Reduced-order modeling for stochastic large-scale and time-dependent flow problems using deep spatial and temporal convolutional autoencoders

A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear reduced-order model for stochastic spatiotemporal large-scale flow problems. The objective is to perform accurate and rapid uncertainty analyses of the flow outpu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced modeling and simulation in engineering sciences Ročník 10; číslo 1; s. 7 - 27
Hlavní autoři: Abdedou, Azzedine, Soulaimani, Azzeddine
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 19.05.2023
Springer Nature B.V
Springer
SpringerOpen
Témata:
ISSN:2213-7467, 2213-7467
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear reduced-order model for stochastic spatiotemporal large-scale flow problems. The objective is to perform accurate and rapid uncertainty analyses of the flow outputs of interest for which the input parameters are deemed uncertain. The data are constituted from a set of high-fidelity snapshots, collected using an inhouse high-fidelity flow solver, which correspond to a sample of the uncertain input parameters. The method uses a 1D-convolutional autoencoder to reduce the spatial dimension of the unstructured meshes used by the flow solver. Another convolutional autoencoder is used for the time compression. The encoded latent vectors, generated from the two compression levels, are then mapped to the input parameters using a regression-based multilayer perceptron. The proposed model allows for rapid predictions for unseen parameter values, allowing the output statistical moments to be computed efficiently. The accuracy of the proposed approach is compared to that of the linear reduced-order technique based on an artificial neural network through two benchmark tests (the one-dimensional Burgers and Stoker’s solutions) and a hypothetical dam break flow problem, with an unstructured mesh and over a complex bathymetry river. The numerical results show that the proposed methods present strong predictive capabilities to accurately approximate the statistical moments of the outputs. In particular, the predicted statistical moments are oscillations-free, unlike those obtained with the traditional proper orthogonal decomposition method. The proposed reduction framework is simple to implement and can be applied to other parametric and time-dependent problems governed by partial differential equations, which are commonly encountered in many engineering and science problems.
AbstractList A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear reduced-order model for stochastic spatiotemporal large-scale flow problems. The objective is to perform accurate and rapid uncertainty analyses of the flow outputs of interest for which the input parameters are deemed uncertain. The data are constituted from a set of high-fidelity snapshots, collected using an inhouse high-fidelity flow solver, which correspond to a sample of the uncertain input parameters. The method uses a 1D-convolutional autoencoder to reduce the spatial dimension of the unstructured meshes used by the flow solver. Another convolutional autoencoder is used for the time compression. The encoded latent vectors, generated from the two compression levels, are then mapped to the input parameters using a regression-based multilayer perceptron. The proposed model allows for rapid predictions for unseen parameter values, allowing the output statistical moments to be computed efficiently. The accuracy of the proposed approach is compared to that of the linear reduced-order technique based on an artificial neural network through two benchmark tests (the one-dimensional Burgers and Stoker’s solutions) and a hypothetical dam break flow problem, with an unstructured mesh and over a complex bathymetry river. The numerical results show that the proposed methods present strong predictive capabilities to accurately approximate the statistical moments of the outputs. In particular, the predicted statistical moments are oscillations-free, unlike those obtained with the traditional proper orthogonal decomposition method. The proposed reduction framework is simple to implement and can be applied to other parametric and time-dependent problems governed by partial differential equations, which are commonly encountered in many engineering and science problems.
Abstract A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear reduced-order model for stochastic spatiotemporal large-scale flow problems. The objective is to perform accurate and rapid uncertainty analyses of the flow outputs of interest for which the input parameters are deemed uncertain. The data are constituted from a set of high-fidelity snapshots, collected using an inhouse high-fidelity flow solver, which correspond to a sample of the uncertain input parameters. The method uses a 1D-convolutional autoencoder to reduce the spatial dimension of the unstructured meshes used by the flow solver. Another convolutional autoencoder is used for the time compression. The encoded latent vectors, generated from the two compression levels, are then mapped to the input parameters using a regression-based multilayer perceptron. The proposed model allows for rapid predictions for unseen parameter values, allowing the output statistical moments to be computed efficiently. The accuracy of the proposed approach is compared to that of the linear reduced-order technique based on an artificial neural network through two benchmark tests (the one-dimensional Burgers and Stoker’s solutions) and a hypothetical dam break flow problem, with an unstructured mesh and over a complex bathymetry river. The numerical results show that the proposed methods present strong predictive capabilities to accurately approximate the statistical moments of the outputs. In particular, the predicted statistical moments are oscillations-free, unlike those obtained with the traditional proper orthogonal decomposition method. The proposed reduction framework is simple to implement and can be applied to other parametric and time-dependent problems governed by partial differential equations, which are commonly encountered in many engineering and science problems.
