The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans

Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resour...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Medical physics (Lancaster) Ročník 38; číslo 2; s. 915 - 931
Hlavní autori: Armato, Samuel G., McLennan, Geoffrey, Bidaut, Luc, McNitt-Gray, Michael F., Meyer, Charles R., Reeves, Anthony P., Zhao, Binsheng, Aberle, Denise R., Henschke, Claudia I., Hoffman, Eric A., Kazerooni, Ella A., MacMahon, Heber, van Beek, Edwin J. R., Yankelevitz, David, Biancardi, Alberto M., Bland, Peyton H., Brown, Matthew S., Engelmann, Roger M., Laderach, Gary E., Max, Daniel, Pais, Richard C., Qing, David P.-Y., Roberts, Rachael Y., Smith, Amanda R., Starkey, Adam, Batra, Poonam, Caligiuri, Philip, Farooqi, Ali, Gladish, Gregory W., Jude, C. Matilda, Munden, Reginald F., Petkovska, Iva, Quint, Leslie E., Schwartz, Lawrence H., Sundaram, Baskaran, Dodd, Lori E., Fenimore, Charles, Gur, David, Petrick, Nicholas, Freymann, John, Kirby, Justin, Hughes, Brian, Vande Casteele, Alessi, Gupte, Sangeeta, Sallam, Maha, Heath, Michael D., Kuhn, Michael H., Dharaiya, Ekta, Burns, Richard, Fryd, David S., Salganicoff, Marcos, Anand, Vikram, Shreter, Uri, Vastagh, Stephen, Croft, Barbara Y., Clarke, Laurence P.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States American Association of Physicists in Medicine 01.02.2011
U.S. Government
Predmet:
ISSN:0094-2405, 2473-4209, 0094-2405
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (“ nodule ≥ 3   mm ,” “ nodule < 3   mm ,” and “non- nodule ≥ 3   mm ”). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked “nodule” by at least one radiologist. 2669 of these lesions were marked “ nodule ≥ 3   mm ” by at least one radiologist, of which 928 (34.7%) received such marks from all four radiologists. These 2669 lesions include nodule outlines and subjective nodule characteristic ratings. Conclusions: The LIDC/IDRI Database is expected to provide an essential medical imaging research resource to spur CAD development, validation, and dissemination in clinical practice.
AbstractList The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories ("nodule > or =3 mm," "nodule <3 mm," and "non-nodule > or =3 mm"). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. The Database contains 7371 lesions marked "nodule" by at least one radiologist. 2669 of these lesions were marked "nodule > or =3 mm" by at least one radiologist, of which 928 (34.7%) received such marks from all four radiologists. These 2669 lesions include nodule outlines and subjective nodule characteristic ratings. The LIDC/IDRI Database is expected to provide an essential medical imaging research resource to spur CAD development, validation, and dissemination in clinical practice.
Purpose: The development of computer‐aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well‐characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public‐private partnership demonstrates the success of a consortium founded on a consensus‐based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two‐phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded‐read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (“nodule≥3mm,” “nodule<3mm,” and “non‐nodule≥3mm”). In the subsequent unblinded‐read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked “nodule” by at least one radiologist. 2669 of these lesions were marked “nodule≥3mm” by at least one radiologist, of which 928 (34.7%) received such marks from all four radiologists. These 2669 lesions include nodule outlines and subjective nodule characteristic ratings. Conclusions: The LIDC/IDRI Database is expected to provide an essential medical imaging research resource to spur CAD development, validation, and dissemination in clinical practice.
The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process.PURPOSEThe development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process.Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories ("nodule > or =3 mm," "nodule <3 mm," and "non-nodule > or =3 mm"). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus.METHODSSeven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories ("nodule > or =3 mm," "nodule <3 mm," and "non-nodule > or =3 mm"). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus.The Database contains 7371 lesions marked "nodule" by at least one radiologist. 2669 of these lesions were marked "nodule > or =3 mm" by at least one radiologist, of which 928 (34.7%) received such marks from all four radiologists. These 2669 lesions include nodule outlines and subjective nodule characteristic ratings.RESULTSThe Database contains 7371 lesions marked "nodule" by at least one radiologist. 2669 of these lesions were marked "nodule > or =3 mm" by at least one radiologist, of which 928 (34.7%) received such marks from all four radiologists. These 2669 lesions include nodule outlines and subjective nodule characteristic ratings.The LIDC/IDRI Database is expected to provide an essential medical imaging research resource to spur CAD development, validation, and dissemination in clinical practice.CONCLUSIONSThe LIDC/IDRI Database is expected to provide an essential medical imaging research resource to spur CAD development, validation, and dissemination in clinical practice.
Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC∕IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (“nodule≥3 mm,” “nodule<3 mm,” and “non-nodule≥3 mm”). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked “nodule” by at least one radiologist. 2669 of these lesions were marked “nodule≥3 mm” by at least one radiologist, of which 928 (34.7%) received such marks from all four radiologists. These 2669 lesions include nodule outlines and subjective nodule characteristic ratings. Conclusions: The LIDC∕IDRI Database is expected to provide an essential medical imaging research resource to spur CAD development, validation, and dissemination in clinical practice.
Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (“ nodule ≥ 3   mm ,” “ nodule < 3   mm ,” and “non- nodule ≥ 3   mm ”). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked “nodule” by at least one radiologist. 2669 of these lesions were marked “ nodule ≥ 3   mm ” by at least one radiologist, of which 928 (34.7%) received such marks from all four radiologists. These 2669 lesions include nodule outlines and subjective nodule characteristic ratings. Conclusions: The LIDC/IDRI Database is expected to provide an essential medical imaging research resource to spur CAD development, validation, and dissemination in clinical practice.
Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (''nodule{>=}3 mm,'''nodule<3 mm,'' and ''non-nodule{>=}3 mm''). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked ''nodule'' by at least one radiologist. 2669 of these lesions were marked ''nodule{>=}3 mm'' by at least one radiologist, of which 928 (34.7%) received such marks from all four radiologists. These 2669 lesions include nodule outlines and subjective nodule characteristic ratings. Conclusions: The LIDC/IDRI Database is expected to provide an essential medical imaging research resource to spur CAD development, validation, and dissemination in clinical practice.
Author Starkey, Adam
Munden, Reginald F.
Jude, C. Matilda
Gladish, Gregory W.
Clarke, Laurence P.
Quint, Leslie E.
Freymann, John
Burns, Richard
Smith, Amanda R.
Salganicoff, Marcos
Roberts, Rachael Y.
Shreter, Uri
Dodd, Lori E.
Fenimore, Charles
Engelmann, Roger M.
Hoffman, Eric A.
Heath, Michael D.
Max, Daniel
Sundaram, Baskaran
Kuhn, Michael H.
Gur, David
Dharaiya, Ekta
Bland, Peyton H.
Brown, Matthew S.
Kazerooni, Ella A.
Biancardi, Alberto M.
McNitt-Gray, Michael F.
Zhao, Binsheng
Gupte, Sangeeta
Meyer, Charles R.
Kirby, Justin
Anand, Vikram
Yankelevitz, David
McLennan, Geoffrey
Caligiuri, Philip
Bidaut, Luc
Vastagh, Stephen
Sallam, Maha
Petrick, Nicholas
van Beek, Edwin J. R.
Petkovska, Iva
Schwartz, Lawrence H.
Aberle, Denise R.
Reeves, Anthony P.
Qing, David P.-Y.
Fryd, David S.
Armato, Samuel G.
Batra, Poonam
Laderach, Gary E.
Hughes, Brian
MacMahon, Heber
Pais, Richard C.
Farooqi, Ali
Henschke, Claudia I.
Croft, Barbara Y.
Vande Casteele, Alessi
Author_xml – sequence: 1
  givenname: Samuel G.
  surname: Armato
  fullname: Armato, Samuel G.
  email: s-armato@uchicago.edu
  organization: Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, Illinois 60637
– sequence: 2
  givenname: Geoffrey
  surname: McLennan
  fullname: McLennan, Geoffrey
  organization: Department of Internal Medicine, Pulmonary Division, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242
– sequence: 3
  givenname: Luc
  surname: Bidaut
  fullname: Bidaut, Luc
  organization: University of Texas, MD Anderson Cancer Center, Houston, Texas 77030
– sequence: 4
  givenname: Michael F.
  surname: McNitt-Gray
  fullname: McNitt-Gray, Michael F.
  organization: Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 924 Westwood Boulevard, Los Angeles, California 90024
– sequence: 5
  givenname: Charles R.
  surname: Meyer
  fullname: Meyer, Charles R.
  organization: Department of Radiology, University of Michigan Medical School, 109 Zina Pitcher Place, A522, Ann Arbor, Michigan 48109
– sequence: 6
  givenname: Anthony P.
  surname: Reeves
  fullname: Reeves, Anthony P.
  organization: School of Electrical and Computer Engineering, Cornell University, 392 Rhodes Hall, Ithaca, New York 14853
– sequence: 7
  givenname: Binsheng
  surname: Zhao
  fullname: Zhao, Binsheng
  organization: Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065
– sequence: 8
  givenname: Denise R.
  surname: Aberle
  fullname: Aberle, Denise R.
  organization: Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 924 Westwood Boulevard, Los Angeles, California 90024
– sequence: 9
  givenname: Claudia I.
  surname: Henschke
  fullname: Henschke, Claudia I.
  organization: Department of Radiology, Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, New York 10029
– sequence: 10
  givenname: Eric A.
  surname: Hoffman
  fullname: Hoffman, Eric A.
  organization: Department of Radiology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242
– sequence: 11
  givenname: Ella A.
  surname: Kazerooni
  fullname: Kazerooni, Ella A.
  organization: Department of Radiology, University of Michigan Health System, Cardiovascular Center Number 5482, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109
– sequence: 12
  givenname: Heber
  surname: MacMahon
  fullname: MacMahon, Heber
  organization: Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, Illinois 60637
– sequence: 13
  givenname: Edwin J. R.
  surname: van Beek
  fullname: van Beek, Edwin J. R.
  organization: Department of Radiology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242
– sequence: 14
  givenname: David
  surname: Yankelevitz
  fullname: Yankelevitz, David
  organization: Department of Radiology, Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, New York 10029
– sequence: 15
  givenname: Alberto M.
  surname: Biancardi
  fullname: Biancardi, Alberto M.
  organization: School of Electrical and Computer Engineering, Cornell University, 392 Rhodes Hall, Ithaca, New York 14853
– sequence: 16
  givenname: Peyton H.
  surname: Bland
  fullname: Bland, Peyton H.
  organization: Department of Radiology, University of Michigan, A502 BSRB, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109
– sequence: 17
  givenname: Matthew S.
  surname: Brown
  fullname: Brown, Matthew S.
  organization: Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 924 Westwood Boulevard, Los Angeles, California 90024
– sequence: 18
  givenname: Roger M.
  surname: Engelmann
  fullname: Engelmann, Roger M.
  organization: Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, Illinois 60637
– sequence: 19
  givenname: Gary E.
  surname: Laderach
  fullname: Laderach, Gary E.
  organization: Department of Radiology, University of Michigan, A502 BSRB, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109
– sequence: 20
  givenname: Daniel
  surname: Max
  fullname: Max, Daniel
  organization: Department of Radiology, Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, New York 10029
– sequence: 21
  givenname: Richard C.
  surname: Pais
  fullname: Pais, Richard C.
  organization: Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 924 Westwood Boulevard, Los Angeles, California 90024
– sequence: 22
  givenname: David P.-Y.
  surname: Qing
  fullname: Qing, David P.-Y.
  organization: Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 924 Westwood Boulevard, Los Angeles, California 90024
– sequence: 23
  givenname: Rachael Y.
  surname: Roberts
  fullname: Roberts, Rachael Y.
  organization: Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, Illinois 60637
– sequence: 24
  givenname: Amanda R.
  surname: Smith
  fullname: Smith, Amanda R.
  organization: Department of Radiology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242
– sequence: 25
  givenname: Adam
  surname: Starkey
  fullname: Starkey, Adam
  organization: Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, Illinois 60637
– sequence: 26
  givenname: Poonam
  surname: Batra
  fullname: Batra, Poonam
  organization: Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 924 Westwood Boulevard, Los Angeles, California 90024
– sequence: 27
  givenname: Philip
  surname: Caligiuri
  fullname: Caligiuri, Philip
  organization: Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, Illinois 60637
– sequence: 28
  givenname: Ali
  surname: Farooqi
  fullname: Farooqi, Ali
  organization: Department of Radiology, Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, New York 10029
– sequence: 29
  givenname: Gregory W.
  surname: Gladish
  fullname: Gladish, Gregory W.
  organization: Department of Diagnostic Radiology, MD Anderson Cancer Center, Unit 1478, 1515 Holcombe Boulevard, Houston, Texas 77030
– sequence: 30
  givenname: C. Matilda
  surname: Jude
  fullname: Jude, C. Matilda
  organization: Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 924 Westwood Boulevard, Los Angeles, California 90024
– sequence: 31
  givenname: Reginald F.
  surname: Munden
  fullname: Munden, Reginald F.
  organization: Department of Diagnostic Imaging, MD Anderson Cancer Center, Unit 1478, 1515 Holcombe Boulevard, Houston, Texas 77030
– sequence: 32
  givenname: Iva
  surname: Petkovska
  fullname: Petkovska, Iva
  organization: Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 924 Westwood Boulevard, Los Angeles, California 90024
– sequence: 33
  givenname: Leslie E.
  surname: Quint
  fullname: Quint, Leslie E.
  organization: Department of Radiology, University of Michigan Health Systems, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109
– sequence: 34
  givenname: Lawrence H.
  surname: Schwartz
  fullname: Schwartz, Lawrence H.
  organization: Department of Radiology, Box 29, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065
– sequence: 35
  givenname: Baskaran
  surname: Sundaram
  fullname: Sundaram, Baskaran
  organization: Department of Radiology, University of Michigan Health Systems, CVC 5481, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109
– sequence: 36
  givenname: Lori E.
  surname: Dodd
  fullname: Dodd, Lori E.
  organization: National Cancer Institute, 6130 Executive Boulevard, Bethesda, Maryland 20892
– sequence: 37
  givenname: Charles
  surname: Fenimore
  fullname: Fenimore, Charles
  organization: Information Access Division, National Institute of Standards and Technology, MS 8940, 100 Bureau Drive, Gaithersburg, Maryland 20899
– sequence: 38
  givenname: David
  surname: Gur
  fullname: Gur, David
  organization: Department of Radiology, University of Pittsburgh, 3632 Fifth Avenue, Pittsburgh, Pennsylvania 15213
– sequence: 39
  givenname: Nicholas
  surname: Petrick
  fullname: Petrick, Nicholas
  organization: United States Food and Drug Administration, WO62–4118, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993
– sequence: 40
  givenname: John
  surname: Freymann
  fullname: Freymann, John
  organization: SAIC-Frederick, Inc., 6130 Executive Boulevard, Bethesda, Maryland 20892
– sequence: 41
  givenname: Justin
  surname: Kirby
  fullname: Kirby, Justin
  organization: SAIC-Frederick, Inc., 6130 Executive Boulevard, Bethesda, Maryland 20892
– sequence: 42
  givenname: Brian
  surname: Hughes
  fullname: Hughes, Brian
  organization: TerpSys, 2115 East Jefferson Street, Suite 6000, Rockville, Maryland 20852
– sequence: 43
  givenname: Alessi
  surname: Vande Casteele
  fullname: Vande Casteele, Alessi
  organization: Agfa HealthCare NV, Septestraat 27, 2640 Mortsel, Belgium
– sequence: 44
  givenname: Sangeeta
  surname: Gupte
  fullname: Gupte, Sangeeta
  organization: FUJIFILM Medical Systems USA, Inc., 419 West Avenue, Stamford, Connecticut 06902
– sequence: 45
  givenname: Maha
  surname: Sallam
  fullname: Sallam, Maha
  organization: iCAD, Inc., Global Headquarters, 98 Spit Brook Road, Suite 100, Nashua, New Hampshire 03062
– sequence: 46
  givenname: Michael D.
