A bounded degree SOS hierarchy for polynomial optimization
We consider a new hierarchy of semidefinite relaxations for the general polynomial optimization problem (P):f∗=min{f(x):x∈K} on a compact basic semi-algebraic set K⊂Rn. This hierarchy combines some advantages of the standard LP-relaxations associated with Krivine’s positivity certificate and some ad...
Gespeichert in:
| Veröffentlicht in: | EURO journal on computational optimization Jg. 5; H. 1-2; S. 87 - 117 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Elsevier Ltd
01.03.2017
Springer Berlin Heidelberg Springer Nature B.V Springer Elsevier |
| Schlagworte: | |
| ISSN: | 2192-4406, 2192-4414 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We consider a new hierarchy of semidefinite relaxations for the general polynomial optimization problem (P):f∗=min{f(x):x∈K} on a compact basic semi-algebraic set K⊂Rn. This hierarchy combines some advantages of the standard LP-relaxations associated with Krivine’s positivity certificate and some advantages of the standard SOS-hierarchy. In particular it has the following attractive features: (a) in contrast to the standard SOS-hierarchy, for each relaxation in the hierarchy, the size of the matrix associated with the semidefinite constraint is the same and fixed in advance by the user; (b) in contrast to the LP-hierarchy, finite convergence occurs at the first step of the hierarchy for an important class of convex problems; and (c) some important techniques related to the use of point evaluations for declaring a polynomial to be zero and to the use of rank-one matrices make an efficient implementation possible. Preliminary results on a sample of non convex problems are encouraging. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 2192-4406 2192-4414 |
| DOI: | 10.1007/s13675-015-0050-y |