A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear reduced-order model for stochastic spatiotemporal large-scale flow problems. The objective is to perform accurate and rapid uncertainty analyses of the flow outputs of interest for which the input parameters are deemed uncertain. The data are constituted from a set of high-fidelity snapshots, collected using an inhouse high-fidelity flow solver, which correspond to a sample of the uncertain input parameters. The method uses a 1D-convolutional autoencoder to reduce the spatial dimension of the unstructured meshes used by the flow solver. Another convolutional autoencoder is used for the time compression. The encoded latent vectors, generated from the two compression levels, are then mapped to the input parameters using a regression-based multilayer perceptron. The proposed model allows for rapid predictions for unseen parameter values, allowing the output statistical moments to be computed efficiently. The accuracy of the proposed approach is compared to that of the linear reduced-order technique based on an artificial neural network through two benchmark tests (the one-dimensional Burgers and Stoker's solutions) and a hypothetical dam break flow problem, with an unstructured mesh and over a complex bathymetry river. The numerical results show that the proposed methods present strong predictive capabilities to accurately approximate the statistical moments of the outputs. In particular, the predicted statistical moments are oscillations-free, unlike those obtained with the traditional proper orthogonal decomposition method. The proposed reduction framework is simple to implement and can be applied to other parametric and time-dependent problems governed by partial differential equations, which are commonly encountered in many engineering and science problems.A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear reduced-order model for stochastic spatiotemporal large-scale flow problems. The objective is to perform accurate and rapid uncertainty analyses of the flow outputs of interest for which the input parameters are deemed uncertain. The data are constituted from a set of high-fidelity snapshots, collected using an inhouse high-fidelity flow solver, which correspond to a sample of the uncertain input parameters. The method uses a 1D-convolutional autoencoder to reduce the spatial dimension of the unstructured meshes used by the flow solver. Another convolutional autoencoder is used for the time compression. The encoded latent vectors, generated from the two compression levels, are then mapped to the input parameters using a regression-based multilayer perceptron. The proposed model allows for rapid predictions for unseen parameter values, allowing the output statistical moments to be computed efficiently. The accuracy of the proposed approach is compared to that of the linear reduced-order technique based on an artificial neural network through two benchmark tests (the one-dimensional Burgers and Stoker's solutions) and a hypothetical dam break flow problem, with an unstructured mesh and over a complex bathymetry river. The numerical results show that the proposed methods present strong predictive capabilities to accurately approximate the statistical moments of the outputs. In particular, the predicted statistical moments are oscillations-free, unlike those obtained with the traditional proper orthogonal decomposition method. The proposed reduction framework is simple to implement and can be applied to other parametric and time-dependent problems governed by partial differential equations, which are commonly encountered in many engineering and science problems.
ArticleNumber 7
Author Abdedou, Azzedine
Soulaimani, Azzeddine
Author_xml – sequence: 1
  givenname: Azzedine
  surname: Abdedou
  fullname: Abdedou, Azzedine
  organization: Department of Mechanical Engineering, Ecole de technologie superieure
– sequence: 2
  givenname: Azzeddine
  orcidid: 0000-0003-3082-2155
  surname: Soulaimani
  fullname: Soulaimani, Azzeddine
  email: azzeddine.soulaimani@etsmtl.ca
  organization: Department of Mechanical Engineering, Ecole de technologie superieure
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37215229$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04513966$$DView record in HAL
BookMark eNp9Ustu1TAQjVARLaU_wAJFYgOLgJ9xskJVBbTSlZAQrC3HHt-bK8cOdnIrPoJ_xmlaaLvoYmR75pwzD8_L4sgHD0XxGqMPGDf1x8QQJbRCiyHCWIWeFSeEYFoJVouje_fj4iylPUII15RhUb8ojqkgmBPSnhR_voOZNZgqRAOxHIIB1_ttaUMs0xT0TqWp16VTcQtV0spBqbwpp36AysAI3oCfSuvCdTnG0DkYUjmnRcEAjGUa1dQrt3JgGEPMDx38Ibh56oNfQvMUwOucOKZXxXOrXIKz2_O0-Pnl84-Ly2rz7evVxfmm0lzwqTKt4JooizVhlIO1qBFEW26bRjRWKwSKcco6pChqGcPQAiCLkVZtyxU19LS4WnVNUHs5xn5Q8bcMqpc3jhC3UsXctwMpOgpCUUXAUmaI6YjuVCO6jhrMuKVZ69OqNc7dAEbneeQmH4g-jPh-J7fhIDHCbZPLywrvV4XdI97l-UYuPsQ4pm1dH3DGvrvNFsOvGdIkhz5pcE55CHOSpMEN4rwRS2FvH0H3YY555Dco3vAaC55Rb-6X_y__3YpkQLMCdAwpRbBS95NaPi9307vchlwWUq4LKdFiy0JKlKnkEfVO_UkSXUkpg_0W4v-yn2D9BcXU9T4
CitedBy_id crossref_primary_10_1016_j_cmpb_2024_108466
Cites_doi 10.1038/nature14539
10.1016/j.cma.2016.12.033
10.1016/j.cpc.2021.108190
10.1007/s40430-017-0776-y
10.1162/neco.1997.9.8.1735
10.1007/s10915-021-01462-7
10.1137/18M1177846
10.1016/j.jocs.2022.101688
10.1016/j.eswa.2022.117038
10.1002/cjce.23669
10.1016/j.cma.2018.10.029
10.1016/j.camwa.2021.01.015
10.1016/j.camwa.2021.10.006
10.1016/j.apenergy.2020.115563
10.1016/j.jcp.2018.02.037
10.1146/annurev.fl.25.010193.002543
10.1016/j.jcp.2021.110841
10.1016/j.jcp.2020.109854
10.1016/j.jprocont.2020.08.002
10.3390/en13143685
10.1016/j.apm.2013.04.025
10.1016/j.cma.2011.11.012
10.1016/j.engappai.2021.104652
10.1016/j.ress.2019.106733
10.1016/j.jtice.2021.04.062
10.1016/j.cma.2020.113379
10.1016/j.jcp.2019.01.031
10.1063/5.0039986
10.1090/qam/910462
10.1051/m2an/2014054
10.1109/ICCSRE.2019.8807741
10.1002/fld.3741
10.2139/ssrn.4229792
10.2514/6.2022-0081
10.1007/s00158-009-0434-9
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023.