  surname: Heath
  fullname: Heath, Michael D.
  organization: Carestream Health Inc., 1049 Ridge Road West, Rochester, New York 14615
– sequence: 47
  givenname: Michael H.
  surname: Kuhn
  fullname: Kuhn, Michael H.
  organization: Philips Medical Systems DMC GmbH, Roentgenstrasse 24, D-22315 Hamburg, Germany
– sequence: 48
  givenname: Ekta
  surname: Dharaiya
  fullname: Dharaiya, Ekta
  organization: Philips Healthcare, 595 Miner Road, Highland Heights, Ohio 44143
– sequence: 49
  givenname: Richard
  surname: Burns
  fullname: Burns, Richard
  organization: Riverain Medical, 3020 South Tech Boulevard, Miamisburg, Ohio 45342
– sequence: 50
  givenname: David S.
  surname: Fryd
  fullname: Fryd, David S.
  organization: Riverain Medical, 3020 South Tech Boulevard, Miamisburg, Ohio 45342
– sequence: 51
  givenname: Marcos
  surname: Salganicoff
  fullname: Salganicoff, Marcos
  organization: Siemens Medical Solutions USA, Inc., 51 Valley Stream Parkway, Malvern, Pennsylvania 19355
– sequence: 52
  givenname: Vikram
  surname: Anand
  fullname: Anand, Vikram
  organization: Siemens Medical Solutions USA, Inc., 51 Valley Stream Parkway, Malvern, Pennsylvania 19355
– sequence: 53
  givenname: Uri
  surname: Shreter
  fullname: Shreter, Uri
  organization: GE Healthcare, 3000 North Grandview Boulevard, W1120, Waukesha, Wisconsin 53188
– sequence: 54
  givenname: Stephen
  surname: Vastagh
  fullname: Vastagh, Stephen
  organization: Medical Imaging and Technology Alliance (MITA), 1300 North 17th Street, Suite 1752, Arlington, Virginia 22209
– sequence: 55
  givenname: Barbara Y.
  surname: Croft
  fullname: Croft, Barbara Y.
  organization: Cancer Imaging Program, National Cancer Institute, 6130 Executive Boulevard, Bethesda, Maryland 20892
– sequence: 56
  givenname: Laurence P.
  surname: Clarke
  fullname: Clarke, Laurence P.
  organization: Cancer Imaging Program, National Cancer Institute, 6130 Executive Boulevard, Bethesda, Maryland 20892
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21452728$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22096914$$D View this record in Osti.gov
BookMark eNp9kltv0zAUxy00xLrBA18AWeKBFSmb7cRxzAPS1AKLVC4a5dlynJPWKLFLnBTtc_CFyZR26sblyQ_-_S8655ygI-cdIPScknNKaXZBz2POMkaSR2jCEhFHCSPyCE0IkUnEEsKP0UkI3wkhaczJE3TMaMKZYNkE_VquAS96t8J5o1eA57rThQ6AZ94F33a2b_DZIp_Ppli78iF0DcH3rQGcO9tZ3dkt4LN8fp1P3-DLwaLZ1NBBOXAVtODMgdRXY-wnX_Y1BOwdni3xV6NdeIoeV7oO8Gz3nqJv798tZ1fR4vOHfHa5iAwXaRKVsSgMiyGFTJQZp6ngRWpYFjMpUlEVBIzmRLNSci0LUmomdSmE5klSxgXV8Sl6O_pu-qKB0oDrWl2rTWsb3d4or626_-PsWq38VsUkoRkRg8HL0cCHzqpgbAdmbbxzYDrFhh2kkiYD9WoX0_ofPYRONTYYqGvtwPdBZVwKLomUA_nisNBdk_26BuBiBEzrQ2ihUkPmMHZ_28_WihJ1exCKqt1BDIrpA8Xe9G9sNLI_bQ03_wbVxy87_vXIh32LO83Wtwf8pqz-B__Z5DfEgdzd
CODEN MPHYA6
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3586673
crossref_primary_10_1016_j_rico_2025_100515
crossref_primary_10_1007_s11548_024_03136_9
crossref_primary_10_1016_j_bspc_2022_104391
crossref_primary_10_1093_bjro_tzad008
crossref_primary_10_1007_s00247_021_05177_7
crossref_primary_10_1007_s12530_023_09484_2
crossref_primary_10_1016_j_patcog_2022_108576
crossref_primary_10_1097_RCT_0000000000001279
crossref_primary_10_1155_2020_9756518
crossref_primary_10_3390_cancers13236116
crossref_primary_10_1016_j_eswa_2022_119350
crossref_primary_10_1097_RTI_0000000000000387
crossref_primary_10_1097_RTI_0000000000000385
crossref_primary_10_1118_1_4929562
crossref_primary_10_1097_RTI_0000000000000140
crossref_primary_10_1016_j_bspc_2025_108599
crossref_primary_10_1016_j_imu_2025_101669
crossref_primary_10_1109_TRPMS_2024_3420742
crossref_primary_10_3233_JIFS_233006
crossref_primary_10_1007_s12094_025_03945_7
crossref_primary_10_1186_s12938_015_0003_y
crossref_primary_10_3389_fpubh_2022_1054177
crossref_primary_10_1109_ACCESS_2019_2920980
crossref_primary_10_3390_app10072346
crossref_primary_10_1259_bjr_20160313
crossref_primary_10_3390_cancers14061524
crossref_primary_10_1109_TMI_2021_3097665
crossref_primary_10_1109_TMI_2018_2857800
crossref_primary_10_1016_j_compbiomed_2025_109900
crossref_primary_10_1038_s41746_025_01857_y
crossref_primary_10_1007_s00521_018_3773_x
crossref_primary_10_1002_ima_22642
crossref_primary_10_1155_2022_6727957
crossref_primary_10_7717_peerj_cs_2908
crossref_primary_10_1016_j_inffus_2025_103033
crossref_primary_10_3233_XST_230291
crossref_primary_10_1016_j_asoc_2024_112450
crossref_primary_10_3390_electronics14091750
crossref_primary_10_1038_s43856_023_00388_5
crossref_primary_10_1186_s12938_019_0627_4
crossref_primary_10_1007_s11042_024_19098_8
crossref_primary_10_3390_cancers15041321
crossref_primary_10_3390_diagnostics11122208
crossref_primary_10_1016_j_bspc_2023_105509
crossref_primary_10_1007_s11042_017_4480_9
crossref_primary_10_3390_cancers17061008
crossref_primary_10_1109_TIM_2023_3315365
crossref_primary_10_1016_j_acra_2015_11_014
crossref_primary_10_1016_j_media_2017_09_007
crossref_primary_10_1155_2020_8975078
crossref_primary_10_1007_s11548_013_0910_y
crossref_primary_10_1016_j_media_2023_102957
crossref_primary_10_1109_JBHI_2014_2303511
crossref_primary_10_1109_JBHI_2022_3216446
crossref_primary_10_1515_oncologie_2023_0319
crossref_primary_10_1186_s12911_016_0313_4
crossref_primary_10_1016_j_compbiomed_2024_108324
crossref_primary_10_1177_0956797613479386
crossref_primary_10_1016_j_compeleceng_2020_106629
crossref_primary_10_1186_s12880_024_01253_0
crossref_primary_10_1007_s10278_016_9904_y
crossref_primary_10_1016_j_compeleceng_2020_106626
crossref_primary_10_1002_ima_22878
crossref_primary_10_1016_j_compbiomed_2020_104032
crossref_primary_10_1016_j_eswa_2022_119339
crossref_primary_10_1016_j_media_2024_103281
crossref_primary_10_1109_ACCESS_2020_3026168
crossref_primary_10_1109_TETCI_2021_3051910
crossref_primary_10_1007_s11042_024_18515_2
crossref_primary_10_1016_j_ijmedinf_2023_105190
crossref_primary_10_1007_s10278_022_00683_y
crossref_primary_10_1016_j_heliyon_2023_e14780
crossref_primary_10_1016_j_amjms_2025_02_011
crossref_primary_10_1371_journal_pone_0330732
crossref_primary_10_3390_app9163261
crossref_primary_10_1016_j_compeleceng_2020_106618
crossref_primary_10_1109_TRPMS_2021_3072064
crossref_primary_10_1007_s00247_022_05520_6
crossref_primary_10_1007_s10278_019_00306_z
crossref_primary_10_1007_s11548_022_02738_5
crossref_primary_10_1016_j_bbe_2020_03_006
crossref_primary_10_1371_journal_pone_0188290
crossref_primary_10_1088_1361_6560_ab326a
crossref_primary_10_1016_j_compbiomed_2022_105710
crossref_primary_10_1093_comjnl_bxab191
crossref_primary_10_1109_ACCESS_2021_3128942
crossref_primary_10_1016_j_compbiomed_2018_03_015
crossref_primary_10_1038_s41598_019_42340_5
crossref_primary_10_3390_app10093280
crossref_primary_10_1016_j_semcancer_2021_04_013
crossref_primary_10_1109_TNNLS_2023_3303395
crossref_primary_10_1016_j_neucom_2021_05_081
crossref_primary_10_1038_s41598_023_34341_2
crossref_primary_10_1007_s11042_019_08260_2
crossref_primary_10_1016_j_compbiomed_2018_10_011
crossref_primary_10_3389_fonc_2021_609054
crossref_primary_10_3390_computation13040088
crossref_primary_10_1002_mp_14295
crossref_primary_10_1007_s11604_018_0784_6
crossref_primary_10_1109_JBHI_2023_3290136
crossref_primary_10_1118_1_4907970
crossref_primary_10_1186_s12859_021_04234_0
crossref_primary_10_1109_JBHI_2014_2328870
crossref_primary_10_1088_1361_6501_ad38d2
crossref_primary_10_1109_JBHI_2022_3198509
crossref_primary_10_1016_j_asoc_2025_112930
crossref_primary_10_1109_ACCESS_2019_2929365
crossref_primary_10_3390_jpm12091429
crossref_primary_10_1007_s11517_016_1582_x
crossref_primary_10_1016_j_ejmp_2022_04_008
crossref_primary_10_1016_j_bspc_2025_108391
crossref_primary_10_1016_j_spa_2024_104374
crossref_primary_10_1016_j_compmedimag_2024_102438
crossref_primary_10_1145_3365445
crossref_primary_10_1016_j_patcog_2021_108083
crossref_primary_10_1016_j_eswa_2022_119381
crossref_primary_10_1002_mp_16221
crossref_primary_10_1007_s10278_025_01461_2
crossref_primary_10_1016_j_cosrev_2018_10_003
crossref_primary_10_1016_j_compbiomed_2024_109206
crossref_primary_10_1016_j_patcog_2018_07_031
crossref_primary_10_1002_mp_16219
crossref_primary_10_1007_s42600_021_00138_3
crossref_primary_10_1002_ima_22605
crossref_primary_10_3233_XST_230255
crossref_primary_10_1016_j_cmpb_2016_07_031
crossref_primary_10_3390_ai1010003
crossref_primary_10_1186_s13640_021_00574_2
crossref_primary_10_1038_s41467_021_25858_z
crossref_primary_10_1109_JBHI_2021_3051470
crossref_primary_10_1007_s10462_024_10762_x
crossref_primary_10_1007_s12194_023_00756_9
crossref_primary_10_1155_2020_8862353
crossref_primary_10_1007_s10278_015_9801_9
crossref_primary_10_1109_ACCESS_2021_3058537
crossref_primary_10_1109_TMI_2018_2876510
crossref_primary_10_1038_srep24454
crossref_primary_10_1109_ACCESS_2023_3243104
crossref_primary_10_1007_s13244_018_0639_9
crossref_primary_10_1109_JBHI_2018_2879449
crossref_primary_10_1016_j_bspc_2023_105543
crossref_primary_10_1038_s41598_025_05009_w
crossref_primary_10_1145_3527849
crossref_primary_10_1145_3615862
crossref_primary_10_1007_s00432_023_05216_w
crossref_primary_10_3233_XST_200660
crossref_primary_10_1016_j_media_2024_103086
crossref_primary_10_1002_ima_22837
crossref_primary_10_1016_j_compbiomed_2021_104357
crossref_primary_10_1016_j_compbiomed_2021_104356
crossref_primary_10_1186_s13640_024_00656_x
crossref_primary_10_1186_s12880_021_00640_1
crossref_primary_10_3390_diagnostics12020298
crossref_primary_10_1108_JIMSE_10_2021_0035
crossref_primary_10_1016_j_compbiomed_2024_109461
crossref_primary_10_1016_j_media_2022_102627
crossref_primary_10_1109_JBHI_2021_3135647
crossref_primary_10_1016_j_health_2023_100216
crossref_primary_10_1088_1361_6420_ac104f
crossref_primary_10_1109_TCE_2025_3546809
crossref_primary_10_1002_mp_14068
crossref_primary_10_1097_ICU_0000000000001033
crossref_primary_10_1371_journal_pone_0250952
crossref_primary_10_1016_j_jksuci_2019_02_009
crossref_primary_10_1049_ipr2_70072
crossref_primary_10_1051_itmconf_20224403003
crossref_primary_10_1109_TMI_2019_2947595
crossref_primary_10_1038_s41598_025_86362_8
crossref_primary_10_1371_journal_pone_0318670
crossref_primary_10_1016_j_bspc_2024_107144
crossref_primary_10_1016_j_patcog_2022_109261
crossref_primary_10_1177_0954411915619951
crossref_primary_10_1016_j_engappai_2023_106402
crossref_primary_10_1016_j_procs_2025_03_201
crossref_primary_10_1002_jemt_23275
crossref_primary_10_3390_diagnostics14030337
crossref_primary_10_1038_s41598_019_48004_8
crossref_primary_10_3390_diagnostics13243690
crossref_primary_10_1016_j_future_2019_05_009
crossref_primary_10_1016_j_compbiomed_2022_105781
crossref_primary_10_1109_ACCESS_2022_3182104
crossref_primary_10_1016_j_media_2025_103745
crossref_primary_10_2174_0929867329666220222154733
crossref_primary_10_1016_j_compbiomed_2024_108393
crossref_primary_10_1016_j_compbiomed_2014_08_005
crossref_primary_10_1016_j_compbiomed_2024_109242
crossref_primary_10_3390_s19010194
crossref_primary_10_1016_j_artmed_2024_102863
crossref_primary_10_1049_ipr2_70203
crossref_primary_10_1016_j_compbiomed_2024_109248
crossref_primary_10_1016_j_knosys_2025_114209
crossref_primary_10_3390_electronics14153009
crossref_primary_10_1016_j_compbiomed_2024_109009
crossref_primary_10_1145_3453657
crossref_primary_10_1186_s12859_023_05235_x
crossref_primary_10_3390_diagnostics14101049
crossref_primary_10_1007_s11548_023_03043_5
crossref_primary_10_1088_1361_6420_acce5e
crossref_primary_10_1002_mp_14248
crossref_primary_10_1016_j_bspc_2022_104563
crossref_primary_10_1007_s12530_023_09491_3
crossref_primary_10_1109_TMI_2016_2629462
crossref_primary_10_1016_j_cmpb_2014_05_002
crossref_primary_10_1109_ACCESS_2019_2903587
crossref_primary_10_2217_fon_2020_0987
crossref_primary_10_1109_JBHI_2022_3171851
crossref_primary_10_1109_TSMC_2024_3489029
crossref_primary_10_3390_sym12111787
crossref_primary_10_1186_s41747_024_00450_4
crossref_primary_10_1016_j_bspc_2025_108530
crossref_primary_10_1016_j_compbiomed_2024_109256
crossref_primary_10_1109_ACCESS_2025_3566203
crossref_primary_10_3390_diagnostics12020247
crossref_primary_10_3390_app13063752
