A bounded degree SOS hierarchy for polynomial optimization
We consider a new hierarchy of semidefinite relaxations for the general polynomial optimization problem (P):f∗=min{f(x):x∈K} on a compact basic semi-algebraic set K⊂Rn. This hierarchy combines some advantages of the standard LP-relaxations associated with Krivine’s positivity certificate and some ad...
Uloženo v:
| Vydáno v: | EURO journal on computational optimization Ročník 5; číslo 1-2; s. 87 - 117 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Elsevier Ltd
01.03.2017
Springer Berlin Heidelberg Springer Nature B.V Springer Elsevier |
| Témata: | |
| ISSN: | 2192-4406, 2192-4414 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider a new hierarchy of semidefinite relaxations for the general polynomial optimization problem (P):f∗=min{f(x):x∈K} on a compact basic semi-algebraic set K⊂Rn. This hierarchy combines some advantages of the standard LP-relaxations associated with Krivine’s positivity certificate and some advantages of the standard SOS-hierarchy. In particular it has the following attractive features: (a) in contrast to the standard SOS-hierarchy, for each relaxation in the hierarchy, the size of the matrix associated with the semidefinite constraint is the same and fixed in advance by the user; (b) in contrast to the LP-hierarchy, finite convergence occurs at the first step of the hierarchy for an important class of convex problems; and (c) some important techniques related to the use of point evaluations for declaring a polynomial to be zero and to the use of rank-one matrices make an efficient implementation possible. Preliminary results on a sample of non convex problems are encouraging. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 2192-4406 2192-4414 |
| DOI: | 10.1007/s13675-015-0050-y |