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023.
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
1XC
VOOES
5PM
DOA
DOI 10.1186/s40323-023-00244-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering collection
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
MEDLINE - Academic
DatabaseTitleList
CrossRef


Publicly Available Content Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2213-7467
EndPage 27
ExternalDocumentID oai_doaj_org_article_7b3e7a3a2ef34d2db2cba87bb3d145f3
PMC10198944
oai:HAL:hal-04513966v1
37215229
10_1186_s40323_023_00244_0
Genre Journal Article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN-2-21-02693; RDCPJ 491880-15
  funderid: http://dx.doi.org/10.13039/501100000038
– fundername: ;
  grantid: RGPIN-2-21-02693; RDCPJ 491880-15
GroupedDBID -A0
0R~
5VS
8FE
8FG
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABJCF
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ARCSS
ASPBG
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
M7S
M~E
OK1
P62
PIMPY
PROAC
PTHSS
RSV
SOJ
TUS
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
AHSBF
EJD
H13
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c575t-d975c2af1c2435eff0872cf5f8878fca0ea4534b0a309441e9ee0f10ca995a3d3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001044506900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2213-7467
IngestDate Fri Oct 03 12:35:04 EDT 2025
Tue Nov 04 02:07:38 EST 2025
Sat Nov 29 15:03:47 EST 2025
Sun Nov 09 11:35:51 EST 2025
Tue Sep 30 18:40:01 EDT 2025
Wed Feb 19 02:02:36 EST 2025
Sat Nov 29 03:47:45 EST 2025
Tue Nov 18 21:41:36 EST 2025
Fri Feb 21 02:44:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Uncertainty propagation
Convolutional autoencoders
Reduced-order modeling
Language English
License The Author(s) 2023.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-d975c2af1c2435eff0872cf5f8878fca0ea4534b0a309441e9ee0f10ca995a3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3082-2155
OpenAccessLink https://doaj.org/article/7b3e7a3a2ef34d2db2cba87bb3d145f3
PMID 37215229
PQID 2815856175
PQPubID 2034555
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_7b3e7a3a2ef34d2db2cba87bb3d145f3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10198944
hal_primary_oai_HAL_hal_04513966v1
proquest_miscellaneous_2818055873
proquest_journals_2815856175
pubmed_primary_37215229
crossref_citationtrail_10_1186_s40323_023_00244_0
crossref_primary_10_1186_s40323_023_00244_0
springer_journals_10_1186_s40323_023_00244_0
PublicationCentury 2000
PublicationDate 2023-05-19
PublicationDateYYYYMMDD 2023-05-19
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-19
  day: 19
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Netherlands
– name: Heidelberg
PublicationTitle Advanced modeling and simulation in engineering sciences
PublicationTitleAbbrev Adv. Model. and Simul. in Eng. Sci
PublicationTitleAlternate Adv Model Simul Eng Sci
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Springer
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
– name: SpringerOpen
References Zokagoa, Soulaïmani (CR7) 2012; 221
Sun, Choi (CR11) 2021; 87
Berkooz, Holmes, Lumley (CR4) 1993; 25
Xiao, Fang, Pain, Navon (CR8) 2017; 317
LeCun, Bengio, Hinton (CR20) 2015; 521
Theodoridis (CR30) 2015
Walton, Hassan, Morgan (CR9) 2013; 37
Taddei, Perotto, Quarteroni (CR17) 2015; 49
CR18
Kalinina, Spada, Vetsch, Marelli, Whealton, Burgherr, Sudret (CR2) 2020; 13
Jiayang, Duraisamy (CR32) 2020; 372
CR39
Hesthaven, Ubbiali (CR15) 2018; 363
CR38
Westermann, Welzel, Evins (CR37) 2020; 278
He, Shi, Tan, Song, Zhu (CR27) 2021; 122
Seyedashraf, Akhtari (CR44) 2017; 39
Abdedou, Soulaïmani (CR13) 2021; 102
CR35
CR34
Hochreiter, Schmidhuber (CR31) 1997; 9
CR10
Jacquier, Abdedou, Delmas, Soulaïmani (CR14) 2021; 424
Burgers (CR40) 1948
Zhu, Shi, Song, Tao, Tan (CR21) 2020; 94
Maulik, Lusch, Balaprakash (CR36) 2021; 33
Rezaeiravesh, Vinuesa, Schlatter (CR1) 2022; 62
Dutta, Rivera-Casillas, Styles, Farthing (CR33) 2022; 27
Otto, Rowley (CR25) 2019; 18
Stoker (CR42) 1957; 2
Quarteroni, Manzoni, Negri (CR3) 2015
CR28
Zhu, Shi, Song, Tan, Tao (CR22) 2020; 98
