 ident: 2023011710424143200_B4 article-title: Angiogenesis and scar formation in healing wounds publication-title: Curr. Opin. Rheumatol. doi: 10.1097/BOR.0b013e32835b13b6 – volume: 166 start-page: 303 year: 2005 ident: 2023011710424143200_B11 article-title: CARP, a cardiac ankyrin repeat protein, is up-regulated during wound healing and induces angiogenesis in experimental granulation tissue publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)62254-7 – volume: 4 start-page: 24 year: 2015 ident: 2023011710424143200_B73 article-title: Dynamic role of host stress responses in modulating the cutaneous microbiome: implications for wound healing and infection publication-title: Adv. Wound Care (New Rochelle) doi: 10.1089/wound.2014.0546 – volume: 199 start-page: 469 year: 2003 ident: 2023011710424143200_B57 article-title: Vascularization pattern in hypertrophic scars and keloids: a stereological analysis publication-title: Pathol. Res. Pract. doi: 10.1078/0344-0338-00447 – volume: 11 start-page: 109 year: 2008 ident: 2023011710424143200_B9 article-title: Vascular permeability, vascular hyperpermeability and angiogenesis publication-title: Angiogenesis doi: 10.1007/s10456-008-9099-z – volume: 78 start-page: 672 year: 1997 ident: 2023011710424143200_B15 article-title: Angiogenesis: a dynamic balance of stimulators and inhibitors publication-title: Thromb. Haemost. doi: 10.1055/s-0038-1657610 – volume: 25 start-page: 63 year: 1990 ident: 2023011710424143200_B31 article-title: Studies in fetal wound healing, VI, second and early third trimester fetal wounds demonstrate rapid collagen deposition without scar formation publication-title: J. Pediatr. Surg. doi: 10.1016/S0022-3468(05)80165-4 – volume: 14 start-page: 224 year: 2013 ident: 2023011710424143200_B55 article-title: Endostatin inhibits hypertrophic scarring in a rabbit ear model publication-title: J. Zhejiang Univ. Sci. B doi: 10.1631/jzus.B1200077 – volume: 7 start-page: 377 year: 2015 ident: 2023011710424143200_B60 article-title: Angiogenesis and liver fibrosis publication-title: World J. Hepatol. doi: 10.4254/wjh.v7.i3.377 – volume: 13 start-page: e23 year: 2011 ident: 2023011710424143200_B42 article-title: Inflammation and wound healing: the role of the macrophage publication-title: Expert Rev. Mol. Med. doi: 10.1017/S1462399411001943 – volume: 131 start-page: 892 year: 2011 ident: 2023011710424143200_B48 article-title: Epithelial regulation of mesenchymal tissue behavior publication-title: J. Invest. Dermatol. doi: 10.1038/jid.2010.420 – volume: 92 start-page: 1037 year: 2013 ident: 2023011710424143200_B51 article-title: Neovascularization in diabetes and its complications: unraveling the angiogenic paradox publication-title: Life Sci. doi: 10.1016/j.lfs.2013.04.001 – volume: 119 start-page: 457 year: 1996 ident: 2023011710424143200_B10 article-title: Basic fibroblast growth factor mediates angiogenic activity in early surgical wounds publication-title: Surgery doi: 10.1016/S0039-6060(96)80148-6 – volume: 36 start-page: 1136 year: 2010 ident: 2023011710424143200_B54 article-title: Bevacizumab: a potential agent for prevention and treatment of hypertrophic scar publication-title: Burns doi: 10.1016/j.burns.2010.01.014 – volume: 79 start-page: 7773 year: 1982 ident: 2023011710424143200_B5 article-title: Isolation of a nonmitogenic angiogenesis factor from wound fluid publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.79.24.7773 – volume: 266 start-page: 47 year: 1988 ident: 2023011710424143200_B12 article-title: Production of growth factors (PDGF & TGF-beta) at the site of tissue repair publication-title: Prog. Clin. Biol. Res. – year: 2016 ident: 2023011710424143200_B66 article-title: Antiangiogenic therapy in oncology: current status and future directions publication-title: Lancet doi: 10.1016/S0140-6736(15)01088-0 – volume: 300 start-page: H459 year: 2011 ident: 2023011710424143200_B16 article-title: Sprouty2 downregulates angiogenesis during mouse skin wound healing publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00244.2010 – volume: 117 start-page: 1036 year: 2001 ident: 2023011710424143200_B24 article-title: The angiogenesis inhibitor vasostatin does not impair wound healing at tumor-inhibiting doses publication-title: J. Invest. Dermatol. doi: 10.1046/j.0022-202x.2001.01519.x – volume: 176 start-page: 1375 year: 1992 ident: 2023011710424143200_B7 article-title: Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing publication-title: J. Exp. Med. doi: 10.1084/jem.176.5.1375 – volume: 9 start-page: e85226 year: 2014 ident: 2023011710424143200_B50 article-title: Blockade of mast cell activation reduces cutaneous scar formation publication-title: PLoS One doi: 10.1371/journal.pone.0085226 – volume: 108 start-page: 3 year: 2015 ident: 2023011710424143200_B61 article-title: Healing scars: targeting pericytes to treat fibrosis publication-title: QJM doi: 10.1093/qjmed/hcu067 – volume: 19 start-page: s16 issue: Suppl 1 year: 2011 ident: 2023011710424143200_B67 article-title: The role of the epidermis and the mechanism of action of occlusive dressings in scarring publication-title: Wound Repair Regen. doi: 10.1111/j.1524-475X.2011.00709.x – volume: 122 start-page: 2064 year: 2009 ident: 2023011710424143200_B18 article-title: IP-10 induces dissociation of newly formed blood vessels publication-title: J. Cell Sci. doi: 10.1242/jcs.048793 – volume: 53 start-page: 16 year: 2007 ident: 2023011710424143200_B33 article-title: Regenerative healing in fetal skin: a review of the literature publication-title: Ostomy Wound Manage. – volume: 128 start-page: 1852 year: 2008 ident: 2023011710424143200_B45 article-title: IL-10 overexpression decreases inflammatory mediators and promotes regenerative healing in an adult model of scar formation publication-title: J. Invest. Dermatol. doi: 10.1038/sj.jid.5701232 – volume: 22 start-page: 1257 year: 2015 ident: 2023011710424143200_B19 article-title: microRNA-200b as a switch for inducible adult angiogenesis publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2014.6065 – volume: 82 start-page: 621 year: 2003 ident: 2023011710424143200_B34 article-title: Differential injury responses in oral mucosal and cutaneous wounds publication-title: J. Dent. Res. doi: 10.1177/154405910308200810 – volume: 91 start-page: 26 year: 2000 ident: 2023011710424143200_B25 article-title: The angiogenesis inhibitor, endostatin, does not affect murine cutaneous wound healing publication-title: J. Surg. Res. doi: 10.1006/jsre.2000.5890 – volume: 24 start-page: 371 year: 2012 ident: 2023011710424143200_B32 article-title: Fetal wound healing: implications for minimal scar formation publication-title: Curr. Opin. Pediatr. doi: 10.1097/MOP.0b013e3283535790 – volume: 1 start-page: 17 year: 2012 ident: 2023011710424143200_B53 article-title: Wound healing angiogenesis: innovations and challenges in