FAM13A affects body fat distribution and adipocyte function
Genetic variation in the FAM13A (Family with Sequence Similarity 13 Member A) locus has been associated with several glycemic and metabolic traits in genome-wide association studies (GWAS). Here, we demonstrate that in humans, FAM13A alleles are associated with increased FAM13A expression in subcuta...
Uloženo v:
| Vydáno v: | Nature communications Ročník 11; číslo 1; s. 1465 - 13 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
19.03.2020
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2041-1723, 2041-1723 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Genetic variation in the
FAM13A
(Family with Sequence Similarity 13 Member A) locus has been associated with several glycemic and metabolic traits in genome-wide association studies (GWAS). Here, we demonstrate that in humans,
FAM13A
alleles are associated with increased
FAM13A
expression in subcutaneous adipose tissue (SAT) and an insulin resistance-related phenotype (e.g. higher waist-to-hip ratio and fasting insulin levels, but lower body fat). In human adipocyte models, knockdown of
FAM13A
in preadipocytes accelerates adipocyte differentiation. In mice,
Fam13a
knockout (KO) have a lower visceral to subcutaneous fat (VAT/SAT) ratio after high-fat diet challenge, in comparison to their wild-type counterparts. Subcutaneous adipocytes in KO mice show a size distribution shift toward an increased number of smaller adipocytes, along with an improved adipogenic potential. Our results indicate that GWAS-associated variants within the
FAM13A
locus alter adipose
FAM13A
expression, which in turn, regulates adipocyte differentiation and contribute to changes in body fat distribution.
Genetic variants in the
FAM13A
locus have been associated with anthropometric and glycemic traits. Here, using fine-mapping, in vitro knockdown studies in pre-adipocytes and in vivo knockout in mice, the authors show that FAM13A is involved in regulating fat distribution and metabolic traits. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2041-1723 2041-1723 |
| DOI: | 10.1038/s41467-020-15291-z |