crossref_primary_10_1259_bjr_20190812
crossref_primary_10_1016_j_cmpb_2023_107885
crossref_primary_10_1007_s11042_019_07819_3
crossref_primary_10_1016_j_compeleceng_2022_107911
crossref_primary_10_1016_j_engappai_2025_111577
crossref_primary_10_1016_j_patcog_2021_107825
crossref_primary_10_1109_ACCESS_2023_3313174
crossref_primary_10_1016_j_cag_2017_07_020
crossref_primary_10_1186_s12880_023_01112_4
crossref_primary_10_3390_jpm14101016
crossref_primary_10_1016_j_ibmed_2025_100203
crossref_primary_10_3390_diagnostics12102435
crossref_primary_10_1007_s10278_021_00453_2
crossref_primary_10_1016_j_patcog_2016_05_029
crossref_primary_10_1016_j_acra_2019_09_015
crossref_primary_10_1155_2022_6107940
crossref_primary_10_3389_fninf_2022_911679
crossref_primary_10_1080_07357907_2025_2518404
crossref_primary_10_1007_s13534_025_00490_8
crossref_primary_10_3390_diagnostics9010029
crossref_primary_10_1016_j_bspc_2022_104104
crossref_primary_10_1109_TMI_2025_3564382
crossref_primary_10_1016_j_compbiomed_2023_106701
crossref_primary_10_1007_s11042_024_18485_5
crossref_primary_10_1016_j_matpr_2020_11_063
crossref_primary_10_1109_TMI_2024_3416744
crossref_primary_10_1016_j_compbiomed_2022_105792
crossref_primary_10_1109_TIM_2025_3571146
crossref_primary_10_1016_j_artmed_2021_102114
crossref_primary_10_1016_j_cmpb_2016_08_009
crossref_primary_10_3390_s23041989
crossref_primary_10_1016_j_ejmp_2022_07_001
crossref_primary_10_1371_journal_pone_0244406
crossref_primary_10_1007_s11760_023_02807_5
crossref_primary_10_1109_TMI_2022_3149344
crossref_primary_10_1016_j_neucom_2025_131192
crossref_primary_10_1007_s11042_023_14900_5
crossref_primary_10_1002_mp_15539
crossref_primary_10_1002_mp_12273
crossref_primary_10_1016_j_cmpb_2020_105839
crossref_primary_10_1016_j_mri_2012_06_010
crossref_primary_10_1016_j_media_2013_12_001
crossref_primary_10_1145_3625287
crossref_primary_10_1109_JTEHM_2019_2955458
crossref_primary_10_1109_TMI_2023_3294975
crossref_primary_10_1111_bcpt_70104
crossref_primary_10_1109_ACCESS_2024_3435774
crossref_primary_10_1007_s13246_022_01157_9
crossref_primary_10_1007_s00432_019_03098_5
crossref_primary_10_1007_s00521_023_09172_x
crossref_primary_10_1016_j_compbiomed_2024_109046
crossref_primary_10_1016_j_patrec_2020_09_021
crossref_primary_10_1016_j_media_2015_08_001
crossref_primary_10_1007_s11042_023_17174_z
crossref_primary_10_1002_mp_14445
crossref_primary_10_1002_mp_14437
crossref_primary_10_1016_j_media_2024_103253
crossref_primary_10_1002_mp_13349
crossref_primary_10_1016_j_media_2025_103559
crossref_primary_10_1016_j_bspc_2023_104858
crossref_primary_10_1007_s11265_016_1134_5
crossref_primary_10_1118_1_4963209
crossref_primary_10_1080_24725579_2021_1953638
crossref_primary_10_1371_journal_pone_0314450
crossref_primary_10_1016_j_bspc_2018_08_008
crossref_primary_10_1016_j_media_2025_103551
crossref_primary_10_2174_1574893613666181029100249
crossref_primary_10_1016_j_cmpb_2020_105866
crossref_primary_10_1007_s44196_025_00772_0
crossref_primary_10_1049_ipr2_13246
crossref_primary_10_1137_23M1545628
crossref_primary_10_1109_ACCESS_2023_3265170
crossref_primary_10_3390_cancers11091235
crossref_primary_10_1016_j_clinimag_2023_03_018
crossref_primary_10_1016_j_cmpb_2023_107449
crossref_primary_10_1097_RLI_0000000000001071
crossref_primary_10_1016_j_bspc_2022_103682
crossref_primary_10_1016_j_cmpb_2020_105620
crossref_primary_10_1007_s10278_017_9947_8
crossref_primary_10_1016_j_bspc_2023_104850
crossref_primary_10_1016_j_cmpb_2022_107167
crossref_primary_10_1088_0031_9155_59_4_897
crossref_primary_10_3892_ol_2020_11576
crossref_primary_10_1038_s41598_025_97187_w
crossref_primary_10_1007_s00521_018_3895_1
crossref_primary_10_1007_s11548_018_1861_0
crossref_primary_10_1016_j_media_2025_103523
crossref_primary_10_1016_j_bspc_2016_12_019
crossref_primary_10_1016_j_media_2025_103525
crossref_primary_10_1007_s10489_023_04620_6
crossref_primary_10_4103_digm_digm_1_19
crossref_primary_10_1007_s10278_019_00204_4
crossref_primary_10_1016_j_compbiomed_2014_09_010
crossref_primary_10_3390_s20102837
crossref_primary_10_1088_1361_6420_aba415
crossref_primary_10_3390_jcm11247334
crossref_primary_10_1007_s11042_019_7354_5
crossref_primary_10_1186_s41747_022_00311_y
crossref_primary_10_1007_s12204_019_2084_4
crossref_primary_10_1109_TMI_2021_3051089
crossref_primary_10_1109_ACCESS_2020_2987961
crossref_primary_10_1016_j_procs_2018_04_168
crossref_primary_10_1016_j_cmpb_2023_107692
crossref_primary_10_1016_j_heliyon_2024_e31129
crossref_primary_10_1007_s00500_023_08252_3
crossref_primary_10_1007_s00261_025_04951_7
crossref_primary_10_3390_s22228949
crossref_primary_10_1038_s41598_023_46433_0
crossref_primary_10_1007_s10278_021_00504_8
crossref_primary_10_1007_s10489_023_04552_1
crossref_primary_10_1109_TNNLS_2024_3432877
crossref_primary_10_1007_s10278_020_00355_9
crossref_primary_10_3390_bioengineering9080351
crossref_primary_10_3390_computation12090173
crossref_primary_10_1117_1_JMI_11_5_055501
crossref_primary_10_1002_mp_14651
crossref_primary_10_1007_s11517_021_02462_3
crossref_primary_10_1109_TBME_2014_2363131
crossref_primary_10_1002_mp_14648
crossref_primary_10_1016_j_compbiomed_2020_103882
crossref_primary_10_3390_healthcare10112166
crossref_primary_10_1007_s11042_024_19475_3
crossref_primary_10_1007_s11227_024_06381_6
crossref_primary_10_3390_diagnostics10030131
crossref_primary_10_3390_jimaging8090234
crossref_primary_10_1007_s10278_020_00320_6
crossref_primary_10_2174_0113892010298852240528123911
crossref_primary_10_1002_ima_23176
crossref_primary_10_1109_TPAMI_2021_3113077
crossref_primary_10_1016_j_inffus_2022_07_019
crossref_primary_10_1093_rpd_ncv469
crossref_primary_10_1016_j_neucom_2022_01_022
crossref_primary_10_1088_1361_6560_ad3320
crossref_primary_10_1186_s12938_024_01299_9
crossref_primary_10_1002_mp_14401
crossref_primary_10_1016_j_bspc_2024_106585
crossref_primary_10_1007_s10462_023_10453_z
crossref_primary_10_1109_JBHI_2024_3355008
crossref_primary_10_3390_app14156638
crossref_primary_10_1007_s11227_019_03066_3
crossref_primary_10_1088_1361_6560_ada719
crossref_primary_10_3390_sym13112107
crossref_primary_10_1109_ACCESS_2019_2908195
crossref_primary_10_3390_electronics12030750
crossref_primary_10_1007_s11227_020_03164_7
crossref_primary_10_1016_j_compmedimag_2020_101817
crossref_primary_10_1007_s11042_024_19113_y
crossref_primary_10_1038_s41467_020_17971_2
crossref_primary_10_1007_s00371_021_02366_1
crossref_primary_10_1111_myc_70084
crossref_primary_10_1038_s41597_023_02641_x
crossref_primary_10_1016_j_jvlc_2017_03_001
crossref_primary_10_1109_ACCESS_2020_3027812
crossref_primary_10_1109_ACCESS_2019_2958663
crossref_primary_10_1007_s11548_019_01981_7
crossref_primary_10_1016_j_jksuci_2024_102218
crossref_primary_10_1016_j_bspc_2022_103996
crossref_primary_10_1088_1361_6560_ace498
crossref_primary_10_1088_1361_6560_ad0a1f
crossref_primary_10_3390_cancers15092459
crossref_primary_10_3390_diagnostics13162617
crossref_primary_10_1016_j_cviu_2020_102931
crossref_primary_10_1109_TMI_2018_2870343
crossref_primary_10_1007_s11548_015_1284_0
crossref_primary_10_1016_j_asoc_2021_107810
crossref_primary_10_1016_j_patcog_2023_109596
crossref_primary_10_1186_s12967_023_04004_x
crossref_primary_10_1016_j_cmpb_2016_12_007
crossref_primary_10_1117_1_JMI_9_6_064503
crossref_primary_10_1016_j_bspc_2025_107955
crossref_primary_10_3389_fmed_2025_1636008
crossref_primary_10_1007_s00330_018_5528_6
crossref_primary_10_3758_s13423_020_01826_4
crossref_primary_10_1016_j_compbiomed_2023_107878
crossref_primary_10_3390_app13148330
crossref_primary_10_3390_s21196655
crossref_primary_10_1016_j_patrec_2024_08_016
crossref_primary_10_1109_TMM_2024_3382509
crossref_primary_10_1117_1_JMI_11_6_064501
crossref_primary_10_1016_j_compbiomed_2022_106241
crossref_primary_10_1016_j_media_2020_101772
crossref_primary_10_1007_s11042_023_15238_8
crossref_primary_10_1016_j_neucom_2025_130260
crossref_primary_10_1002_ima_22293
crossref_primary_10_1177_02841851231201514
crossref_primary_10_1016_j_cmpb_2023_107748
crossref_primary_10_4103_jmp_jmp_1_23
crossref_primary_10_3390_su13031224
crossref_primary_10_1007_s00330_015_4030_7
crossref_primary_10_1007_s13721_025_00556_8
crossref_primary_10_3390_s24010008
crossref_primary_10_3390_diagnostics12112644
crossref_primary_10_1002_mp_13755
crossref_primary_10_1038_srep38282
crossref_primary_10_1007_s11517_019_01981_4
crossref_primary_10_1109_TEVC_2021_3060833
crossref_primary_10_1109_TMI_2025_3561117
crossref_primary_10_1148_radiol_233029
crossref_primary_10_32604_cmes_2022_018418
crossref_primary_10_1186_s13244_021_01100_8
crossref_primary_10_1007_s00180_025_01668_5
crossref_primary_10_1155_2016_8058245
crossref_primary_10_1109_TMI_2021_3066161
crossref_primary_10_1080_21681163_2023_2234054
crossref_primary_10_1109_JBHI_2024_3446040
crossref_primary_10_1007_s10278_024_00974_6
crossref_primary_10_1016_j_media_2017_06_015
crossref_primary_10_3390_jimaging8080221
crossref_primary_10_1016_j_media_2017_06_014
crossref_primary_10_1109_TBME_2016_2613502
crossref_primary_10_1109_ACCESS_2021_3060178
crossref_primary_10_2214_AJR_25_32829
crossref_primary_10_1016_j_media_2015_02_002
crossref_primary_10_3390_diagnostics13081406
crossref_primary_10_1016_j_bspc_2022_103701
crossref_primary_10_1093_jcde_qwac029
crossref_primary_10_3389_fnhum_2019_00213
crossref_primary_10_1016_j_bspc_2025_107969
crossref_primary_10_3390_app12031568
crossref_primary_10_1109_ACCESS_2021_3109860
crossref_primary_10_1002_cncr_31630
crossref_primary_10_1049_ipr2_12419
crossref_primary_10_1080_03091902_2020_1853837
crossref_primary_10_1117_1_JMI_10_4_044006
crossref_primary_10_1186_s12880_018_0286_0
crossref_primary_10_1016_j_csbj_2021_02_016
crossref_primary_10_1038_s41467_022_34257_x
crossref_primary_10_1007_s11548_018_1794_7
crossref_primary_10_3390_app10217837
crossref_primary_10_1016_j_jksuci_2020_03_013
crossref_primary_10_1177_08953996251329214
crossref_primary_10_1002_mp_17901
crossref_primary_10_1016_j_eswa_2019_113017
crossref_primary_10_3390_make5030047
crossref_primary_10_1155_2022_5905230
crossref_primary_10_1155_2016_6215085
crossref_primary_10_1186_s12938_020_00793_0
crossref_primary_10_1117_1_JMI_11_4_044507
crossref_primary_10_1007_s11042_019_7473_z
crossref_primary_10_3390_bioengineering10111245
crossref_primary_10_1007_s10115_023_01894_7
crossref_primary_10_1038_s41746_019_0194_x
crossref_primary_10_1007_s11042_022_12722_5
crossref_primary_10_3233_XST_211096
crossref_primary_10_1016_j_compbiomed_2021_104806
crossref_primary_10_1007_s10278_020_00346_w
crossref_primary_10_1038_s41698_025_00903_y
crossref_primary_10_1016_j_bspc_2025_108606
crossref_primary_10_1007_s42600_019_00008_z
crossref_primary_10_1109_TMI_2020_3026261
crossref_primary_10_1007_s11390_017_1736_9
crossref_primary_10_1016_j_eswa_2016_05_024
crossref_primary_10_1016_j_jnutbio_2022_109183
crossref_primary_10_1016_j_compbiomed_2023_107437
crossref_primary_10_1155_2022_5682451
crossref_primary_10_1016_j_compbiomed_2023_106587
crossref_primary_10_1016_j_matcom_2018_02_001
crossref_primary_10_1371_journal_pone_0184290
crossref_primary_10_1007_s12652_018_0695_5
crossref_primary_10_1038_s41597_024_03977_8
crossref_primary_10_1109_TMI_2021_3060634
crossref_primary_10_1109_TRO_2025_3552323
crossref_primary_10_1007_s10278_020_00333_1
crossref_primary_10_1088_1361_6560_ac3d16
crossref_primary_10_1016_j_inffus_2017_10_005
crossref_primary_10_1016_j_eswa_2024_124665
crossref_primary_10_1109_TCSVT_2024_3427645
crossref_primary_10_1016_j_compmedimag_2019_101645
crossref_primary_10_3348_jksr_2019_80_5_872
crossref_primary_10_1089_aipo_2023_0002
crossref_primary_10_1016_j_thorsurg_2023_03_001
crossref_primary_10_1088_1361_6560_ace09d
crossref_primary_10_1016_j_eswa_2022_118661
crossref_primary_10_1007_s00521_022_06928_9
crossref_primary_10_1016_j_bspc_2021_102527
crossref_primary_10_1186_s41747_024_00459_9
crossref_primary_10_1016_j_patcog_2025_112273
crossref_primary_10_1038_s41597_024_03337_6
crossref_primary_10_1016_j_media_2017_07_005
crossref_primary_10_1371_journal_pone_0317114