acute and chronic wound healing publication-title: Adv. Wound Care (New Rochelle) doi: 10.1089/wound.2011.0308 – volume: 7 start-page: 375 year: 1999 ident: 2023011710424143200_B29 article-title: Role of alpha(v) integrins and angiogenesis during wound repair publication-title: Wound Repair Regen. doi: 10.1046/j.1524-475X.1999.00375.x – volume: 127 start-page: 1009 year: 2007 ident: 2023011710424143200_B44 article-title: The inflammation-fibrosis link? A Jekyll and Hyde role for blood cells during wound repair publication-title: J. Invest. Dermatol. doi: 10.1038/sj.jid.5700811 – volume: 88 start-page: 579 year: 2008 ident: 2023011710424143200_B30 article-title: Regulation of scar formation by vascular endothelial growth factor publication-title: Lab. Invest. doi: 10.1038/labinvest.2008.36 – volume: 50 start-page: 850 year: 2004 ident: 2023011710424143200_B56 article-title: Keloids demonstrate high-level epidermal expression of vascular endothelial growth factor publication-title: J. Am. Acad. Dermatol. doi: 10.1016/j.jaad.2003.11.061 – volume: 7 start-page: 312ra177 year: 2015 ident: 2023011710424143200_B69 article-title: Sodium channel Nax is a regulator in epithelial sodium homeostasis publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aad0286 – volume: 16 start-page: 1769 year: 2015 ident: 2023011710424143200_B65 article-title: Advances in pharmacotherapy for wet age-related macular degeneration publication-title: Expert Opin. Pharmacother. doi: 10.1517/14656566.2015.1067679 – volume: 5 start-page: 40 year: 2000 ident: 2023011710424143200_B23 article-title: Angiogenesis in wound healing publication-title: J. Investig. Dermatol. Symp. Proc. doi: 10.1046/j.1087-0024.2000.00014.x – volume: 7 start-page: 47 year: 2016 ident: 2023011710424143200_B63 article-title: Promising therapy candidates for liver fibrosis publication-title: Front. Physiol. doi: 10.3389/fphys.2016.00047 – volume: 35 start-page: 4477 year: 2014 ident: 2023011710424143200_B40 article-title: The role of macrophage phenotype in vascularization of tissue engineering scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.02.012 – volume: 104 start-page: 3198 year: 2004 ident: 2023011710424143200_B13 article-title: PDGF-D induces macrophage recruitment, increased interstitial pressure, and blood vessel maturation during angiogenesis publication-title: Blood doi: 10.1182/blood-2004-04-1485 – volume: 19 start-page: 292 year: 2011 ident: 2023011710424143200_B58 article-title: Time course of the angiogenic response during normotrophic and hypertrophic scar formation in humans publication-title: Wound Repair Regen. doi: 10.1111/j.1524-475X.2011.00692.x – volume: 16 start-page: 226 year: 2008 ident: 2023011710424143200_B49 article-title: The mast cell stabilizer ketotifen prevents development of excessive skin wound contraction and fibrosis in red Duroc pigs publication-title: Wound Repair Regen. doi: 10.1111/j.1524-475X.2008.00363.x – volume: 253 start-page: 402 year: 2011 ident: 2023011710424143200_B38 article-title: Angiogenesis in wounds treated by microdeformational wound therapy publication-title: Ann. Surg. doi: 10.1097/SLA.0b013e31820563a8 – volume: 366 start-page: 1736 year: 2005 ident: 2023011710424143200_B52 article-title: Wound healing and its impairment in the diabetic foot publication-title: Lancet doi: 10.1016/S0140-6736(05)67700-8 – volume: 84 start-page: 309 year: 2005 ident: 2023011710424143200_B35 