Kim, Choi, Widemann, Zohdi (CR24) 2022; 451
CR26
Delmas, Soulaïmani (CR45) 2022; 271
N, Kalogeris, P (CR19) 2022; 109
El Moçayd, Mohamed, Ouazar, Seaid (CR12) 2020; 195
CR43
Chatterjee (CR6) 2000; 78
Eivazi, LeClainche, Hoyas, Vinuesa (CR29) 2022; 202
Wang, Hesthaven, Ray (CR16) 2019; 384
Guo, Hesthaven (CR41) 2019; 345
Fresca, Dede, Manzoni (CR23) 2021; 87
Sirovich (CR5) 1987; 45
S Walton (244_CR9) 2013; 37
X Sun (244_CR11) 2021; 87
Y Kim (244_CR24) 2022; 451
Q Wang (244_CR16) 2019; 384
J Zhu (244_CR22) 2020; 98
Y LeCun (244_CR20) 2015; 521
S Fresca (244_CR23) 2021; 87
Y He (244_CR27) 2021; 122
A Kalinina (244_CR2) 2020; 13
S N (244_CR19) 2022; 109
244_CR43
SE Otto (244_CR25) 2019; 18
244_CR38
244_CR18
244_CR39
S Hochreiter (244_CR31) 1997; 9
P Jacquier (244_CR14) 2021; 424
J-M Zokagoa (244_CR7) 2012; 221
S Dutta (244_CR33) 2022; 27
A Abdedou (244_CR13) 2021; 102
H Eivazi (244_CR29) 2022; 202
O Seyedashraf (244_CR44) 2017; 39
J Zhu (244_CR21) 2020; 94
X Jiayang (244_CR32) 2020; 372
244_CR34
L Sirovich (244_CR5) 1987; 45
D Xiao (244_CR8) 2017; 317
A Quarteroni (244_CR3) 2015
N El Moçayd (244_CR12) 2020; 195
244_CR35
R Maulik (244_CR36) 2021; 33
JM Burgers (244_CR40) 1948
M Guo (244_CR41) 2019; 345
S Theodoridis (244_CR30) 2015
JJ Stoker (244_CR42) 1957; 2
244_CR10
P Westermann (244_CR37) 2020; 278
T Taddei (244_CR17) 2015; 49
JS Hesthaven (244_CR15) 2018; 363
244_CR26
244_CR28
S Rezaeiravesh (244_CR1) 2022; 62
A Chatterjee (244_CR6) 2000; 78
V Delmas (244_CR45) 2022; 271
G Berkooz (244_CR4) 1993; 25
References_xml – volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR20
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: CR18
– ident: CR43
– volume: 317
  start-page: 868
  year: 2017
  end-page: 889
  ident: CR8
  article-title: A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2016.12.033
– volume: 271
  year: 2022
  ident: CR45
  article-title: Multi-gpu implementation of a time-explicit finite volume solver using cuda and a cuda-aware version of openmpi with application to shallow water flows
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2021.108190
– volume: 39
  start-page: 4393
  issue: 11
  year: 2017
  end-page: 401
  ident: CR44
  article-title: Two-dimensional numerical modeling of dam-break flow using a new tvd finite-element scheme
  publication-title: J Brazil Soc Mech Sci Eng.
  doi: 10.1007/s40430-017-0776-y
– year: 2015
  ident: CR3
  publication-title: Reduced basis methods for partial differential equations: an introduction
– year: 2015
  ident: CR30
  publication-title: Machine learning: a Bayesian and optimization perspective
– ident: CR39
– volume: 78
  start-page: 808
  year: 2000
  end-page: 817
  ident: CR6
  article-title: An introduction to the proper orthogonal decomposition
  publication-title: Curr Sci.
– volume: 27
  start-page: 34
  issue: 3
  year: 2022
  ident: CR33
  article-title: Reduced order modeling using advection-aware autoencoders
  publication-title: Math Comput Appl
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 80
  ident: CR31
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: CR10
– volume: 87
  start-page: 1
  year: 2021
  end-page: 36
  ident: CR23
  article-title: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized pdes
  publication-title: J Sci Comput
  doi: 10.1007/s10915-021-01462-7
– volume: 18
  start-page: 558
  issue: 1
  year: 2019
  end-page: 593
  ident: CR25
  article-title: Linearly recurrent autoencoder networks for learning dynamics
  publication-title: SIAM J Appl Dynam Syst
  doi: 10.1137/18M1177846
– ident: CR35
– volume: 62
  year: 2022
  ident: CR1
  article-title: An uncertainty-quantification framework for assessing accuracy, sensitivity, and robustness in computational fluid dynamics
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2022.101688
– start-page: 171
  year: 1948
  end-page: 199
  ident: CR40
  article-title: A mathematical model illustrating the theory of turbulence
  publication-title: Advances in applied mechanics
– volume: 202
  year: 2022
  ident: CR29
  article-title: Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows
  publication-title: Expert Syst Appl.