crossref_primary_10_1016_j_media_2022_102372
crossref_primary_10_1109_ACCESS_2021_3072997
crossref_primary_10_1016_j_swevo_2025_102065
crossref_primary_10_1016_j_media_2022_102369
crossref_primary_10_1038_s41597_025_05742_x
crossref_primary_10_1007_s00330_021_08412_9
crossref_primary_10_1016_j_compmedimag_2022_102067
crossref_primary_10_1155_2019_6425963
crossref_primary_10_1002_widm_1510
crossref_primary_10_1148_ryai_2021210027
crossref_primary_10_3390_diagnostics15010001
crossref_primary_10_1038_s41467_023_38021_7
crossref_primary_10_1016_j_compbiomed_2023_107219
crossref_primary_10_1016_j_bspc_2021_102518
crossref_primary_10_1016_j_jii_2022_100386
crossref_primary_10_1016_j_media_2022_102367
crossref_primary_10_1007_s11042_023_14620_w
crossref_primary_10_1007_s11831_025_10253_4
crossref_primary_10_1007_s11633_022_1382_8
crossref_primary_10_1148_ryai_2021210032
crossref_primary_10_1109_ACCESS_2018_2817614
crossref_primary_10_1109_TMI_2021_3077089
crossref_primary_10_1007_s11548_022_02817_7
crossref_primary_10_1016_j_compbiomed_2021_104837
crossref_primary_10_1038_s41598_024_62887_2
crossref_primary_10_3233_XST_190581
crossref_primary_10_1007_s10916_017_0874_5
crossref_primary_10_1007_s10278_017_0029_8
crossref_primary_10_1016_j_acra_2021_07_002
crossref_primary_10_1016_j_media_2022_102398
crossref_primary_10_3390_cancers15051548
crossref_primary_10_1007_s11517_020_02197_7
crossref_primary_10_1038_s41597_021_00893_z
crossref_primary_10_3390_cancers15030843
crossref_primary_10_2174_0115734056330120250310053454
crossref_primary_10_3389_fmedt_2024_1362688
crossref_primary_10_1007_s11548_022_02576_5
crossref_primary_10_1109_JBHI_2021_3057627
crossref_primary_10_1016_j_cmpb_2022_106946
crossref_primary_10_1016_j_neucom_2020_06_144
crossref_primary_10_1371_journal_pone_0300325
crossref_primary_10_3390_bioengineering11010021
crossref_primary_10_1109_TCBB_2023_3281828
crossref_primary_10_1007_s10278_022_00747_z
crossref_primary_10_1016_j_cmpb_2024_108474
crossref_primary_10_1016_j_cmpbup_2024_100153
crossref_primary_10_1186_s40644_019_0239_z
crossref_primary_10_1007_s11227_016_1818_4
crossref_primary_10_1016_j_compmedimag_2019_02_003
crossref_primary_10_1007_s11548_024_03227_7
crossref_primary_10_1155_2022_2564022
crossref_primary_10_1109_ACCESS_2019_2945524
crossref_primary_10_1002_mp_17283
crossref_primary_10_1016_j_eswa_2024_125553
crossref_primary_10_3390_cancers11020212
crossref_primary_10_1016_j_ejmp_2019_06_003
crossref_primary_10_1016_j_ymeth_2024_04_008
crossref_primary_10_1038_s41597_022_01721_8
crossref_primary_10_1118_1_4966030
crossref_primary_10_1155_2021_9025470
crossref_primary_10_1002_mp_12820
crossref_primary_10_1007_s10994_025_06863_5
crossref_primary_10_1631_jzus_B2101009
crossref_primary_10_1016_j_acra_2014_12_004
crossref_primary_10_3390_cancers14051117
crossref_primary_10_1109_TBME_2024_3428399
crossref_primary_10_1007_s00330_021_08456_x
crossref_primary_10_1007_s11548_019_02097_8
crossref_primary_10_1109_JBHI_2021_3053023
crossref_primary_10_1016_j_media_2021_102054
crossref_primary_10_1109_TMI_2013_2287374
crossref_primary_10_2196_28776
crossref_primary_10_1016_j_heliyon_2023_e17104
crossref_primary_10_1109_TMI_2019_2934577
crossref_primary_10_1109_JAS_2022_105668
crossref_primary_10_3390_s23146585
crossref_primary_10_1002_mp_16183
crossref_primary_10_1038_s41597_024_03851_7
crossref_primary_10_3390_app132011264
crossref_primary_10_1002_ima_22443
crossref_primary_10_1111_1754_9485_13261
crossref_primary_10_1016_j_compbiomed_2025_109825
crossref_primary_10_1097_MD_0000000000027491
crossref_primary_10_1002_ima_22206
crossref_primary_10_1016_j_yacr_2020_04_006
crossref_primary_10_1007_s11548_018_1715_9
crossref_primary_10_1016_j_neucom_2025_129667
crossref_primary_10_1177_0962280214537390
crossref_primary_10_1038_s41598_021_93832_2
crossref_primary_10_1016_j_neunet_2024_106740
crossref_primary_10_1371_journal_pone_0292063
crossref_primary_10_3390_app10051818
crossref_primary_10_3390_cancers16234097
crossref_primary_10_1016_j_jbi_2018_01_005
crossref_primary_10_1063_5_0216374
crossref_primary_10_1109_TNNLS_2023_3269223
crossref_primary_10_3390_diagnostics11071224
crossref_primary_10_1016_j_media_2023_102879
crossref_primary_10_1016_j_bspc_2024_106513
crossref_primary_10_1016_j_engappai_2023_107597
crossref_primary_10_1002_acm2_13875
crossref_primary_10_3390_jimaging6120131
crossref_primary_10_1002_ima_22675
crossref_primary_10_1002_mp_12846
crossref_primary_10_1002_mp_12844
crossref_primary_10_1016_j_asoc_2024_112244
crossref_primary_10_1016_j_job_2022_03_003
crossref_primary_10_1038_s41597_025_05666_6
crossref_primary_10_1109_TMI_2016_2536809
crossref_primary_10_1016_j_neucom_2019_03_103
crossref_primary_10_1038_s41598_020_57739_8
crossref_primary_10_1016_j_compbiomed_2023_107268
crossref_primary_10_3390_cancers14061370
crossref_primary_10_7759_cureus_66688
crossref_primary_10_1007_s10278_017_9973_6
crossref_primary_10_1080_00051144_2025_2460885
crossref_primary_10_1088_0031_9155_60_3_1307
crossref_primary_10_1016_j_patcog_2023_109726
crossref_primary_10_1109_JBHI_2019_2902298
crossref_primary_10_1007_s10278_016_9894_9
crossref_primary_10_1016_j_eswa_2024_125571
crossref_primary_10_1109_TMM_2020_2971170
crossref_primary_10_1080_24745332_2020_1819175
crossref_primary_10_1186_s13244_021_01081_8
crossref_primary_10_1186_s13244_024_01833_2
crossref_primary_10_32604_cmc_2024_050204
crossref_primary_10_1007_s13246_022_01150_2
crossref_primary_10_1016_j_eswa_2022_118672
crossref_primary_10_1109_TPAMI_2025_3529711
crossref_primary_10_1007_s11042_023_15232_0
crossref_primary_10_3390_s24185923
crossref_primary_10_1007_s11042_023_16040_2
crossref_primary_10_3390_electronics11010034
crossref_primary_10_1109_TMI_2019_2959609
crossref_primary_10_1109_TMI_2023_3237183
crossref_primary_10_3390_bdcc8090099
crossref_primary_10_1002_gamm_202470002
crossref_primary_10_3390_app112110132
crossref_primary_10_1016_j_eswa_2019_01_048
crossref_primary_10_1016_j_engappai_2023_106126
crossref_primary_10_3389_fonc_2020_614201
crossref_primary_10_1016_j_eswa_2024_124149
crossref_primary_10_1111_cgf_15142
crossref_primary_10_1109_TNNLS_2023_3315271
crossref_primary_10_1016_j_artmed_2023_102637
crossref_primary_10_1109_TMI_2024_3419707
crossref_primary_10_1002_ima_22539
crossref_primary_10_1016_j_eswa_2023_119997
crossref_primary_10_3390_diagnostics14202282
crossref_primary_10_1109_TMI_2015_2474119
crossref_primary_10_1016_j_ejmp_2021_03_013
crossref_primary_10_1259_bjr_20180028
crossref_primary_10_1002_mp_15293
crossref_primary_10_1016_j_media_2021_102027
crossref_primary_10_1007_s10586_024_04679_x
crossref_primary_10_1016_j_compbiomed_2024_108674
crossref_primary_10_1158_0008_5472_CAN_18_0696
crossref_primary_10_3390_electronics13163121
crossref_primary_10_1002_mp_15298
crossref_primary_10_1016_j_patcog_2017_12_022
crossref_primary_10_3390_cancers13215546
crossref_primary_10_1007_s11263_025_02426_2
crossref_primary_10_3390_jimaging7020035
crossref_primary_10_1007_s11227_021_03845_x
crossref_primary_10_1049_ipr2_70163
crossref_primary_10_1007_s11042_024_20558_4
crossref_primary_10_1109_TCSVT_2021_3073021
crossref_primary_10_1016_j_jmst_2023_01_003
crossref_primary_10_1088_0031_9155_56_19_005
crossref_primary_10_3390_medicina61071126
crossref_primary_10_1109_JBHI_2014_2361318
crossref_primary_10_1016_j_bspc_2023_105623
crossref_primary_10_1148_radiol_2020192224
crossref_primary_10_1002_ima_22511
crossref_primary_10_1109_TIP_2019_2902832
crossref_primary_10_3233_HIS_200287
crossref_primary_10_1007_s42979_023_02210_4
crossref_primary_10_1007_s11548_017_1656_8
crossref_primary_10_1186_s13244_023_01508_4
crossref_primary_10_3390_app9245544
crossref_primary_10_3390_bioengineering10040502
crossref_primary_10_1007_s12194_017_0394_5
crossref_primary_10_1109_ACCESS_2020_3018666
crossref_primary_10_1007_s12553_022_00679_2
crossref_primary_10_1016_j_neunet_2019_03_003
crossref_primary_10_1007_s11042_021_11066_w
crossref_primary_10_1016_j_eswa_2025_126860
crossref_primary_10_17816_DD630885
crossref_primary_10_1002_mp_15074
crossref_primary_10_1109_TMI_2022_3211085
crossref_primary_10_3233_AIC_220318
crossref_primary_10_1109_ACCESS_2020_3044941
crossref_primary_10_1118_1_4816310
crossref_primary_10_1007_s12553_024_00825_y
crossref_primary_10_3390_diagnostics12040807
crossref_primary_10_1109_TRPMS_2024_3439010
crossref_primary_10_1049_iet_ipr_2016_1014
crossref_primary_10_1016_j_compbiolchem_2025_108500
crossref_primary_10_1016_j_neucom_2018_11_110
crossref_primary_10_1109_ACCESS_2019_2906116
crossref_primary_10_1016_j_media_2024_103159
crossref_primary_10_1016_j_media_2025_103693
crossref_primary_10_1017_S0962492919000059
crossref_primary_10_1007_s10044_025_01416_x
crossref_primary_10_1080_21681163_2025_2563726
crossref_primary_10_1016_j_acra_2024_06_031
crossref_primary_10_3389_fonc_2024_1499140
crossref_primary_10_1007_s11547_019_01130_9
crossref_primary_10_1016_j_cmpb_2025_108840
crossref_primary_10_7759_s44389_025_06619_1
crossref_primary_10_3390_sym10090376
crossref_primary_10_1007_s12559_021_09915_9
crossref_primary_10_1016_j_bspc_2024_106804
crossref_primary_10_1016_j_jvcir_2023_103909
crossref_primary_10_1016_j_media_2019_101628
crossref_primary_10_3389_fpubh_2022_1071673
crossref_primary_10_1007_s40031_024_01027_w
crossref_primary_10_1038_s41598_017_08040_8
crossref_primary_10_1109_TMI_2024_3448468
crossref_primary_10_1016_j_neucom_2022_07_070
crossref_primary_10_1007_s00138_020_01101_5
crossref_primary_10_1002_mp_14161
crossref_primary_10_2196_16709
crossref_primary_10_1016_j_bspc_2024_105970
crossref_primary_10_1002_ima_22721
crossref_primary_10_1002_mrm_29184
crossref_primary_10_1002_ima_22726
crossref_primary_10_1007_s13246_019_00822_w
crossref_primary_10_1007_s10278_024_01110_0
crossref_primary_10_1007_s11517_018_1841_0
crossref_primary_10_1088_1742_6596_1631_1_012049
crossref_primary_10_1007_s00371_025_03838_4
crossref_primary_10_1016_j_artmed_2013_07_002
crossref_primary_10_1016_j_compbiomed_2025_111059
crossref_primary_10_1109_ACCESS_2019_2942441
crossref_primary_10_1016_j_bspc_2022_104250
crossref_primary_10_1038_s41598_022_08796_8
crossref_primary_10_3390_electronics12041024
crossref_primary_10_1186_s12880_023_00973_z
crossref_primary_10_1038_s41598_020_69534_6
crossref_primary_10_1155_2023_3563696
crossref_primary_10_1038_s41598_021_80998_y
crossref_primary_10_1016_j_media_2025_103489
crossref_primary_10_1007_s10278_020_00417_y
crossref_primary_10_1007_s00530_025_01955_7
crossref_primary_10_1186_s12938_015_0120_7
crossref_primary_10_1007_s10278_015_9857_6
crossref_primary_10_1016_j_media_2021_102205
crossref_primary_10_1088_1757_899X_676_1_012014
crossref_primary_10_1007_s10462_023_10457_9
crossref_primary_10_1016_j_bspc_2022_104021
crossref_primary_10_1155_2021_9974017
crossref_primary_10_1007_s10278_022_00749_x
crossref_primary_10_1016_j_jbi_2016_09_005
crossref_primary_10_4103_jpi_jpi_81_18
crossref_primary_10_1016_j_scib_2024_06_037
crossref_primary_10_1007_s10278_025_01571_x
crossref_primary_10_1016_j_bspc_2023_105646
crossref_primary_10_1007_s11042_023_14893_1
crossref_primary_10_1007_s10278_018_0136_1
crossref_primary_10_1088_1361_6560_ab2db4
crossref_primary_10_1007_s13735_021_00205_6
crossref_primary_10_3390_jimaging11070209
crossref_primary_10_1007_s11548_021_02415_z
crossref_primary_10_1016_j_inffus_2025_103323
crossref_primary_10_1088_2057_1976_ab5c7c
crossref_primary_10_1016_j_cmpb_2018_05_006
crossref_primary_10_3390_jimaging10090234
crossref_primary_10_1016_j_critrevonc_2024_104436
crossref_primary_10_1371_journal_pone_0210551
crossref_primary_10_1016_j_sigpro_2013_09_009
crossref_primary_10_1155_2023_6357252
crossref_primary_10_1007_s12553_022_00700_8
crossref_primary_10_1186_s41231_020_00069_8
crossref_primary_10_1109_TNNLS_2024_3477947
crossref_primary_10_1007_s11548_015_1278_y
crossref_primary_10_1109_ACCESS_2022_3214824
crossref_primary_10_1007_s10278_019_00227_x
crossref_primary_10_1016_j_media_2019_07_004
crossref_primary_10_1016_j_redii_2022_100018
crossref_primary_10_1016_j_compbiomed_2017_11_008