article-title: Distinct patterns of angiogenesis in oral and skin wounds publication-title: J. Dent. Res. doi: 10.1177/154405910508400403 – volume: 205 start-page: 43 year: 2008 ident: 2023011710424143200_B46 article-title: Molecular mechanisms linking wound inflammation and fibrosis: knockdown of osteopontin leads to rapid repair and reduced scarring publication-title: J. Exp. Med. doi: 10.1084/jem.20071412 – volume: 107 start-page: 233 year: 1995 ident: 2023011710424143200_B8 article-title: Vascular permeability factor/vascular endothelial growth factor: an important mediator of angiogenesis in malignancy and inflammation publication-title: Int. Arch. Allergy Immunol. doi: 10.1159/000236988 – volume: 152 start-page: 1445 year: 1998 ident: 2023011710424143200_B6 article-title: Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing publication-title: Am. J. Pathol. – volume: 175 start-page: 132 year: 2009 ident: 2023011710424143200_B41 article-title: A transgenic mouse model of inducible macrophage depletion: effects of diphtheria toxin-driven lysozyme M-specific cell lineage ablation on wound inflammatory, angiogenic, and contractive processes publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2009.081002 – volume: 9 start-page: e101480 year: 2014 ident: 2023011710424143200_B68 article-title: Intrinsic differences between oral and skin keratinocytes publication-title: PLoS One doi: 10.1371/journal.pone.0101480 – volume: 45 start-page: 1 year: 2011 ident: 2023011710424143200_B59 article-title: Pulmonary hypertension and idiopathic pulmonary fibrosis: a tale of angiogenesis, apoptosis, and growth factors publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/rcmb.2010-0365TR – volume: 82 start-page: 268 year: 1999 ident: 2023011710424143200_B27 article-title: Angiogenesis inhibitor TNP-470 inhibits murine cutaneous wound healing publication-title: J. Surg. Res. doi: 10.1006/jsre.1998.5551 – volume: 20 start-page: 556 year: 2010 ident: 2023011710424143200_B14 article-title: Signaling by members of the TGF-beta family in vascular morphogenesis and disease publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2010.06.006 – volume: 162 start-page: 22 year: 2014 ident: 2023011710424143200_B71 article-title: The oral microbiome and the immunobiology of periodontal disease and caries publication-title: Immunol. Lett. doi: 10.1016/j.imlet.2014.08.017 – volume: 3 start-page: 344 year: 2014 ident: 2023011710424143200_B47 article-title: Targeting inflammatory cytokines and extracellular matrix composition to promote wound regeneration publication-title: Adv. Wound Care (New Rochelle) doi: 10.1089/wound.2013.0456 – volume: 14 start-page: 2373 year: 2000 ident: 2023011710424143200_B28 article-title: The angiogenesis inhibitor endostatin impairs blood vessel maturation during wound healing publication-title: FASEB J. doi: 10.1096/fj.00-0490fje – volume: 193 start-page: 5171 year: 2014 ident: 2023011710424143200_B74 article-title: Skin wound healing is accelerated and scarless in the absence of commensal microbiota publication-title: J. Immunol. doi: 10.4049/jimmunol.1400625 – volume: 26 start-page: 430 year: 1979 ident: 2023011710424143200_B39 article-title: Stimulation of wound blood vessel growth by wound macrophages publication-title: J. Surg. Res. doi: 10.1016/0022-4804(79)90031-3 – volume: 309 start-page: H812 year: 2015 ident: 2023011710424143200_B17 article-title: Pigment epithelium-derived