  doi: 10.1016/j.eswa.2022.117038
– volume: 98
  start-page: 919
  issue: 4
  year: 2020
  end-page: 933
  ident: CR22
  article-title: Deep neural network based recursive feature learning for nonlinear dynamic process monitoring
  publication-title: Can J Chem Eng
  doi: 10.1002/cjce.23669
– volume: 345
  start-page: 75
  year: 2019
  end-page: 99
  ident: CR41
  article-title: Data-driven reduced order modeling for time-dependent problems
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.10.029
– volume: 87
  start-page: 50
  year: 2021
  end-page: 64
  ident: CR11
  article-title: Non-intrusive reduced-order modeling for uncertainty quantification of space-time-dependent parameterized problems
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2021.01.015
– volume: 102
  start-page: 187
  year: 2021
  end-page: 205
  ident: CR13
  article-title: A non-intrusive reduced-order modeling for uncertainty propagation of time-dependent problems using a b-splines bézier elements-based method and proper orthogonal decomposition: Application to dam-break flows
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2021.10.006
– volume: 278
  year: 2020
  ident: CR37
  article-title: Using a deep temporal convolutional network as a building energy surrogate model that spans multiple climate zones
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115563
– volume: 363
  start-page: 55
  year: 2018
  end-page: 78
  ident: CR15
  article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2018.02.037
– volume: 25
  start-page: 539
  issue: 1
  year: 1993
  end-page: 575
  ident: CR4
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fl.25.010193.002543
– volume: 451
  year: 2022
  ident: CR24
  article-title: A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2021.110841
– volume: 424
  year: 2021
  ident: CR14
  article-title: Non-intrusive reduced-order modeling using uncertainty-aware deep neural networks and proper orthogonal decomposition: Application to flood modeling
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2020.109854
– volume: 94
  start-page: 12
  year: 2020
  end-page: 25
  ident: CR21
  article-title: Information concentrated variational auto-encoder for quality-related nonlinear process monitoring
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2020.08.002
– ident: CR38
– volume: 13
  start-page: 3685
  issue: 14
  year: 2020
  ident: CR2
  article-title: Metamodeling for uncertainty quantification of a flood wave model for concrete dam breaks
  publication-title: Energies
  doi: 10.3390/en13143685
– volume: 37
  start-page: 8930
  issue: 20–21
  year: 2013
  end-page: 8945
  ident: CR9
  article-title: Reduced order modelling for unsteady fluid flow using proper orthogonal decomposition and radial basis functions
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2013.04.025
– volume: 221
  start-page: 1
  year: 2012
  end-page: 23
  ident: CR7
  article-title: A pod-based reduced-order model for free surface shallow water flows over real bathymetries for monte-carlo-type applications
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2011.11.012
– volume: 2
  start-page: 5
  year: 1957
  ident: CR42
  article-title: Water waves: the mathematical theory with applications
  publication-title: Interscience, New York.
– volume: 109
  year: 2022
  ident: CR19
  article-title: Non-intrusive surrogate modeling for parametrized time-dependent partial differential equations using convolutional autoencoders
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2021.104652
– volume: 195
  year: 2020
  ident: CR12
  article-title: Stochastic model reduction for polynomial chaos expansion of acoustic waves using proper orthogonal decomposition
  publication-title: Reliabil Eng Syst Saf
  doi: 10.1016/j.ress.2019.106733
– volume: 122
  start-page: 78
  year: 2021
  end-page: 84
  ident: CR27
  article-title: Multiblock temporal convolution network-based temporal-correlated feature learning for fault diagnosis of multivariate processes
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2021.04.062
– volume: 372
  year: 2020
  ident: CR32
  article-title: Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics
  publication-title: Comput Methods Appl Mech Eng.
  doi: 10.1016/j.cma.2020.113379
– ident: CR34
– volume: 384
  start-page: 289
  year: 2019
  end-page: 307
  ident: CR16
  article-title: Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2019.01.031
– ident: CR28
– ident: CR26
– volume: 33
  issue: 3
  year: 2021
  ident: CR36
  article-title: Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders
  publication-title: Phys Fluids.
  doi: 10.1063/5.0039986
– volume: 45
  start-page: 561
  issue: 3
  year: 1987
  end-page: 571
  ident: CR5
  article-title: Turbulence and the dynamics of coherent structures. i. coherent structures
  publication-title: Quart Appl Math
  doi: 10.1090/qam/910462
– volume: 49
  start-page: 787
  issue: 3
  year: 2015
  end-page: 814
  ident: CR17
  article-title: Reduced basis techniques for nonlinear conservation laws
  publication-title: ESAIM Math Modell Numer Anal
  doi: 10.1051/m2an/2014054
– volume: 372
  year: 2020
  ident: 244_CR32
  publication-title: Comput Methods Appl Mech Eng.
  doi: 10.1016/j.cma.2020.113379
– volume: 18
  start-page: 558
  issue: 1
  year: 2019
  ident: 244_CR25
  publication-title: SIAM J Appl Dynam Syst
  doi: 10.1137/18M1177846
– volume: 202
  year: 2022
  ident: 244_CR29
  publication-title: Expert Syst Appl.