crossref_primary_10_1002_mef2_38
crossref_primary_10_1109_TBME_2024_3451409
crossref_primary_10_1016_j_mbm_2025_100133
crossref_primary_10_1109_TPAMI_2023_3234002
crossref_primary_10_1007_s42979_024_03251_z
crossref_primary_10_1109_TMI_2021_3062280
crossref_primary_10_3390_info15050246
crossref_primary_10_1002_mp_17636
crossref_primary_10_1186_s12880_025_01725_x
crossref_primary_10_1007_s10489_020_01914_x
crossref_primary_10_3390_cancers14071840
crossref_primary_10_1088_1742_6596_1236_1_012028
crossref_primary_10_3390_s20102962
crossref_primary_10_1155_2019_5156416
crossref_primary_10_1007_s11760_018_01413_0
crossref_primary_10_1109_TMI_2023_3294824
crossref_primary_10_1148_ryai_240248
crossref_primary_10_1016_j_patcog_2025_111401
crossref_primary_10_1007_s11684_019_0726_4
crossref_primary_10_1016_j_cmpb_2018_05_028
crossref_primary_10_1016_j_bspc_2023_104930
crossref_primary_10_1109_JBHI_2021_3049452
crossref_primary_10_1109_TCI_2025_3553039
crossref_primary_10_3389_fcimb_2023_1116285
crossref_primary_10_3390_cancers15174344
crossref_primary_10_1016_j_patcog_2021_107942
crossref_primary_10_1109_JIOT_2023_3326547
crossref_primary_10_1371_journal_pone_0178944
crossref_primary_10_1007_s11548_013_0924_5
crossref_primary_10_1016_j_ejmp_2021_05_003
crossref_primary_10_1016_j_eswa_2023_121890
crossref_primary_10_1007_s10278_018_0101_z
crossref_primary_10_1016_j_acra_2018_07_006
crossref_primary_10_1016_j_media_2022_102704
crossref_primary_10_32604_cmc_2023_035888
crossref_primary_10_1007_s10278_025_01462_1
crossref_primary_10_1038_s41598_020_64824_5
crossref_primary_10_1038_s41598_018_27569_w
crossref_primary_10_1016_j_clinimag_2021_01_019
crossref_primary_10_1016_j_bspc_2018_01_011
crossref_primary_10_1016_j_compbiomed_2023_107916
crossref_primary_10_1016_j_bspc_2022_104217
crossref_primary_10_1016_j_compbiomed_2023_107912
crossref_primary_10_1109_ACCESS_2025_3555428
crossref_primary_10_1137_23M1552486
crossref_primary_10_1016_j_lungcan_2021_03_008
crossref_primary_10_1109_TPAMI_2021_3065086
crossref_primary_10_1145_3472291
crossref_primary_10_1016_j_neucom_2022_04_065
crossref_primary_10_1145_3644073
crossref_primary_10_1051_bioconf_20214104001
crossref_primary_10_1016_j_cviu_2025_104349
crossref_primary_10_1177_1533033818798800
crossref_primary_10_1055_a_1186_7333
crossref_primary_10_1007_s10278_014_9678_z
crossref_primary_10_1088_1361_6560_adf486
crossref_primary_10_1177_0962280217754231
crossref_primary_10_1016_j_patcog_2024_111302
crossref_primary_10_1007_s11042_023_15863_3
crossref_primary_10_1109_TMI_2016_2640180
crossref_primary_10_3390_jimaging7030044
crossref_primary_10_1007_s43657_021_00025_y
crossref_primary_10_1109_TVCG_2019_2953026
crossref_primary_10_3390_cancers15184655
crossref_primary_10_1007_s10915_017_0401_3
crossref_primary_10_1007_s13246_024_01419_8
crossref_primary_10_3233_BME_206005
crossref_primary_10_1016_j_eswa_2020_114259
crossref_primary_10_1016_j_eswa_2021_115469
crossref_primary_10_1016_j_knosys_2019_105128
crossref_primary_10_1007_s11554_020_00963_2
crossref_primary_10_1016_j_bbe_2021_08_006
crossref_primary_10_1002_mp_15423
crossref_primary_10_1007_s11042_020_09894_3
crossref_primary_10_1088_1361_6560_ad1212
crossref_primary_10_1097_RLU_0000000000005400
crossref_primary_10_1007_s40747_025_01995_6
crossref_primary_10_1007_s10278_020_00326_0
crossref_primary_10_1148_radiol_2019191293
crossref_primary_10_3390_diagnostics12102333
crossref_primary_10_1088_1361_6560_ad8da2
crossref_primary_10_1109_TNNLS_2022_3169569
crossref_primary_10_1016_j_cpet_2021_09_001
crossref_primary_10_1016_j_compbiomed_2017_10_005
crossref_primary_10_1002_mp_13237
crossref_primary_10_3390_app11020610
crossref_primary_10_1016_j_cmpb_2018_04_001
crossref_primary_10_1007_s11548_021_02504_z
crossref_primary_10_1038_s41467_025_62385_7
crossref_primary_10_1016_j_bspc_2017_08_026
crossref_primary_10_1016_j_artmed_2021_102017
crossref_primary_10_1016_j_compbiomed_2017_04_006
crossref_primary_10_1155_2015_185726
crossref_primary_10_1186_s13244_023_01556_w
crossref_primary_10_1016_j_media_2024_103370
crossref_primary_10_1186_s12880_021_00594_4
crossref_primary_10_1016_j_media_2021_101985
crossref_primary_10_3389_fdgth_2020_609349
crossref_primary_10_1109_ACCESS_2023_3349017
crossref_primary_10_1007_s11760_018_1327_4
crossref_primary_10_1117_1_JMI_10_2_024003
crossref_primary_10_3389_frai_2020_550890
crossref_primary_10_1007_s11517_018_1850_z
crossref_primary_10_1007_s11548_017_1696_0
crossref_primary_10_1016_j_acra_2016_11_022
crossref_primary_10_1016_j_compbiomed_2021_105161
crossref_primary_10_1016_j_compbiomed_2022_106330
crossref_primary_10_1016_j_cmpb_2018_10_009
crossref_primary_10_1109_ACCESS_2020_3026080
crossref_primary_10_1016_j_diii_2022_11_007
crossref_primary_10_1109_JPHOT_2023_3339148
crossref_primary_10_3389_fonc_2020_00418
crossref_primary_10_3390_app11178227
crossref_primary_10_1109_TBME_2011_2167621
crossref_primary_10_3390_diagnostics12123034
crossref_primary_10_1007_s10489_021_03038_2
crossref_primary_10_1007_s12652_018_1132_5
crossref_primary_10_1007_s10278_024_01138_2
crossref_primary_10_32604_csse_2024_053997
crossref_primary_10_1007_s10586_025_05408_8
crossref_primary_10_1007_s10278_018_0058_y
crossref_primary_10_1049_iet_ipr_2015_0784
crossref_primary_10_1109_ACCESS_2025_3529127
crossref_primary_10_1093_jamia_ocy098
crossref_primary_10_1146_annurev_bioeng_102723_013922
crossref_primary_10_1371_journal_pone_0311080
crossref_primary_10_1109_ACCESS_2021_3070701
crossref_primary_10_1016_j_media_2021_101992
crossref_primary_10_1109_TMI_2023_3332944
crossref_primary_10_1007_s10489_022_04380_9
crossref_primary_10_1109_ACCESS_2023_3310400
crossref_primary_10_1109_TBME_2015_2445054
crossref_primary_10_1155_2016_3162649
crossref_primary_10_1109_TCI_2022_3175309
crossref_primary_10_1002_aisy_202401093
crossref_primary_10_1016_j_heliyon_2023_e21520
crossref_primary_10_3390_diagnostics12051121
crossref_primary_10_1016_j_eswa_2021_116489
crossref_primary_10_1148_radiol_223308
crossref_primary_10_1109_ACCESS_2024_3403106
crossref_primary_10_1016_j_compbiomed_2015_01_013
crossref_primary_10_1109_ACCESS_2023_3264789
crossref_primary_10_1186_1475_925X_13_41
crossref_primary_10_3389_fonc_2021_717039
crossref_primary_10_1007_s00521_018_3877_3
crossref_primary_10_3390_app12189367
crossref_primary_10_1016_j_ebiom_2022_104344
crossref_primary_10_1053_j_semnuclmed_2020_09_001
crossref_primary_10_3390_sym10100519
crossref_primary_10_1038_s41467_020_18685_1
crossref_primary_10_1016_j_bspc_2019_101659
crossref_primary_10_1002_mp_16937
crossref_primary_10_1016_j_cmpb_2022_106680
crossref_primary_10_1109_TPAMI_2021_3130759
crossref_primary_10_3389_fonc_2024_1346010
crossref_primary_10_1109_JBHI_2020_2976150
crossref_primary_10_1155_2022_9469234
crossref_primary_10_1038_s41598_022_05372_y
crossref_primary_10_3390_ijms26178472
crossref_primary_10_1007_s12553_023_00757_z
crossref_primary_10_1007_s10916_019_1327_0
crossref_primary_10_1038_s41467_024_54424_6
crossref_primary_10_1007_s11517_021_02378_y
crossref_primary_10_1109_TMI_2022_3232572
crossref_primary_10_1186_s40658_021_00426_y
crossref_primary_10_1016_j_cmpb_2015_10_006
crossref_primary_10_1007_s00330_017_5165_5
crossref_primary_10_1159_000516335
crossref_primary_10_1016_j_rcl_2021_06_005
crossref_primary_10_1007_s40846_017_0317_2
crossref_primary_10_1016_j_compbiomed_2023_106659
crossref_primary_10_1038_s41597_024_03658_6
crossref_primary_10_1109_ACCESS_2023_3305270
crossref_primary_10_1007_s42979_023_02295_x
crossref_primary_10_1118_1_3701791
crossref_primary_10_1016_j_compbiomed_2022_106137
crossref_primary_10_1097_CCO_0000000000000796
crossref_primary_10_1002_mp_14308
crossref_primary_10_1007_s10278_019_00221_3
crossref_primary_10_1109_JBHI_2017_2725903
crossref_primary_10_1016_j_asoc_2019_105934
crossref_primary_10_1016_j_media_2023_103000
crossref_primary_10_1007_s11042_023_17210_y
crossref_primary_10_3390_diagnostics9040207
crossref_primary_10_1007_s00779_021_01637_x
crossref_primary_10_1016_j_media_2020_101895
crossref_primary_10_1016_j_patcog_2024_110528
crossref_primary_10_1007_s42979_024_03232_2
crossref_primary_10_3390_app9112329
crossref_primary_10_1002_ima_70186
crossref_primary_10_1016_j_inffus_2023_102040
crossref_primary_10_1109_ACCESS_2024_3510856
crossref_primary_10_1186_s12880_022_00938_8
crossref_primary_10_1016_j_compbiomed_2023_106663
crossref_primary_10_1148_radiol_2021204433
crossref_primary_10_1109_TCI_2025_3587407
crossref_primary_10_1109_TMI_2019_2953788
crossref_primary_10_1016_j_knosys_2020_106230
crossref_primary_10_1016_j_diii_2021_01_010
crossref_primary_10_1016_j_media_2020_101889
crossref_primary_10_1016_j_heliyon_2023_e23508
crossref_primary_10_1007_s10278_023_00904_y
crossref_primary_10_1109_ACCESS_2019_2939850
crossref_primary_10_1007_s10278_014_9718_8
crossref_primary_10_1016_j_eswa_2022_117652
crossref_primary_10_1002_mp_13401
crossref_primary_10_1016_j_neucom_2018_08_022
crossref_primary_10_1177_09544119231182037
crossref_primary_10_32604_cmc_2023_044425
crossref_primary_10_1016_j_neucom_2024_128740
crossref_primary_10_1038_s41598_024_82877_8
crossref_primary_10_3389_fonc_2018_00108
crossref_primary_10_1038_s41597_023_02457_9
crossref_primary_10_1109_TMI_2024_3445999
crossref_primary_10_1016_j_compbiomed_2025_110547
crossref_primary_10_1111_odi_13735
crossref_primary_10_2147_JMDH_S456167
crossref_primary_10_1109_ACCESS_2023_3331315
crossref_primary_10_1016_j_critrevonc_2024_104528
crossref_primary_10_1016_j_patrec_2019_12_006
crossref_primary_10_1080_21681163_2019_1672210
crossref_primary_10_1016_j_bspc_2025_107858
crossref_primary_10_1007_s00521_020_04787_w
crossref_primary_10_1016_j_bspc_2024_107358
crossref_primary_10_1002_mp_16900
crossref_primary_10_1002_mp_15810
crossref_primary_10_1016_j_cmpb_2021_106381
crossref_primary_10_1109_TMI_2019_2894349
crossref_primary_10_1002_mp_13867
crossref_primary_10_1007_s11548_022_02807_9
crossref_primary_10_1038_s41598_019_44562_z
crossref_primary_10_1007_s11548_016_1471_7
crossref_primary_10_1097_RLI_0000000000000600
crossref_primary_10_3390_s21051908
crossref_primary_10_1007_s11517_016_1577_7
crossref_primary_10_1109_TMI_2020_3005432
crossref_primary_10_1088_2057_1976_ad449a
crossref_primary_10_1016_j_imu_2019_100173
crossref_primary_10_1016_j_bspc_2024_106473
crossref_primary_10_1002_cpe_6237
crossref_primary_10_1016_j_bspc_2025_107648
crossref_primary_10_1158_0008_5472_CAN_17_0339
crossref_primary_10_1007_s00371_025_04070_w
crossref_primary_10_1007_s11604_022_01359_x
crossref_primary_10_1007_s10278_024_01304_6
crossref_primary_10_1002_mp_16933
crossref_primary_10_1016_j_patcog_2018_03_032
crossref_primary_10_1109_TIP_2016_2544703
crossref_primary_10_1007_s40134_022_00407_8
crossref_primary_10_3390_math11061363
crossref_primary_10_1007_s10278_022_00620_z
crossref_primary_10_1002_mp_12331
crossref_primary_10_1007_s11042_023_16520_5
crossref_primary_10_1007_s00330_024_10907_0
crossref_primary_10_1007_s11517_024_03043_w
crossref_primary_10_3390_diagnostics12102512
crossref_primary_10_1016_j_bspc_2017_11_017
crossref_primary_10_1016_j_media_2020_101857
crossref_primary_10_1111_resp_14344
crossref_primary_10_1007_s00521_021_06750_9
crossref_primary_10_1016_j_crad_2019_04_017
crossref_primary_10_1007_s00521_022_07953_4
crossref_primary_10_1007_s10278_015_9774_8
crossref_primary_10_3390_electronics13122273
crossref_primary_10_1109_TMI_2020_2986242
crossref_primary_10_1016_j_patcog_2021_108309
crossref_primary_10_3233_XST_17302
crossref_primary_10_1088_1361_6560_ab2544
crossref_primary_10_1007_s11036_020_01672_7
crossref_primary_10_1007_s11042_023_14493_z
crossref_primary_10_1109_ACCESS_2019_2903682
crossref_primary_10_1016_j_ejmp_2025_104954
crossref_primary_10_1007_s11831_024_10081_y
crossref_primary_10_1016_j_media_2020_101840
crossref_primary_10_1016_j_patrec_2019_11_013
crossref_primary_10_1002_ima_22373
crossref_primary_10_12677_MOS_2024_131057
crossref_primary_10_1016_j_neucom_2023_01_012
crossref_primary_10_1002_mp_12746
crossref_primary_10_1007_s10278_023_00928_4