factor as a multifunctional regulator of wound healing publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00153.2015 – volume: 6 start-page: 265sr6 year: 2014 ident: 2023011710424143200_B2 article-title: Wound repair and regeneration: mechanisms, signaling, and translation publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3009337 – volume: 21 start-page: 345 year: 2014 ident: 2023011710424143200_B20 article-title: Targeting pericytes for angiogenic therapies publication-title: Microcirculation doi: 10.1111/micc.12107 – volume: 13 start-page: 51 year: 1970 ident: 2023011710424143200_B22 article-title: Role of the pericyte in wound healing: an ultrastructural study publication-title: Exp. Mol. Pathol. doi: 10.1016/0014-4800(70)90084-5 – volume: 44 start-page: 1800 year: 2012 ident: 2023011710424143200_B21 article-title: Microvascular remodeling and wound healing: a role for pericytes publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2012.06.031 – volume: 3 start-page: 1 year: 2015 ident: 2023011710424143200_B36 article-title: Tumors: wounds that do not heal-redux publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-14-0209 – volume: 5 start-page: 121 year: 2013 ident: 2023011710424143200_B70 article-title: Oral epithelial stem cells in tissue maintenance and disease: the first steps in a long journey publication-title: Int. J. Oral Sci. doi: 10.1038/ijos.2013.46 – volume: 453 start-page: 314 year: 2008 ident: 2023011710424143200_B1 article-title: Wound repair and regeneration publication-title: Nature doi: 10.1038/nature07039 – volume: 17 start-page: 291 year: 2010 ident: 2023011710424143200_B62 article-title: Caspase-3-mediated secretion of connective tissue growth factor by apoptotic endothelial cells promotes fibrosis publication-title: Cell Death Differ. doi: 10.1038/cdd.2009.124 – volume: 27 start-page: 3893 year: 2013 ident: 2023011710424143200_B64 article-title: Apoptosis and angiogenesis: an evolving mechanism for fibrosis publication-title: FASEB J. doi: 10.1096/fj.12-214189 – volume: 14 start-page: 434 year: 2006 ident: 2023011710424143200_B37 article-title: The microcirculation in acute murine cutaneous incisional wounds shows a spatial and temporal variation in the functionality of vessels publication-title: Wound Repair Regen. doi: 10.1111/j.1743-6109.2006.00142.x – volume: 105 start-page: 43 year: 2002 ident: 2023011710424143200_B26 article-title: Vascular endothelial growth factor-mediated angiogenesis inhibition and postoperative wound healing in rats publication-title: J. Surg. Res. doi: 10.1006/jsre.2002.6444 |
| SSID | ssj0003260 |
| Score | 2.657858 |
| SecondaryResourceType | review_article |
| Snippet | Review on novel concepts in wound angiogenesis; although more capillaries are generally considered better, new studies suggest otherwise.
All animals heal, and... All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate... Review on novel concepts in wound angiogenesis; although more capillaries are generally considered better, new studies suggest otherwise. All animals heal, and... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 979 |
| SubjectTerms | Angiogenic Proteins - physiology Animals Capillaries - physiology capillary Cicatrix - physiopathology Cicatrix - prevention & control Endothelial Cells - physiology Fetus - physiology Fibrosis Humans inflammation Inflammation - physiopathology Mouth Mucosa - blood supply Mouth Mucosa - injuries Mouth Mucosa - physiology Neovascularization, Physiologic - physiology Pericytes - physiology Prenatal Injuries - physiopathology Regeneration - physiology Review Reviews scar Skin - blood supply Skin - injuries VEGF wound healing Wound Healing - physiology |
