Image Processing Techniques for Improving Quality of 3D Profile in Digital Holographic Microscopy Using Deep Learning Algorithm
Digital Holographic Microscopy (DHM) is a 3D imaging technology widely applied in biology, microelectronics, and medical research. However, the noise generated during the 3D imaging process can affect the accuracy of medical diagnoses. To solve this problem, we proposed several frequency domain filt...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 24; číslo 6; s. 1950 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
19.03.2024
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Digital Holographic Microscopy (DHM) is a 3D imaging technology widely applied in biology, microelectronics, and medical research. However, the noise generated during the 3D imaging process can affect the accuracy of medical diagnoses. To solve this problem, we proposed several frequency domain filtering algorithms. However, the filtering algorithms we proposed have a limitation in that they can only be applied when the distance between the direct current (DC) spectrum and sidebands are sufficiently far. To address these limitations, among the proposed filtering algorithms, the HiVA algorithm and deep learning algorithm, which effectively filter by distinguishing between noise and detailed information of the object, are used to enable filtering regardless of the distance between the DC spectrum and sidebands. In this paper, a combination of deep learning technology and traditional image processing methods is proposed, aiming to reduce noise in 3D profile imaging using the Improved Denoising Diffusion Probabilistic Models (IDDPM) algorithm. |
|---|---|
| AbstractList | Digital Holographic Microscopy (DHM) is a 3D imaging technology widely applied in biology, microelectronics, and medical research. However, the noise generated during the 3D imaging process can affect the accuracy of medical diagnoses. To solve this problem, we proposed several frequency domain filtering algorithms. However, the filtering algorithms we proposed have a limitation in that they can only be applied when the distance between the direct current (DC) spectrum and sidebands are sufficiently far. To address these limitations, among the proposed filtering algorithms, the HiVA algorithm and deep learning algorithm, which effectively filter by distinguishing between noise and detailed information of the object, are used to enable filtering regardless of the distance between the DC spectrum and sidebands. In this paper, a combination of deep learning technology and traditional image processing methods is proposed, aiming to reduce noise in 3D profile imaging using the Improved Denoising Diffusion Probabilistic Models (IDDPM) algorithm. Digital Holographic Microscopy (DHM) is a 3D imaging technology widely applied in biology, microelectronics, and medical research. However, the noise generated during the 3D imaging process can affect the accuracy of medical diagnoses. To solve this problem, we proposed several frequency domain filtering algorithms. However, the filtering algorithms we proposed have a limitation in that they can only be applied when the distance between the direct current (DC) spectrum and sidebands are sufficiently far. To address these limitations, among the proposed filtering algorithms, the HiVA algorithm and deep learning algorithm, which effectively filter by distinguishing between noise and detailed information of the object, are used to enable filtering regardless of the distance between the DC spectrum and sidebands. In this paper, a combination of deep learning technology and traditional image processing methods is proposed, aiming to reduce noise in 3D profile imaging using the Improved Denoising Diffusion Probabilistic Models (IDDPM) algorithm.Digital Holographic Microscopy (DHM) is a 3D imaging technology widely applied in biology, microelectronics, and medical research. However, the noise generated during the 3D imaging process can affect the accuracy of medical diagnoses. To solve this problem, we