crossref_primary_10_1016_j_bspc_2021_102890
crossref_primary_10_1109_TNNLS_2019_2892409
crossref_primary_10_1109_TNNLS_2022_3203412
crossref_primary_10_1016_j_cmpb_2025_108640
crossref_primary_10_1049_iet_ipr_2019_1164
crossref_primary_10_1002_mp_14923
crossref_primary_10_1007_s00500_023_09000_3
crossref_primary_10_1016_j_media_2022_102491
crossref_primary_10_1038_s42256_023_00670_0
crossref_primary_10_5812_iranjradiol_65034
crossref_primary_10_1016_j_compbiomed_2023_107321
crossref_primary_10_1016_j_patcog_2025_112396
crossref_primary_10_3390_diagnostics12082023
crossref_primary_10_1007_s11042_022_13660_y
crossref_primary_10_1016_j_ins_2024_120884
crossref_primary_10_1016_j_acra_2018_11_006
crossref_primary_10_3389_frai_2022_782225
crossref_primary_10_1038_s41598_021_83907_5
crossref_primary_10_1038_s41592_023_02151_z
crossref_primary_10_1186_s12967_023_04798_w
crossref_primary_10_1016_j_ejmp_2025_104968
crossref_primary_10_3390_a17040161
crossref_primary_10_1080_0952813X_2022_2093980
crossref_primary_10_3233_XST_180426
crossref_primary_10_1109_JBHI_2018_2879834
crossref_primary_10_1016_j_ijmedinf_2025_105903
crossref_primary_10_1371_journal_pone_0274522
crossref_primary_10_1016_j_cmpb_2024_108135
crossref_primary_10_1109_TIM_2023_3267355
crossref_primary_10_1109_TRPMS_2023_3236719
crossref_primary_10_1007_s11517_023_02946_4
crossref_primary_10_1002_mp_14915
crossref_primary_10_1155_2022_7124902
crossref_primary_10_1109_JBHI_2019_2963720
crossref_primary_10_3390_cancers14133174
crossref_primary_10_1016_j_ymeth_2022_07_004
crossref_primary_10_1007_s12559_020_09751_3
crossref_primary_10_1016_j_cmpb_2019_105172
crossref_primary_10_1016_j_compbiomed_2018_10_033
crossref_primary_10_1016_j_knosys_2024_112659
crossref_primary_10_1016_j_patcog_2023_109400
crossref_primary_10_1016_S0140_6736_18_31645_3
crossref_primary_10_3390_s23125597
crossref_primary_10_3390_math9131457
crossref_primary_10_1002_mp_12766
crossref_primary_10_1016_j_cmpb_2021_106111
crossref_primary_10_1593_tlo_13832
crossref_primary_10_1002_ima_23209
crossref_primary_10_1016_j_patcog_2022_108636
crossref_primary_10_3389_fcomp_2024_1386514
crossref_primary_10_1007_s11517_023_02957_1
crossref_primary_10_1049_cit2_12216
crossref_primary_10_1016_j_clinimag_2022_11_003
crossref_primary_10_3390_diagnostics11040679
crossref_primary_10_1088_1361_6560_ac92ba
crossref_primary_10_1016_j_acra_2014_07_020
crossref_primary_10_1177_02783649231165818
crossref_primary_10_31083_j_fbl2709254
crossref_primary_10_1002_ima_22580
crossref_primary_10_1016_j_bspc_2025_108088
crossref_primary_10_1186_s12890_024_03272_7
crossref_primary_10_1016_j_neucom_2021_08_159
crossref_primary_10_3389_fonc_2021_633176
crossref_primary_10_3390_s25144245
crossref_primary_10_1109_TII_2020_2972918
crossref_primary_10_1016_j_cmpb_2021_106363
crossref_primary_10_1088_0031_9155_57_17_5485
crossref_primary_10_1109_TBME_2021_3085576
crossref_primary_10_1177_02841851221135406
crossref_primary_10_1007_s00500_017_2608_5
crossref_primary_10_1016_j_compbiomed_2021_104961
crossref_primary_10_1109_TCBB_2020_3027744
crossref_primary_10_1109_TMI_2023_3294248
crossref_primary_10_1371_journal_pone_0330463
crossref_primary_10_1002_acm2_13739
crossref_primary_10_1016_j_dsp_2023_104123
crossref_primary_10_1109_TMI_2019_2935553
crossref_primary_10_1016_j_cmpb_2018_08_012
crossref_primary_10_1146_annurev_biodatasci_103023_050856
crossref_primary_10_1007_s11042_025_20737_x
crossref_primary_10_1088_1742_6596_841_1_012013
crossref_primary_10_1016_j_patcog_2018_05_014
crossref_primary_10_1016_j_medengphy_2025_104376
crossref_primary_10_1016_j_eswa_2018_11_010
crossref_primary_10_1016_j_artmed_2013_11_002
crossref_primary_10_1016_j_compbiomed_2024_108505
crossref_primary_10_1097_RCT_0000000000001118
crossref_primary_10_1016_j_dsp_2024_104884
crossref_primary_10_1007_s11277_020_07732_1
crossref_primary_10_1002_ima_22339
crossref_primary_10_1007_s00330_021_08202_3
crossref_primary_10_1109_TMI_2017_2720119
crossref_primary_10_1016_j_icte_2024_09_008
crossref_primary_10_3390_jcm9123860
crossref_primary_10_1088_2516_1091_adfeab
crossref_primary_10_1016_j_neunet_2023_11_006
crossref_primary_10_1016_j_ejrad_2021_110068
crossref_primary_10_3390_s19173722
crossref_primary_10_1007_s00521_023_08457_5
crossref_primary_10_3390_jcm12103446
crossref_primary_10_1016_j_compbiomed_2024_108990
crossref_primary_10_1016_j_eswa_2016_10_039
crossref_primary_10_3389_fcvm_2024_1384421
crossref_primary_10_1016_j_media_2023_102989
crossref_primary_10_1007_s10462_024_10814_2
crossref_primary_10_1016_j_medengphy_2025_104385
crossref_primary_10_1038_s42256_020_0173_6
crossref_primary_10_1007_s11517_025_03358_2
crossref_primary_10_1016_j_asoc_2024_112374
crossref_primary_10_3390_a14050158
crossref_primary_10_1371_journal_pone_0282107
crossref_primary_10_1109_ACCESS_2023_3344456
crossref_primary_10_1007_s11548_023_02946_7
crossref_primary_10_1038_s41598_020_69817_y
crossref_primary_10_1109_ACCESS_2024_3485000
crossref_primary_10_1007_s10916_015_0231_5
crossref_primary_10_1155_2019_6051939
crossref_primary_10_1016_j_jbi_2014_04_015
crossref_primary_10_1109_ACCESS_2021_3102707
crossref_primary_10_3390_jimaging9090191
crossref_primary_10_1016_j_semcancer_2023_01_006
crossref_primary_10_3233_XST_180490
crossref_primary_10_1007_s40846_024_00895_3
crossref_primary_10_3390_bioengineering12080835
crossref_primary_10_1371_journal_pone_0274516
crossref_primary_10_3390_jimaging10070168
crossref_primary_10_1016_j_measurement_2020_107785
crossref_primary_10_12677_BIPHY_2021_92006
crossref_primary_10_1038_s41598_025_00309_7
crossref_primary_10_1007_s10916_019_1258_9
crossref_primary_10_1038_s41598_024_59731_y
crossref_primary_10_1109_TNB_2023_3278706
crossref_primary_10_1111_coin_12350
crossref_primary_10_1142_S0218001425400014
crossref_primary_10_3390_e24121755
crossref_primary_10_1007_s11548_024_03215_x
crossref_primary_10_1007_s11432_016_9008_0
crossref_primary_10_1088_1361_6560_abc812
crossref_primary_10_1016_j_crad_2018_10_008
crossref_primary_10_1007_s10278_013_9624_5
crossref_primary_10_3390_app13010377
crossref_primary_10_1016_j_ejmp_2025_104985
crossref_primary_10_1186_s12890_023_02708_w
crossref_primary_10_1088_1361_6560_ac568e
crossref_primary_10_1038_sdata_2017_124
crossref_primary_10_1155_2020_8893494
crossref_primary_10_1109_JBHI_2020_3004296
crossref_primary_10_1016_j_measurement_2020_108882
crossref_primary_10_1038_s41598_020_70629_3
crossref_primary_10_1016_j_knosys_2024_112238
crossref_primary_10_1007_s11042_023_17454_8
Cites_doi 10.1016/j.ejrad.2008.02.022
10.3390/a2041473
10.1016/S1076‐6332(03)00814‐6
10.1117/12.148620
10.4018/jhisi.2009010102
10.1016/j.media.2010.05.005
10.1002/ijc.22134
10.1038/clpt.2008.161
10.1016/S0140-6736(05)17784-8
10.1016/j.acra.2007.09.005
10.1007/s11548‐009‐0401‐3
10.1016/j.acra.2006.07.012
10.1118/1.3013555
10.1016/j.acra.2007.01.008
10.1016/j.acra.2009.06.019
10.1016/j.media.2009.07.001
10.1016/j.acra.2008.05.022
10.2214/ajr.174.1.1740071
10.1016/j.ejrad.2007.08.027
10.1016/j.jalz.2009.02.005
10.1148/radiology.200.2.8685321
10.1016/j.lungcan.2006.08.006
10.2214/AJR.09.3268
10.1118/1.3147146
10.1016/j.acra.2007.07.021
10.1016/j.acra.2007.07.008
10.1109/TSMC.1979.4310076
10.1118/1.597287
10.1148/radiol.2441061122
10.1148/radiol.2411050860
10.1016/j.acra.2007.08.006
10.1016/S1076‐6332(03)80555‐X
10.1007/s10278‐006‐0589‐5
10.1593/tlo.09208
10.1117/12.707916
10.1118/1.2963989
10.1117/12.310894
10.1148/radiol.2323032035
ContentType Journal Article
Copyright U.S. Government
2011 American Association of Physicists in Medicine
Copyright © 2011 U.S. Government 2011 U.S. Government
Copyright_xml – notice: U.S. Government
– notice: 2011 American Association of Physicists in Medicine
– notice: Copyright © 2011 U.S. Government 2011 U.S. Government
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
5PM
DOI 10.1118/1.3528204
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
0094-2405
EndPage 931
ExternalDocumentID PMC3041807
22096914
21452728
10_1118_1_3528204
MP8204
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI
  funderid: HHSN261200800001E
– fundername: USPHS
  funderid: U01CA091085; U01CA091090; U01CA091099; U01CA091100; U01CA091103
– fundername: NCI NIH HHS
  grantid: U01CA091099
– fundername: CCR NIH HHS
  grantid: HHSN261200800001C
– fundername: NCI NIH HHS
  grantid: U01 CA091100
– fundername: NCI NIH HHS
  grantid: U01CA091103
– fundername: NCI NIH HHS
  grantid: U01 CA091090
– fundername: NCI NIH HHS
  grantid: U01 CA091099
– fundername: NCI NIH HHS
  grantid: U01 CA091085
– fundername: NCI NIH HHS
  grantid: U01CA091085
– fundername: NCI NIH HHS
  grantid: U01CA091090
– fundername: Medical Research Council
  grantid: G0701127
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMNL
AAYCA
ABDPE
AFWVQ
AITYG
ALVPJ
AAMMB
AAYXX
ABUFD
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAJUZ
AAPBV
ABCVL
ABPTK
ADDAD
AEUQT
OTOTI
5PM
ID FETCH-LOGICAL-c5764-d37bc23e6e87d851675b6c28329767fb0eca50a2d95a9b0da29ad77a544d3b1a3
IEDL.DBID DRFUL
ISICitedReferencesCount 1638
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000286945000038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-2405
IngestDate Tue Nov 04 01:56:18 EST 2025
Thu May 18 18:29:33 EDT 2023
Sun Nov 09 11:03:06 EST 2025
Mon Jul 21 06:04:03 EDT 2025
Sat Nov 29 03:54:36 EST 2025
Tue Nov 18 22:13:04 EST 2025
Wed Jan 22 16:36:44 EST 2025
Fri Jun 21 00:28:31 EDT 2024
Sun Jul 14 10:05:20 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords thoracic imaging
interobserver variability
computed tomography (CT)
lung nodule
computer-aided diagnosis (CAD)
Language English
License 0094-2405/2011/38(2)/915/17/$30.00
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5764-d37bc23e6e87d851675b6c28329767fb0eca50a2d95a9b0da29ad77a544d3b1a3
Notes Present address: University of Dundee–Ninewells Hospital and Medical School, Clinical Research Centre (CRC), James Arrott Drive, Dundee DD1 9SY, Scotland, United Kingdom.
s‐armato@uchicago.edu
Present address: University of Texas, MD Anderson Cancer Center, Houston, Texas 77030.
Present address: National Institute of Allergy and Infectious Diseases, 6700B Rockledge Drive, Bethesda, Maryland 20892.
Present address: VuEssence, Inc., Odessa, Florida 33556.
Present address: VA Medical Center West Los Angeles, 11301 Wilshire Boulevard, Building 500, Los Angeles, California 90073.
Present address: Department of Radiology, Columbia University Medical Center, 710 West 168th Street, NI‐B‐04H, New York, New York 10032.
Present address: Department of Radiology, University of Utah, 30 North 1900 East, Room Number 1A71, Salt Lake City, Utah 84132.
Author to whom correspondence should be addressed. Fax: 773‐702‐0371; Electronic mail
Present address: Department of Internal Medicine, University Medical Center–LSU, Lafayette, Louisiana 70518.
Present address: Clinical Research Imaging Centre, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
Present address: BIDMC–Beth Israel Deaconess Medical Center, Radiology W CC‐3, 330 Brookline Avenue, Boston, Massachusetts 02215.
Present address: Department of Radiology, Columbia University Medical Center–New York Presbyterian Hospital, 180 Fort Washington Avenue, Harkness Pavilion–HP 3‐320, New York, New York 10032.
Previous address: Department of Radiology, Weill Cornell Medical College, New York, New York.
Present address: ActiViews, Inc., 10936 North Port Washington Road, Suite 134, Mequon, Wisconsin 53092.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author to whom correspondence should be addressed. Fax: 773-702-0371; Electronic mail: s-armato@uchicago.edu
Present address: Department of Radiology, Columbia University Medical Center, 710 West 168th Street, NI-B-04H, New York, New York 10032.
Present address: Department of Radiology, Columbia University Medical Center–New York Presbyterian Hospital, 180 Fort Washington Avenue, Harkness Pavilion–HP 3-320, New York, New York 10032.
Present address: BIDMC–Beth Israel Deaconess Medical Center, Radiology W CC-3, 330 Brookline Avenue, Boston, Massachusetts 02215.