| Title | Angiogenesis and wound repair: when enough is enough |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1189%2Fjlb.4MR0316-102R https://www.ncbi.nlm.nih.gov/pubmed/27406995 https://www.proquest.com/docview/1826718849 https://pubmed.ncbi.nlm.nih.gov/PMC6608066 |
| Volume | 100 |
| WOSCitedRecordID | wos000386007500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1938-3673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003260 issn: 0741-5400 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB61KUhcoLQUDLTaSgiJg6njOPvgFmgjhNIeIopys2bX68SobFDSUvXfM-t1rIZKRUjcLO9D9rxnH98AvFG2Rw1CxxYTjElCdIy6W8RWZT3sGlGqGr7420icncnJRN2-CxPwIdoFN68Ztb32Co66qUIiPUbm9wv9Pjsdk1BysiXpeBO2UhLfrANbx-Ph-ai1xxSgJAGMs-uPASSrzUqpjv6cY9053Yk47x6cvB3Q1h5p-OR__Ms2PG7iUTYIAvQUNqzbgd2Bo1z8xw17y-oTovXS-w48DIUrb3YhG7hpNZ96O1ktGbqCXfvyTGxBzq1afGDXM-uYR3-dzhh1CE_P4Hx48vXT57ipvxAb0mMVF6VC07eib2SWWo68VJojakzRCm16RhZccF1SCIaqb7HU0lCEoXUheKET09uDjps7-wIYvcISyyRDyvckTUyD067OClFIo5WJ4GhF-Nw04OS-RsZFXicpUuVEorwhUe5JFMG7dsTPAMxxT9_DFS9z0h6_JYLOzq-Wuc-uyDvLTEXwPPC2nY3y9YQr1Y9ArHG97eCRuddbXDWrEbo5p0Cc8wgC1__6gfmX0cdECfXyXwe8gkcUwfFwOfI1dC4XV3YfHphfl9VycQCbYiIPGn34DXl3D1I |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9NAFH4qKYheWFooLtsgISQOpk5iz8ItFKICboSiFvU2mhmPE1dlUiVd1H_PG49jESqBkLhZnkX2298s3wN4LWwfG5iOrUpUjBKiY6W7RWxF2lddw0pRwxd_z9loxI-Pxbc12FvehQn4EO2Cm9eM2l57BfcL0kHLuQfJPDnV79KDMUolRWPSG9-C9RSlKevA-sfx8ChvDTJGKElA4-z6cwDJcreSi93f51j1TjdCzpsnJ3-NaGuXNLz_X37mAdxrIlIyCCL0ENas24StgcNs_Mc1eUPqM6L14vsm3AmlK6-3IB24STWbeEtZLYhyBbnyBZrIHN1bNX9PrqbWEY__OpkS7BCeHsHR8NPh3n7cVGCIDWqyiItSKJNZlhme9ixVtBSaKqVVT1mmTd_wgjKqSwzClMisKjU3GGNoXTBa6MT0H0PHzZx9AgRfqVKVSaow4-M4MQ7udXVasIIbLUwEu0vKS9PAk_sqGaeyTlO4kEgi2ZBIehJF8LYdcRagOf7Q99WSmRL1x2-KKGdnFwvp8yv0zzwVEWwH5razYcaeUCGyCNgK29sOHpt7tcVV0xqjm1IMxSmNILD9rx8ov-QfEsHEzr8OeAl39w8Pcpl_Hn19ChsYz9FwVfIZdM7nF_Y53DaX59Vi_qJRi59GuRJa |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEB6VFipeCrQUXK5FQkg8mDqJvQdvoSXiCFEVUdS31V5OjMqmSlqq_ntmvY5FqARC4s3yHrJndma-2eNbgBfC9bCA6dSpTKU4QnSqdMemTuQ91TGsFDV98dchG434yYk4WoOD5VmYyA_RTrgFy6j9dTBwd2bLaOU8kGR-O9Wv889jHJUUnUl3fAM28kJQtM6Nw_HgeNg6ZEQoWWTj7IR9ANlytZKL_d_7WI1O1yDn9Z2TvyLaOiQN7vyXn7kLWw0iJf04hO7BmvPbsNP3mI1_vyIvSb1HtJ5834Zb8erKqx3I-35SzSbBU1YLorwll-GCJjLH8FbN35DLqfMk8L9OpgQrxKf7cDx49-XgfdrcwJAatGSR2lIoUzhWGJ53HVW0FJoqpVVXOaZNz3BLGdUlgjAlCqdKzQ1iDK0to1ZnprcL637m3UMg-EqVqsxyhRkfx46xcbejc8ssN1qYBPaXkpemoScPt2ScyjpN4UKiiGQjIhlElMCrtsVZpOb4Q93nS2VKtJ-wKKK8m10sZMivMD7zXCTwICq37Q0z9owKUSTAVtTeVgjc3KslvprWHN2UIhSnNIGo9r9-oPw4fJsJJvb-tcEz2Dw6HMjhh9GnR3Ab4RyNJyUfw_r5_MI9gZvmx3m1mD9trOInuW0R1Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Angiogenesis+and+wound+repair%3A+when+enough+is+enough&rft.jtitle=Journal+of+leukocyte+biology&rft.au=DiPietro%2C+Luisa+A.&rft.date=2016-11-01&rft.issn=0741-5400&rft.eissn=1938-3673&rft.volume=100&rft.issue=5&rft.spage=979&rft.epage=984&rft_id=info:doi/10.1189%2Fjlb.4MR0316-102R&rft.externalDBID=10.1189%252Fjlb.4MR0316-102R&rft.externalDocID=JLB0979 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-5400&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-5400&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-5400&client=summon |