  doi: 10.1016/j.eswa.2022.117038
– ident: 244_CR39
– volume: 221
  start-page: 1
  year: 2012
  ident: 244_CR7
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2011.11.012
– volume-title: Reduced basis methods for partial differential equations: an introduction
  year: 2015
  ident: 244_CR3
– volume: 195
  year: 2020
  ident: 244_CR12
  publication-title: Reliabil Eng Syst Saf
  doi: 10.1016/j.ress.2019.106733
– volume: 94
  start-page: 12
  year: 2020
  ident: 244_CR21
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2020.08.002
– ident: 244_CR35
  doi: 10.1109/ICCSRE.2019.8807741
– volume: 27
  start-page: 34
  issue: 3
  year: 2022
  ident: 244_CR33
  publication-title: Math Comput Appl
– volume: 345
  start-page: 75
  year: 2019
  ident: 244_CR41
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.10.029
– volume: 62
  year: 2022
  ident: 244_CR1
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2022.101688
– volume: 37
  start-page: 8930
  issue: 20–21
  year: 2013
  ident: 244_CR9
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2013.04.025
– ident: 244_CR43
  doi: 10.1002/fld.3741
– volume: 33
  issue: 3
  year: 2021
  ident: 244_CR36
  publication-title: Phys Fluids.
  doi: 10.1063/5.0039986
– volume: 109
  year: 2022
  ident: 244_CR19
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2021.104652
– volume: 45
  start-page: 561
  issue: 3
  year: 1987
  ident: 244_CR5
  publication-title: Quart Appl Math
  doi: 10.1090/qam/910462
– ident: 244_CR34
  doi: 10.2139/ssrn.4229792
– volume: 87
  start-page: 1
  year: 2021
  ident: 244_CR23
  publication-title: J Sci Comput
  doi: 10.1007/s10915-021-01462-7
– volume: 122
  start-page: 78
  year: 2021
  ident: 244_CR27
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2021.04.062
– volume: 87
  start-page: 50
  year: 2021
  ident: 244_CR11
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2021.01.015
– start-page: 171
  volume-title: Advances in applied mechanics
  year: 1948
  ident: 244_CR40
– volume: 25
  start-page: 539
  issue: 1
  year: 1993
  ident: 244_CR4
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fl.25.010193.002543
– volume: 317
  start-page: 868
  year: 2017
  ident: 244_CR8
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2016.12.033
– ident: 244_CR18
– volume: 271
  year: 2022
  ident: 244_CR45
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2021.108190
– volume: 424
  year: 2021
  ident: 244_CR14
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2020.109854
– ident: 244_CR38
– volume: 78
  start-page: 808
  year: 2000
  ident: 244_CR6
  publication-title: Curr Sci.
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 244_CR20
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 49
  start-page: 787
  issue: 3
  year: 2015
  ident: 244_CR17
  publication-title: ESAIM Math Modell Numer Anal
  doi: 10.1051/m2an/2014054
– volume: 2
  start-page: 5
  year: 1957
  ident: 244_CR42
  publication-title: Interscience, New York.
– volume: 13
  start-page: 3685
  issue: 14
  year: 2020
  ident: 244_CR2
  publication-title: Energies
  doi: 10.3390/en13143685
– ident: 244_CR28
– volume: 278
  year: 2020
  ident: 244_CR37
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115563
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 244_CR31
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 363
  start-page: 55
  year: 2018
  ident: 244_CR15
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2018.02.037
– volume: 98
  start-page: 919
  issue: 4
  year: 2020
  ident: 244_CR22
  publication-title: Can J Chem Eng
  doi: 10.1002/cjce.23669
– volume-title: Machine learning: a Bayesian and optimization perspective
  year: 2015
  ident: 244_CR30
– ident: 244_CR26
  doi: 10.2514/6.2022-0081
– volume: 384
  start-page: 289
  year: 2019
  ident: 244_CR16
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2019.01.031
– volume: 39
  start-page: 4393
  issue: 11
  year: 2017
  ident: 244_CR44
  publication-title: J Brazil Soc Mech Sci Eng.
  doi: 10.1007/s40430-017-0776-y
– volume: 451
  year: 2022
  ident: 244_CR24
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2021.110841
– ident: 244_CR10
  doi: 10.1007/s00158-009-0434-9
– volume: 102
  start-page: 187
  year: 2021
  ident: 244_CR13
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2021.10.006
SSID ssj0001634176
Score 2.2410114
Snippet A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear reduced-order model...