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1118/1.3528204
PMID 21452728
PQID 859759099
PQPubID 23479
PageCount 17
ParticipantIDs wiley_primary_10_1118_1_3528204_MP8204
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3041807
pubmed_primary_21452728
scitation_primary_10_1118_1_3528204
crossref_citationtrail_10_1118_1_3528204
osti_scitechconnect_22096914
proquest_miscellaneous_859759099
crossref_primary_10_1118_1_3528204
PublicationCentury 2000
PublicationDate February 2011
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: February 2011
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2011
Publisher American Association of Physicists in Medicine
U.S. Government
Publisher_xml – name: American Association of Physicists in Medicine
– name: U.S. Government
References Xu (c16) 2006; 54
Armato (c27) 2004; 232
Otsu (c35) 1979; SMC-9
Giger, Chan, Boone (c8) 2008; 35
Meyer (c11) 2009; 2
Austin (c31) 1996; 200
Shiraishi (c9) 2000; 174
Kallergi, Clark, Clarke (c2) 1997; 43
Xu (c18) 2008; 68
Murphy, van Ginneken, Schilham, de Hoop, Gietema, Prokop (c20) 2009; 13
van Iersel (c15) 2007; 120
Nishikawa (c1) 1993; 1905
Armato (c12) 2008; 84
McNitt-Gray (c29) 2007; 14
Xu (c19) 2009; 70
Armato (c32) 2007; 14
Gietema (c17) 2006; 241
Biancardi, Jirapatnakul, Reeves (c40) 2010; 5
Doshi, Rusinak, Halvorsen, Rockey, Suzuki, Dachman (c23) 2007; 244
Horsthemke, Raicu, Furst (c41) 2008; 4
Nishikawa, Yarusso (c3) 1998; 3338
van Rikxoort, de Hoop, Viergever, Prokop, van Ginneken (c22) 2009; 36
(c30) 2002; 67
Nishikawa (c4) 1999; 21
Carrillo, Sanders, Katz (c28) 2009; 5
Buckler (c45) 2010; 17
van Ginneken (c21) 2010; 14
Dodd (c26) 2004; 11
Reeves (c37) 2007; 14
Cody (c14) 2010; 194
Meyer (c33) 2006; 13
Clarke, Croft, Staab, Baker, Sullivan (c25) 2001; 8
Armato (c36) 2007; 14
Zinovev, Raicu, Furst, Armato (c42) 2009; 2
Armato (c43) 2009; 16
Petkovska (c34) 2007; 14
Clark (c13) 2007; 20
Sensakovic, Starkey, Roberts, Armato (c39) 2008; 35
Rockey (c24) 2005; 365
Ochs, Kim, Angel, Panknin, McNitt-Gray, Brown (c38) 2007; 6514
2007; 244
1998; 3338
2010; 14
1997; 43
2006; 13
2006; 54
2007; 6514
2010; 17
2007; 120
1998
2009
1996
1999; 21
2008; 35
2000; 174
2008; 4
1996; 200
2007; 14
1993; 1905
2004; 11
2004; 232
2009; 36
2009; 13
2009; 70
2000
2005; 365
2002; 67
2001; 8
2006; 241
2008; 68
2010; 194
2009; 5
2007; 20
1979; SMC‐9
2009; 2
2008; 84
2010; 5
2009; 16
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_9_1
Kallergi M. (e_1_2_7_3_1) 1997; 43
e_1_2_7_19_1
e_1_2_7_18_1
Department of Health and Human Services (e_1_2_7_31_1) 2002; 67
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
Heath M. (e_1_2_7_8_1) 2000
e_1_2_7_14_1
e_1_2_7_42_1
Heath M. (e_1_2_7_7_1) 1998
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_26_1
e_1_2_7_27_1
Reeves A. P. (e_1_2_7_11_1) 2009
e_1_2_7_28_1
e_1_2_7_29_1
Rubin D. L. (e_1_2_7_45_1) 2009
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Bowyer K. (e_1_2_7_6_1) 1996
References_xml – volume: 14
  start-page: 1475
  issn: 1076-6332
  year: 2007
  ident: c37
  article-title: The Lung Image Database Consortium (LIDC): A comparison of different size metrics for pulmonary nodule measurements
  publication-title: Acad. Radiol.
– volume: 200
  start-page: 327
  issn: 0033-8419
  year: 1996
  ident: c31
  article-title: Glossary of terms for CT of the lungs: Recommendations of the Nomenclature Committee of the Fleischner Society
  publication-title: Radiology
– volume: 365
  start-page: 305
  issn: 0140-6736
  year: 2005
  ident: c24
  article-title: Analysis of air contrast barium enema, computed tomographic colonography, and colonoscopy: Prospective comparison
  publication-title: Lancet
– volume: 120
  start-page: 868
  issn: 0020-7136
  year: 2007
  ident: c15
  article-title: Risk-based selection from the general population in a screening trial: Selection criteria, recruitment and power for the Dutch-Belgian randomised lung cancer multi-slice CT screening trial (NELSON)
  publication-title: Int. J. Cancer
– volume: 20
  start-page: 23
  issn: 0897-1889
  year: 2007
  ident: c13
  article-title: Creation of a CT image library for the Lung Screening Study of the National Lung Screening Trial
  publication-title: J. Digit Imaging
– volume: 68
  start-page: 347
  issn: 0720-048X
  year: 2008
  ident: c18
  article-title: Limited value of shape, margin and CT density in the discrimination between benign and malignant screen detected solid pulmonary nodules of the NELSON trial
  publication-title: Eur. J. Radiol.
– volume: 35
  start-page: 4070
  issn: 0094-2405
  year: 2008
  ident: c39
  article-title: Discrete space vs. continuous space lesion boundary and area definition
  publication-title: Med. Phys.
– volume: 17
  start-page: 107
  issn: 1076-6332
  year: 2010
  ident: c45
  article-title: Volumetric CT in lung cancer: An example for the qualification of imaging as a biomarker
  publication-title: Acad. Radiol.
– volume: 2
  start-page: 1473
  issn: 0196-6774
  year: 2009
  ident: c42
  article-title: Predicting radiological panel opinions using a panel of machine learning classifiers
  publication-title: J. Algorithms
– volume: 3338
  start-page: 840
  issn: 0277-786X
  year: 1998
  ident: c3
  article-title: Variations in measured performance of CAD schemes due to database composition and scoring protocol
  publication-title: Proc. SPIE
– volume: 13
  start-page: 757
  issn: 1361-8415
  year: 2009
  ident: c20
  article-title: A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification
  publication-title: Med. Image Anal.
– volume: 43
  start-page: 601
  issn: 0926-9630
  year: 1997
  ident: c2
  article-title: Medical image databases for CAD applications in digital mammography: Design issues
  publication-title: Stud. Health Technol. Inform.
– volume: 13
  start-page: 1254
  issn: 1076-6332
  year: 2006
  ident: c33
  article-title: Evaluation of lung MDCT nodule annotations across radiologists and methods
  publication-title: Acad. Radiol.
– volume: 232
  start-page: 739
  issn: 0033-8419
  year: 2004
  ident: c27
  article-title: Lung Image Database Consortium: Developing a resource for the medical imaging research community
  publication-title: Radiology
– volume: 1905
  start-page: 548
  issn: 0277-786X
  year: 1993
  ident: c1
  article-title: Design of a common database for research in mammogram image analysis
  publication-title: Proc. SPIE
– volume: 14
  start-page: 1464
  issn: 1076-6332
  year: 2007
  ident: c29
  article-title: The Lung Image Database Consortium (LIDC) data collection process for nodule detection and annotation
  publication-title: Acad. Radiol.
– volume: 5
  start-page: 271
  issn: 1552-5260
  year: 2009
  ident: c28
  article-title: Maximizing the Alzheimer’s Disease Neuroimaging Initiative II
  publication-title: Alzheimers and Dementia
– volume: 36
  start-page: 2934
  issn: 0094-2405
  year: 2009
  ident: c22
  article-title: Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection
  publication-title: Med. Phys.
– volume: 70
  start-page: 492
  issn: 0720-048X
  year: 2009
  ident: c19
  article-title: Role of baseline nodule density and changes in density and nodule features in the discrimination between benign and malignant solid indeterminate pulmonary nodules
  publication-title: Eur. J. Radiol.
– volume: 8
  start-page: 447
  issn: 1076-6332
  year: 2001
  ident: c25
  article-title: National Cancer Institute initiative: Lung image database resource for imaging research
  publication-title: Acad. Radiol.
– volume: 174
  start-page: 71
  issn: 0361-803X
  year: 2000
  ident: c9
  article-title: Development of a digital image database for chest radiographs with and without a lung nodule: Receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules
  publication-title: AJR, Am. J. Roentgenol.
– volume: 194
  start-page: 1539
  issn: 0361-803X
  year: 2010
  ident: c14
  article-title: Normalized CT dose index of the CT scanners used in the National Lung Screening Trial
  publication-title: AJR, Am. J. Roentgenol.
– volume: 84
  start-page: 448
  issn: 0009-9236
  year: 2008
  ident: c12
  article-title: The Reference Image Database to Evaluate Response to therapy in lung cancer (RIDER) project: A resource for the development of change analysis software
  publication-title: Clin. Pharmacol. Ther.
– volume: 54
  start-page: 177
  issn: 0169-5002
  year: 2006
  ident: c16
  article-title: Nodule management protocol of the NELSON randomised lung cancer screening trial
  publication-title: Lung Cancer
– volume: 67
  start-page: 53182
  issn: 0097-6326
  year: 2002
  ident: c30
  article-title: Standards for privacy of individually identifiable health information: Final rules
  publication-title: Fed. Regist.
– volume: SMC-9
  start-page: 62
  issn: 0018-9472
  year: 1979
  ident: c35
  article-title: A threshold selection method from grey level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 16
  start-page: 28
  issn: 1076-6332
  year: 2009
  ident: c43
  article-title: Assessment of radiologist performance in the detection of lung nodules: Dependence on the definition of “truth”
  publication-title: Acad. Radiol.
– volume: 4
  start-page: 17
  issn: 1555-3396
  year: 2008
  ident: c41
  article-title: Evaluation challenges for bridging semantic gap: Shape disagreements on pulmonary nodules in the Lung Image Database Consortium
  publication-title: International Journal of Healthcare Information Systems and Informatics
– volume: 241
  start-page: 251
  issn: 0033-8419
  year: 2006
  ident: c17
  article-title: Pulmonary nodules detected at lung cancer screening: Interobserver variability of semiautomated volume measurements
  publication-title: Radiology
– volume: 11
  start-page: 462
  issn: 1076-6332
  year: 2004
  ident: c26
  article-title: Assessment methodologies and statistical issues for computer-aided diagnosis of lung nodules in computed tomography: Contemporary research topics relevant to the Lung Image Database Consortium
  publication-title: Acad. Radiol.
– volume: 2
  start-page: 198
  year: 2009
  ident: c11
  article-title: Quantitative imaging to assess tumor response to therapy: Common themes of measurement, truth data and error sources
  publication-title: Translational Oncology
– volume: 5
  start-page: 295
  issn: 1861-6410
  year: 2010
  ident: c40
  article-title: A comparison of ground truth estimation methods
  publication-title: International Journal of Computer Assisted Radiology and Surgery
– volume: 21
  start-page: 265
  issn: 0094-2405
  year: 1999
  ident: c4
  article-title: Effect of case selection on the performance of computer-aided detection schemes
  publication-title: Med. Phys.
– volume: 244
  start-page: 165
  issn: 0033-8419
  year: 2007
  ident: c23
  article-title: CT colonography: False-negative interpretations
  publication-title: Radiology
– volume: 14
  start-page: 1409
  issn: 1076-6332
  year: 2007
  ident: c32
  article-title: The Lung Image Database Consortium (LIDC): An evaluation of radiologist variability in the identification of lung nodules on CT scans
  publication-title: Acad. Radiol.
– volume: 35
  start-page: 5799
  issn: 0094-2405
  year: 2008
  ident: c8
  article-title: Anniversary paper: History and status of CAD and quantitative image analysis: The role of and AAPM
  publication-title: Med. Phys.
– volume: 14
  start-page: 476
  issn: 1076-6332
  year: 2007
  ident: c34
  article-title: The effect of lung volume on nodule size on CT
  publication-title: Acad. Radiol.
– volume: 6514
  start-page: 65142A
  issn: 0277-786X
  year: 2007
  ident: c38
  article-title: Forming a reference standard from LIDC data: Impact of reader agreement on reported CAD performance
  publication-title: Proc. SPIE
– volume: 14
  start-page: 707
  issn: 1361-8415
  year: 2010
  ident: c21
  article-title: Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: The ANODE09 study
  publication-title: Med. Image Anal.
– volume: 14
  start-page: 1455
  issn: 1076-6332
  year: 2007
  ident: c36
  article-title: The Lung Image Database Consortium (LIDC): Ensuring the integrity of expert-defined “truth”
  publication-title: Acad. Radiol.
– volume: 20
  start-page: 23
  year: 2007
  end-page: 31
  article-title: Creation of a CT image library for the Lung Screening Study of the National Lung Screening Trial
  publication-title: J. Digit Imaging
– volume: 67
  start-page: 53182
  year: 2002
  end-page: 53272
  article-title: Standards for privacy of individually identifiable health information: Final rules
  publication-title: Fed. Regist.
– start-page: 431
  year: 2000
  end-page: 434
  article-title: The digital database for screening mammography
– volume: 232
  start-page: 739
  year: 2004
  end-page: 748
  article-title: Lung Image Database Consortium: Developing a resource for the medical imaging research community
  publication-title: Radiology
– volume: 365
  start-page: 305
  year: 2005
  end-page: 311
  article-title: Analysis of air contrast barium enema, computed tomographic colonography, and colonoscopy: Prospective comparison
  publication-title: Lancet
– volume: 6514
  start-page: 65142A
  year: 2007
  end-page: 1
  article-title: Forming a reference standard from LIDC data: Impact of reader agreement on reported CAD performance
  publication-title: Proc. SPIE
– volume: 14
  start-page: 1409
  year: 2007
  end-page: 1421
  article-title: The Lung Image Database Consortium (LIDC): An evaluation of radiologist variability in the identification of lung nodules on CT scans
  publication-title: Acad. Radiol.
– volume: 35
  start-page: 5799
  year: 2008
  end-page: 5820
  article-title: Anniversary paper: History and status of CAD and quantitative image analysis: The role of and AAPM
  publication-title: Med. Phys.
– volume: 241
  start-page: 251
  year: 2006
  end-page: 257
  article-title: Pulmonary nodules detected at lung cancer screening: Interobserver variability of semiautomated volume measurements
  publication-title: Radiology
– volume: 16
  start-page: 28
  year: 2009
  end-page: 38
  article-title: Assessment of radiologist performance in the detection of lung nodules: Dependence on the definition of “truth”
  publication-title: Acad. Radiol.
– volume: 5
  start-page: 271
  year: 2009
  end-page: 275
  article-title: Maximizing the Alzheimer's Disease Neuroimaging Initiative II
  publication-title: Alzheimers and Dementia
– volume: 43
  start-page: 601
  year: 1997
  end-page: 605
  article-title: Medical image databases for CAD applications in digital mammography: Design issues
  publication-title: Stud. Health Technol. Inform.
– start-page: 431
  year: 1998
  end-page: 434
  article-title: Current status of the digital database for screening mammography
– volume: SMC‐9
  start-page: 62
  year: 1979
  end-page: 66
  article-title: A threshold selection method from grey level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 174
  start-page: 71
  year: 2000
  end-page: 74
  article-title: Development of a digital image database for chest radiographs with and without a lung nodule: Receiver operating characteristic analysis of radiologists' detection of pulmonary nodules
  publication-title: AJR, Am. J. Roentgenol.
– volume: 2
  start-page: 1473
  year: 2009
  end-page: 1502
  article-title: Predicting radiological panel opinions using a panel of machine learning classifiers
  publication-title: J. Algorithms
– volume: 244
  start-page: 165
  year: 2007
  end-page: 173
  article-title: CT colonography: False‐negative interpretations
  publication-title: Radiology
– volume: 36
  start-page: 2934
  year: 2009
  end-page: 2947
  article-title: Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection
  publication-title: Med. Phys.
– volume: 3338
  start-page: 840
  year: 1998
  end-page: 844
  article-title: Variations in measured performance of CAD schemes due to database composition and scoring protocol
  publication-title: Proc. SPIE
– volume: 54
  start-page: 177
  year: 2006
  end-page: 184
  article-title: Nodule management protocol of the NELSON randomised lung cancer screening trial
  publication-title: Lung Cancer
– volume: 14
  start-page: 476
  year: 2007
  end-page: 485
  article-title: The effect of lung volume on nodule size on CT
  publication-title: Acad. Radiol.
– volume: 194
  start-page: 1539
  year: 2010
  end-page: 1546
  article-title: Normalized CT dose index of the CT scanners used in the National Lung Screening Trial
  publication-title: AJR, Am. J. Roentgenol.
– volume: 8
  start-page: 447
  year: 2001
  end-page: 450
  article-title: National Cancer Institute initiative: Lung image database resource for imaging research
  publication-title: Acad. Radiol.
– volume: 14
  start-page: 1464
  year: 2007
  end-page: 1474
  article-title: The Lung Image Database Consortium (LIDC) data collection process for nodule detection and annotation
  publication-title: Acad. Radiol.
– volume: 13
  start-page: 1254
  year: 2006
  end-page: 1265
  article-title: Evaluation of lung MDCT nodule annotations across radiologists and methods
  publication-title: Acad. Radiol.
