SignalP 6.0 predicts all five types of signal peptides using protein language models

Signal peptides (SPs) are short amino acid sequences that control protein secretion and translocation in all living organisms. SPs can be predicted from sequence data, but existing algorithms are unable to detect all known types of SPs. We introduce SignalP 6.0, a machine learning model that detects...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology Jg. 40; H. 7; S. 1023 - 1025
Hauptverfasser: Teufel, Felix, Almagro Armenteros, José Juan, Johansen, Alexander Rosenberg, Gíslason, Magnús Halldór, Pihl, Silas Irby, Tsirigos, Konstantinos D., Winther, Ole, Brunak, Søren, von Heijne, Gunnar, Nielsen, Henrik
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Nature Publishing Group US 01.07.2022
Nature Publishing Group
Schlagworte:
ISSN:1087-0156, 1546-1696, 1546-1696
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Signal peptides (SPs) are short amino acid sequences that control protein secretion and translocation in all living organisms. SPs can be predicted from sequence data, but existing algorithms are unable to detect all known types of SPs. We introduce SignalP 6.0, a machine learning model that detects all five SP types and is applicable to metagenomic data. A new version of SignalP predicts all types of signal peptides.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1087-0156
1546-1696
1546-1696
DOI:10.1038/s41587-021-01156-3