Abstract A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7
SubjectTerms Accuracy
Artificial neural networks
Classical and Continuum Physics
Computational Science and Engineering
Convolutional autoencoders
Deep learning
Engineering
Engineering Sciences
Finite element method
Mathematical models
Multilayer perceptrons
Parameter uncertainty
Partial differential equations
Proper Orthogonal Decomposition
Reduced order models
Reduced-order modeling
Research Article
Solvers
Statistical analysis
Theoretical and Applied Mechanics
Time compression
Time dependence
Uncertainty analysis
Uncertainty propagation
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLagcIADOzRQkEHcwGriJXFOqCCqHqoKsUi9RV47lUbJMJlpfwX_mfc8yQxDRS8ccontxI7fZvvL9wh5qwJ4aedhmRpkyaTOFbMKga6qMh7C82htInE9rk5O9Olp_WXYcOsHWOVoE5Oh9p3DPfJ9rguIbMHfqg-znwyzRuHp6pBC4ya5hSwJRYLufdvssZRgo6ty_FdGl_u9zAXHg0u4wDtJlm_5o0TbD15mgqDIqxHnVeDkX6enySkd3v_f4Twg94ZwlB6s5OchuRHaR-TuHySFj8mvr8juGjxLLJ00pc6BAgrRLoXI0U0MUj3TKULKWQ9THqhpPcWk9WxMsbugcdpd0iF7TU8RbX9GfQgz2iOkG7qQ2qx4sqYUsfCDTmDRctEh3yZirp-QH4efv386YkMSB-YgElwwX1fKcRMLxyEyCzHmuuIuqgjWTUdn8mCkEtLmRsBKUxahDiGPRe5MXSsjvHhKdtquDbuE8lg7BxZWexCs2oY6WmHhmaV0uBdTZKQYp7JxA8M5JtqYNmmlo8tmNf1NjhdOf5Nn5N26zWzF73Ft7Y8oIeuayM2dbnTzs2ZQ9aayIlRGGB6ikJ57y501urJW-EKqKDLyBuRr6xlHB8cN3kOyHwEL0AsYy94oN81gVfpmIzQZeb0uBnuAhzymDd0y1QGFU7qC9zxbSev6VaLCLMa8zojekuOtvmyXtOeTxDkOlhup-mVG3o8iv-nXvz_Y8-uH8YLc4UkXFSvqPbKzmC_DS3LbXSzO-_mrpMy_AfNqU0o
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQ4QAH3o9AQQZxg4jEj8Q-loqqh6pCCKTeIj-7lVZJtcmWX9H_3BknWVgKSHDIJbYTx5kZz9ifvyHkrQwwSzsPYWoQVS5UIXMrEegqa-PBPY_WJhLXo_r4WJ2c6M_TobB-RrvPW5LJUie1VtWHXhSc4Z4jXDCxiBwC9ZuyVBqBfPvTGYe0slKBZa6r-YTMb5tuzUKJrB_mlgVCIa_7mdfhkr_smaap6ODe_33EfXJ3cj3p3igrD8iN0D4kd34iJHxELr8gk2vweWLkpClNDhRQ8GwpeIluYZDWmS4RPp738HsDNa2nmKA-n9PpDjQuu-90ylTTU0TWn1IfwjntEb4NXUhtRk6sJUXc-yT_WLQeOuTWRHz1Y_Lt4NPX_cN8StiQO_D6htzrWjpmYukYeGEhxkLVzEUZwZKp6EwRjJBc2MJwiCpFGXQIRSwLZ7SWhnv-hOy0XRueEcqidg6sqfIgRNoGHS238MxKOFx3KTNSzj-wcRObOSbVWDYpqlFVMw51U-CFQ90UGXm3aXM-cnn8tfZHlItNTeThTje61WkzqXVTWx5qww0LkQvPvGXOGlVby30pZOQZeQNStfWMw72jBu8hsQ-HYPMCvmV3FrpmsiB9w1QJkRz4lzIjrzfFoPu4oWPa0K1THVAuqWp4z9NRRjev4jVmLGY6I2pLerf6sl3Sni0SvzhYaaTlFxl5Pwvxj379ecCe_1v1F-Q2S3og81Lvkp1htQ4vyS13MZz1q1dJpa8AnHhIdQ
  priority: 102
  providerName: Springer Nature
Title Reduced-order modeling for stochastic large-scale and time-dependent flow problems using deep spatial and temporal convolutional autoencoders
URI https://link.springer.com/article/10.1186/s40323-023-00244-0
https://www.ncbi.nlm.nih.gov/pubmed/37215229
https://www.proquest.com/docview/2815856175
https://www.proquest.com/docview/2818055873
https://hal.science/hal-04513966
https://pubmed.ncbi.nlm.nih.gov/PMC10198944
https://doaj.org/article/7b3e7a3a2ef34d2db2cba87bb3d145f3
Volume 10
WOSCitedRecordID wos001044506900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2213-7467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634176
  issn: 2213-7467
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2213-7467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634176
  issn: 2213-7467
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2213-7467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634176
  issn: 2213-7467
  databaseCode: P5Z
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2213-7467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634176
  issn: 2213-7467
  databaseCode: M7S
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2213-7467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634176
  issn: 2213-7467
  databaseCode: BENPR