– volume: 84
  start-page: 448
  year: 2008
  end-page: 456
  article-title: The Reference Image Database to Evaluate Response to therapy in lung cancer (RIDER) project: A resource for the development of change analysis software
  publication-title: Clin. Pharmacol. Ther.
– volume: 4
  start-page: 17
  year: 2008
  end-page: 33
  article-title: Evaluation challenges for bridging semantic gap: Shape disagreements on pulmonary nodules in the Lung Image Database Consortium
  publication-title: International Journal of Healthcare Information Systems and Informatics
– volume: 120
  start-page: 868
  year: 2007
  end-page: 874
  article-title: Risk‐based selection from the general population in a screening trial: Selection criteria, recruitment and power for the Dutch‐Belgian randomised lung cancer multi‐slice CT screening trial (NELSON)
  publication-title: Int. J. Cancer
– start-page: 431
  year: 1996
  end-page: 434
  article-title: The digital database for screening mammography
– volume: 17
  start-page: 107
  year: 2010
  end-page: 115
  article-title: Volumetric CT in lung cancer: An example for the qualification of imaging as a biomarker
  publication-title: Acad. Radiol.
– volume: 11
  start-page: 462
  year: 2004
  end-page: 475
  article-title: Assessment methodologies and statistical issues for computer‐aided diagnosis of lung nodules in computed tomography: Contemporary research topics relevant to the Lung Image Database Consortium
  publication-title: Acad. Radiol.
– volume: 68
  start-page: 347
  year: 2008
  end-page: 352
  article-title: Limited value of shape, margin and CT density in the discrimination between benign and malignant screen detected solid pulmonary nodules of the NELSON trial
  publication-title: Eur. J. Radiol.
– volume: 14
  start-page: 707
  year: 2010
  end-page: 722
  article-title: Comparing and combining algorithms for computer‐aided detection of pulmonary nodules in computed tomography scans: The ANODE09 study
  publication-title: Med. Image Anal.
– volume: 35
  start-page: 4070
  year: 2008
  end-page: 4078
  article-title: Discrete space vs. continuous space lesion boundary and area definition
  publication-title: Med. Phys.
– volume: 2
  start-page: 198
  year: 2009
  end-page: 210
  article-title: Quantitative imaging to assess tumor response to therapy: Common themes of measurement, truth data and error sources
  publication-title: Translational Oncology
– volume: 5
  start-page: 295
  year: 2010
  end-page: 305
  article-title: A comparison of ground truth estimation methods
  publication-title: International Journal of Computer Assisted Radiology and Surgery
– start-page: 3715
  year: 2009
  end-page: 3718
  article-title: A public image database to support research in computer aided diagnosis
– volume: 21
  start-page: 265
  year: 1999
  end-page: 269
  article-title: Effect of case selection on the performance of computer‐aided detection schemes
  publication-title: Med. Phys.
– volume: 14
  start-page: 1475
  year: 2007
  end-page: 1485
  article-title: The Lung Image Database Consortium (LIDC): A comparison of different size metrics for pulmonary nodule measurements
  publication-title: Acad. Radiol.
– year: 2009
  article-title: A semantic image annotation model to enable integrative translational research
– volume: 1905
  start-page: 548
  year: 1993
  end-page: 549
  article-title: Design of a common database for research in mammogram image analysis
  publication-title: Proc. SPIE
– volume: 13
  start-page: 757
  year: 2009
  end-page: 770
  article-title: A large‐scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k‐nearest‐neighbour classification
  publication-title: Med. Image Anal.
– volume: 200
  start-page: 327
  year: 1996
  end-page: 331
  article-title: Glossary of terms for CT of the lungs: Recommendations of the Nomenclature Committee of the Fleischner Society
  publication-title: Radiology
– volume: 14
  start-page: 1455
  year: 2007
  end-page: 1463
  article-title: The Lung Image Database Consortium (LIDC): Ensuring the integrity of expert‐defined “truth”
  publication-title: Acad. Radiol.
– volume: 70
  start-page: 492
  year: 2009
  end-page: 498
  article-title: Role of baseline nodule density and changes in density and nodule features in the discrimination between benign and malignant solid indeterminate pulmonary nodules
  publication-title: Eur. J. Radiol.
– start-page: 431
  volume-title: Digital Mammography '98: Proceedings of the 4th International Workshop on Digital Mammography
  year: 1998
  ident: e_1_2_7_7_1
– ident: e_1_2_7_20_1
  doi: 10.1016/j.ejrad.2008.02.022
– ident: e_1_2_7_43_1
  doi: 10.3390/a2041473
– ident: e_1_2_7_27_1
  doi: 10.1016/S1076‐6332(03)00814‐6
– ident: e_1_2_7_2_1
  doi: 10.1117/12.148620
– volume: 43
  start-page: 601
  year: 1997
  ident: e_1_2_7_3_1
  article-title: Medical image databases for CAD applications in digital mammography: Design issues
  publication-title: Stud. Health Technol. Inform.
– ident: e_1_2_7_42_1
  doi: 10.4018/jhisi.2009010102
– ident: e_1_2_7_22_1
  doi: 10.1016/j.media.2010.05.005
– volume: 67
  start-page: 53182
  year: 2002
  ident: e_1_2_7_31_1
  article-title: Standards for privacy of individually identifiable health information: Final rules
  publication-title: Fed. Regist.
– ident: e_1_2_7_16_1
  doi: 10.1002/ijc.22134
– ident: e_1_2_7_13_1
  doi: 10.1038/clpt.2008.161
– ident: e_1_2_7_25_1
  doi: 10.1016/S0140-6736(05)17784-8
– ident: e_1_2_7_38_1
  doi: 10.1016/j.acra.2007.09.005
– ident: e_1_2_7_41_1
  doi: 10.1007/s11548‐009‐0401‐3
– ident: e_1_2_7_34_1
  doi: 10.1016/j.acra.2006.07.012
– ident: e_1_2_7_9_1
  doi: 10.1118/1.3013555
– ident: e_1_2_7_35_1
  doi: 10.1016/j.acra.2007.01.008
– ident: e_1_2_7_46_1
  doi: 10.1016/j.acra.2009.06.019
– ident: e_1_2_7_21_1
  doi: 10.1016/j.media.2009.07.001
– ident: e_1_2_7_44_1
  doi: 10.1016/j.acra.2008.05.022
– start-page: 431
  volume-title: Digital Mammography ‘96: Proceedings of the Third International Workshop on Digital Mammography
  year: 1996
  ident: e_1_2_7_6_1
– ident: e_1_2_7_10_1
  doi: 10.2214/ajr.174.1.1740071
– ident: e_1_2_7_19_1
  doi: 10.1016/j.ejrad.2007.08.027
– ident: e_1_2_7_29_1
  doi: 10.1016/j.jalz.2009.02.005
– ident: e_1_2_7_32_1
  doi: 10.1148/radiology.200.2.8685321
– ident: e_1_2_7_17_1
  doi: 10.1016/j.lungcan.2006.08.006
– ident: e_1_2_7_15_1
  doi: 10.2214/AJR.09.3268
– ident: e_1_2_7_23_1
  doi: 10.1118/1.3147146
– ident: e_1_2_7_30_1
  doi: 10.1016/j.acra.2007.07.021
– ident: e_1_2_7_33_1
  doi: 10.1016/j.acra.2007.07.008
– ident: e_1_2_7_36_1
  doi: 10.1109/TSMC.1979.4310076
– ident: e_1_2_7_5_1
  doi: 10.1118/1.597287
– start-page: 3715
  year: 2009
  ident: e_1_2_7_11_1
– start-page: 431
  volume-title: Digital Mammography 2000: Proceedings of the Fifth International Workshop on Digital Mammography
  year: 2000
  ident: e_1_2_7_8_1
– ident: e_1_2_7_24_1
  doi: 10.1148/radiol.2441061122
– year: 2009
  ident: e_1_2_7_45_1
– ident: e_1_2_7_18_1
  doi: 10.1148/radiol.2411050860
– ident: e_1_2_7_37_1
  doi: 10.1016/j.acra.2007.08.006
– ident: e_1_2_7_26_1
  doi: 10.1016/S1076‐6332(03)80555‐X
– ident: e_1_2_7_14_1
  doi: 10.1007/s10278‐006‐0589‐5
– ident: e_1_2_7_12_1
  doi: 10.1593/tlo.09208
– ident: e_1_2_7_39_1
  doi: 10.1117/12.707916
– ident: e_1_2_7_40_1
  doi: 10.1118/1.2963989
– ident: e_1_2_7_4_1
  doi: 10.1117/12.310894
– ident: e_1_2_7_28_1
  doi: 10.1148/radiol.2323032035
SSID ssj0006350
Score 2.5948822
Snippet Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated...
Purpose: The development of computer‐aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated...
The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a...
Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
wiley
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 915
SubjectTerms 60 APPLIED LIFE SCIENCES
Cancer
CAT SCANNING
CLASSIFICATION
Computed tomography
computed tomography (CT)
Computer aided diagnosis
Computer software
computerised tomography
computer‐aided diagnosis (CAD)
Databases, Factual
DIAGNOSIS
Diagnosis, Computer-Assisted
diagnostic radiography
Digital radiography
Humans
interobserver variability
lung
Lung - diagnostic imaging
Lung Neoplasms - diagnostic imaging
Lung Neoplasms - pathology
lung nodule
LUNGS
medical computing
Medical image quality
Medical image reconstruction
Medical imaging
NEOPLASMS
Quality Control
Radiation Imaging Physics
Radiographic Image Interpretation, Computer-Assisted
Radiography, Thoracic
Radiologists
Reference Standards
thoracic imaging
Tomography, X-Ray Computed - methods
Tomography, X-Ray Computed - standards
Tumor Burden
VALIDATION
visual databases
XML
Title The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans
URI http://dx.doi.org/10.1118/1.3528204
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.3528204
https://www.ncbi.nlm.nih.gov/pubmed/21452728
https://www.proquest.com/docview/859759099
https://www.osti.gov/biblio/22096914
https://pubmed.ncbi.nlm.nih.gov/PMC3041807
Volume 38
WOSCitedRecordID wos000286945000038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VFAoXHi0PQ6lWgFB6MLXXTtYLpyohwlIaVaWVcrPWu2s1UmtXefSP8IeZ8asKBITEyQfP2pvsN7MzO-NvAD5wP1U24303snRahR6DK_upco0MPG6tplRc2WxCTCbRdCpPt-BL8y1MxQ_RHriRZpT2mhRcpXUXEp8K1_1PREzCiQt0myNuww5sD89GF-PWEONeWn2BIkNKIvRqYiEcftQOXtuOOgWq1SZX8_eKyYe4QVW58nWvttyWRk_-6wc9hce1N8qOK_g8gy2b78LOSZ1v34UHZYGoXuzBD8QTG6NlYPE1miA2VEtFOyCjjp_ows9W16w7joeDQ6Zy86tQkyRgMdUqlVzjrBsPz-LDz-yYkU1C-FjDWtrbu6FFVr12UpjVlV2wImeDc_YdEbF4Dhejr-eDb27d0MHVGNaErglEqnlg-zYSBl09DFbSvqZmSegUiSz1LDVoUNzInpKpZxSXygihemFogtRXwQvo5EVuXwHLPB_lOc-sluiTpBIljbABTs1PpY4c6DbrmjQrRU03rpIq6okSP6n_bgfetaI3FcXHJqF9AkdCy271paYqJL1MOMcQUPp4mzWgSVA_KemiclusFkmEEVtPoh_uwMsKQ-1LiCSeC45zFWvoagWI-nv9Tj67LCnAAy_0I0848L7F4d_mvkHqtpjfSSQ3JnPgY4nOPz8nOTmly-t_FXwDj6oTeCr-2YfOcr6yb-G-vl3OFvMDuCem0UGtsz8Bgio-Cw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NHbC98DEGKwywAKHuIZA4SRMjXqaWahFtNY1O2pvl2I5WaUumfuwf4R_mLkkzFQpC4ikPOSdu_bvzne_yO4D33EuVzXjXiS2dVqHH4IhuqhwjfJdbqykVVzabiMbj-OJCnG7Bl9W3MBU_RHPgRppR2mtScDqQrrWcKte9j8RMwokMdDtAGIUt2O6fDc6HjSXGzbT6BEUElEUIa2YhHP6pGby2H7UK1KtNvubvJZM7uENVyfJ1t7bclwaP_u8XPYaHtT_KjisAPYEtm-_Bg1Gdcd-D-2WJqJ4_hR-IKDZE28CSazRCrK8WivZARj0_0YmfLq9ZZ5j0e0dM5eZXoVWagCVUrVSyjbNO0j9Ljj6zY0ZWCQFkDWuIb--GFln12nFhlld2zoqc9SbsO2Jivg_ng6-T3olTt3RwNAY2gWP8KNXct10bRwadPQxX0q6mdknoFkVZ6lpq0aC4EaESqWsUF8pEkQqDwPipp_xn0MqL3B4Ay1wP5TnPrBbolaQCJU1kfZyalwodt6GzWli5Wipqu3Elq7gnlp6s_-42vG1EbyqSj01Ch4QOSetu9aWmOiS9kJxjECg8vM1WqJGooZR2UbktlnMZY8wWCvTE2_C8AlHzEqKJ5xHHuUZr8GoEiPx7_U4-vSxJwH038GI3asO7Boh_m_sGqdtidichb0zWhg8lPP_8HDk6pcuLfxV8Azsnk9FQDpPxt5ewW53HUynQIbQWs6V9Bff07WI6n72uVfcnBbxBEw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemDgYvfAwYgQEWINQ9hCXOpxEvU0NFRFdVY5P2Zjm2o1Xakqlp94_wD3OXr6lQEBJPecg5cevfne98l98R8p65mTQ5C-3Y4GkVeAw2DzNpa-45zBiFqbi62UQ0ncbn53y2RT5338I0_BD9gRtqRm2vUcHNtc5bLcfKdfcjMpMwJAPd9gMeglpuJyfjs0lviWEzbT5B4T5mEYKWWQiGH_aD1_ajQQl6tcnX_L1k8h7sUE2yfN2trfel8cP_-0WPyIPWH6VHDYAeky1T7JKd4zbjvkvu1iWiqnpCfgCi6ARsA02vwAjRRC4l7oEUe36CEz9fXdHhJE1GB1QW-lehLk1AU6xWqtnG6TBNTtKDT_SIolUCABlNe-Lb26Fl3rx2WurVpaloWdDRKf0OmKiekrPxl9PRV7tt6WArCGx8W3tRpphnQhNHGpw9CFeyUGG7JHCLojxzDLZokEzzQPLM0ZJxqaNIBr6vvcyV3jMyKMrCPCc0d1yQZyw3ioNXknGQ1JHxYGpuxlVskWG3sKJbKmy7cSmauCcWrmj_bou87UWvG5KPTUL7iA6B627UhcI6JLUUjEEQyF24TTvUCNBQTLvIwpSrSsQQswUcPHGL7DUg6l-CNPEsYjDXaA1evQCSf6_fKeYXNQm45_hu7EQWedcD8W9z3yB1Uy5uJQQg0SIfanj--TnieIaXF_8q-IbszJKxmKTTby_J_eY4HiuB9slguViZV-SOulnOq8XrVnN_AjDqQI4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Lung+Image+Database+Consortium+%28LIDC%29+and+Image+Database+Resource+Initiative+%28IDRI%29%3A+A+Completed+Reference+Database+of+Lung+Nodules+on+CT+Scans&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Armato%2C+Samuel+G.&rft.au=McLennan%2C+Geoffrey&rft.au=Bidaut%2C+Luc&rft.au=McNitt%E2%80%90Gray%2C+Michael+F.&rft.date=2011-02-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=38&rft.issue=2&rft.spage=915&rft.epage=931&rft_id=info:doi/10.1118%2F1.3528204&rft.externalDBID=n%2Fa&rft.externalDocID=10_1118_1_3528204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon