A bounded degree SOS hierarchy for polynomial optimization

We consider a new hierarchy of semidefinite relaxations for the general polynomial optimization problem (P):f∗=min{f(x):x∈K} on a compact basic semi-algebraic set K⊂Rn. This hierarchy combines some advantages of the standard LP-relaxations associated with Krivine’s positivity certificate and some ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EURO journal on computational optimization Jg. 5; H. 1-2; S. 87 - 117
Hauptverfasser: Lasserre, JeanB, Toh, Kim-Chuan, Yang, Shouguang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Elsevier Ltd 01.03.2017
Springer Berlin Heidelberg
Springer Nature B.V
Springer
Elsevier
Schlagworte:
ISSN:2192-4406, 2192-4414
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a new hierarchy of semidefinite relaxations for the general polynomial optimization problem (P):f∗=min{f(x):x∈K} on a compact basic semi-algebraic set K⊂Rn. This hierarchy combines some advantages of the standard LP-relaxations associated with Krivine’s positivity certificate and some advantages of the standard SOS-hierarchy. In particular it has the following attractive features: (a) in contrast to the standard SOS-hierarchy, for each relaxation in the hierarchy, the size of the matrix associated with the semidefinite constraint is the same and fixed in advance by the user; (b) in contrast to the LP-hierarchy, finite convergence occurs at the first step of the hierarchy for an important class of convex problems; and (c) some important techniques related to the use of point evaluations for declaring a polynomial to be zero and to the use of rank-one matrices make an efficient implementation possible. Preliminary results on a sample of non convex problems are encouraging.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:2192-4406
2192-4414
DOI:10.1007/s13675-015-0050-y