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2213-7467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634176
  issn: 2213-7467
  databaseCode: PIMPY
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2213-7467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634176
  issn: 2213-7467
  databaseCode: C24
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZg8AAPiDuBURnEG0RLfImdx23aNKRRVQOkwktkOzadVKXT0o5fwX_mHCcpLRPwwkMqNcdJXPvzucSn3yHkjfRgpV0NYaoXRSp0JlMrMdFVKlODex6sjSSup2o81tNpOdko9YU5YR09cDdwe8pyrww3zAcualZb5qzRylpe50KGyPOZqXIjmIpvVwrQzqoY_iWji71WZJzhliUcYJdEmm1ZokjYD_ZlhumQ133N6ymTv-2bRnN0fJ_c6_1Iut_1_wG54ZuH5O4Gu-Aj8uMMaVl9nUZ6TRpr3oCAgptKweVzM4MczXSOueBpC3PlqWlqitXm06E27pKG-eI77cvOtBTT5L_R2vsL2mIuNnQhXtMRXM0pJrH3YEbRarlAokxMln5MPh8ffTo8SfvqC6kDF26Z1qWSjpmQOwYulQ8h04q5IAOoJR2cybwRkgubGQ4hosh96X0W8syZspSG1_wJ2WkWjX9GKAulc6AadQ2IKK0vg-UW7lkIhy9R8oTkw0xUrqcmxwoZ8yqGKLqoutmrMjxw9qosIW_X11x0xBx_bX2AE7xuiaTa8QRAreqhVv0Lagl5DfDYusfJ_mmF55Clh0PkeAW_ZXdAT9Wrg7ZiOoewDJxFmZBXazEsZNydMY1frGIbWClSK3jO0w5s60dxheWHWZkQvQXDrb5sS5rzWSQLB5WLHPsiIe8GxP7q158H7Pn_GLAX5A6LC06meblLdpaXK_-S3HZXy_P2ckRuqqkekVsHR-PJGXw7ZGIUV_EIE3A_wudEfgX55P2HyZeffzBNkQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLbKFAk4sC-BAgbBCaImtrMdECpLNaNORxUqUjkFx0tnpCEZJplW_Aj-Cr-R97LMMFT01gOHXGLHcZy32X7-PkJeBAa8tNIwTTUidEXsBW4WYKJrEEkN4bnNshrEdRiNRvHRUXKwQX51Z2EwrbKzibWh1oXCNfJtFvsQ2YK_Dd7OvrvIGoW7qx2FRiMWe-bHKUzZyjeDD_B_XzK2-_Hwfd9tWQVcBaFJ5eokChST1lcMQgVjrRdHTNnAgrrFVknPSBFwkXmSw9RH-CYxxrO-p2SSBJJrDu1eIpsChb1HNg8G-wdfVqs6IXiFKOxO58Thdik8znCrFC7wh8L11jxgTRQAfm2MaZhnY9yzqZp_7dfWbnD3xv82gDfJ9TbgpjuNhtwiGya_Ta79AcN4h_z8hPi1Rrs1DimtyYGggEI8TyE2VmOJYNZ0iknzbglCbajMNa0m34zbkQhX1E6LU9ry85QUzxMcU23MjJaYtA5dqJ9pkMCmFLP9W63HokVVIKIoZpXfJZ8vZDzukV5e5OYBocwmSoEPiTWoTpKZxGY8gzZDoXC1yXeI34lOqloMd6QSmab1XC4O00bcUg8vFLfUc8ir5TOzBsHk3NrvUCKXNRF9vL5RzI_T1pilUcZNJLlkxnKhmc6YymQcZRnXvggsd8hzkOe1Nvo7wxTvIZwRhyn2CXzLVienaWs3y3QlpA55tiwGi4fbWDI3xaKuAyYliCN4z_1GO5av4hHyNLPEIfGa3qz1Zb0kn4xrVHXwTUhGIBzyulOxVb_-PWAPz_-Mp-RK_3B_mA4Ho71H5Cqr7UDg-skW6VXzhXlMLquTalLOn7SmhJKvF618vwFEnbKV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQQQgOvB-BAgZxg6iJH4lzLIWqiNWqQiD1FvnZrbTKrjbZ8iv4z8w4ydKlgIQ45BLbiePM0zP-hpDX0oOWtg7cVC-KVKhMpkZioqsstQPzPBgTQVwn5XSqTk6q4wun-GO2-xiS7M80IEpT0-0tXehZXBV7rcg4w_gjXKBkRApO-1WMSCGNHwznHeIuSwFSuizG0zK_HbqlkSJwP-iZGaZFXrY5L6dO_hI_jWrp8Pb_f9AdcmswSel-T0N3yRXf3CM3LwAV3iffPyPCq3dpROqksXwONFCweClYj3amEe6ZzjGtPG3ht3uqG0excH06ltntaJgvvtGhgk1LMeP-lDrvl7TFtG6YQhzTY2XNKebDD3yBTetugZibmHf9gHw9_PDl4CgdCjmkFqzBLnVVKS3TIbcMrDMfQqZKZoMMIOFUsDrzWkguTKY5eJsi95X3Wcgzq6tKau74Q7LTLBr_mFAWKmtByioHxFUZXwXDDTyzEBb3Y_KE5OPPrO2Aco7FNuZ19HZUUfdLXWd44VLXWULebMYse4yPv_Z-hzSy6Yn43PHGYnVaD-xel4b7UnPNfODCMWeYNVqVxnCXCxl4Ql4BhW0942h_UuM9BPzh4ISew7fsjgRYD5KlrZnKwcMDu1Mm5OWmGWQCBnp04xfr2AeYTqoS3vOop9fNq3iJlYxZlRC1Rclbc9luac5mEXccpDfC9YuEvB0J-ue8_rxgT_6t-wty_fj9YT35OP30lNxgkSVkmle7ZKdbrf0zcs2ed2ft6nnk9B8vKFQ-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced-order+modeling+for+stochastic+large-scale+and+time-dependent+flow+problems+using+deep+spatial+and+temporal+convolutional+autoencoders&rft.jtitle=Advanced+modeling+and+simulation+in+engineering+sciences&rft.au=Abdedou%2C+Azzedine&rft.au=Soulaimani%2C+Azzeddine&rft.date=2023-05-19&rft.issn=2213-7467&rft.eissn=2213-7467&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1186%2Fs40323-023-00244-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s40323_023_00244_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-7467&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-7467&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-7467&client=summon