proposed several frequency domain filtering algorithms. However, the filtering algorithms we proposed have a limitation in that they can only be applied when the distance between the direct current (DC) spectrum and sidebands are sufficiently far. To address these limitations, among the proposed filtering algorithms, the HiVA algorithm and deep learning algorithm, which effectively filter by distinguishing between noise and detailed information of the object, are used to enable filtering regardless of the distance between the DC spectrum and sidebands. In this paper, a combination of deep learning technology and traditional image processing methods is proposed, aiming to reduce noise in 3D profile imaging using the Improved Denoising Diffusion Probabilistic Models (IDDPM) algorithm. |
| Audience | Academic |
| Author | Cho, Myungjin Kim, Hyun-Woo Lee, Min-Chul |
| AuthorAffiliation | 1 Department of Computer Science and Networks, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi 820-8502, Fukuoka, Japan; kim.hyunwoo547@mail.kyutech.jp 2 School of ICT, Robotics, and Mechanical Engineering, Hankyong National University, Institute of Information and Telecommunication Convergence, 327 Chungang-ro, Anseong 17579, Kyonggi-do, Republic of Korea |
| AuthorAffiliation_xml | – name: 1 Department of Computer Science and Networks, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi 820-8502, Fukuoka, Japan; kim.hyunwoo547@mail.kyutech.jp – name: 2 School of ICT, Robotics, and Mechanical Engineering, Hankyong National University, Institute of Information and Telecommunication Convergence, 327 Chungang-ro, Anseong 17579, Kyonggi-do, Republic of Korea |
| Author_xml | – sequence: 1 givenname: Hyun-Woo orcidid: 0000-0003-1381-6116 surname: Kim fullname: Kim, Hyun-Woo – sequence: 2 givenname: Myungjin orcidid: 0000-0003-2896-770X surname: Cho fullname: Cho, Myungjin – sequence: 3 givenname: Min-Chul orcidid: 0000-0001-8469-0288 surname: Lee fullname: Lee, Min-Chul |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38544214$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkl1v2yAUhq2p0_qxXewPTEi76S7SggEbX01Rs62RMm2T2mtE4NihwuCBUylX--vDTRe11YQQX8954XDe0-LIBw9F8Z7gC0obfJlKhivScPyqOCGsZDNRlvjoyfy4OE3pDuOSUireFMdUcMZKwk6KP8tedYB-xqAhJes7dAN64-3vLSTUhoiW_RDD_XTwa6ucHXcotIgupojWOkDWo4Xt7Kgcug4udFENG6vRd6tjSDoMO3T7ILsAGNAKVPTTau66EO246d8Wr1vlErx7HM-K269fbq6uZ6sf35ZX89VM85qPM60AK8KwYRVhlTEV5bRRlaCqgaY1jSmBcozXVUVIi-uaMYExMTR3XHKj6Vmx3OuaoO7kEG2v4k4GZeXDRoidVHG02oFseF2vGRVQCcwoJ4oy3nKooSUaC4Oz1ue91rBd92A0-DEq90z0-Ym3G9mFe0lwU2fFJiucPyrEMP30KHubNDinPIRtkvndLFdLsAn9-AK9C9vo819lClNWVg0WmbrYU53KGVjfhnyxzs1Ab3V2y1QrOa-FKDkVguWAD09zODz-nzMy8GkPTHVMEdoDQrCcXCcPrsvs5QtWZ0OMNkzpW_efiL8gutcT |
| CitedBy_id | crossref_primary_10_3390_s25175402 crossref_primary_10_3390_s24185928 crossref_primary_10_3390_electronics14020338 crossref_primary_10_7498_aps_74_20241629 crossref_primary_10_1016_j_optcom_2024_131314 crossref_primary_10_1016_j_measurement_2025_117121 crossref_primary_10_3390_electronics14050879 crossref_primary_10_1038_s41598_025_99483_x |
| Cites_doi | 10.3938/jkps.72.863 10.1117/12.946709 10.3390/cells12050762 10.1038/s41596-022-00769-5 10.3390/biomimetics8080563 10.1038/s41598-020-76573-6 10.1088/2040-8986/aa6ccb 10.1016/j.media.2023.102918 10.1109/JSTQE.2009.2036741 10.3390/s22134844 10.3390/s22103793 10.1029/RS023i004p00713 10.1117/1.OE.60.5.051207 10.1007/s10278-022-00721-9 10.1186/s12986-021-00589-6 10.1016/j.media.2022.102688 10.1109/TIP.2003.819861 10.1364/BOE.10.001613 10.1002/sdtp.16843 10.1016/j.optcom.2016.08.056 10.1016/j.precisioneng.2024.01.014 10.4218/etrij.2021-0311 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/s24061950 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_9577b438e6804351a345f5e7ef1c08d0 PMC10974359 A788253884 38544214 10_3390_s24061950 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: JSPS KAKENHI grantid: 23K19964 – fundername: National Research Foundation of Korea grantid: NRF-2022K2A9A2A08000152 – fundername: National Research Foundation of Korea grantid: NRF-2022K2A9A2A08000152; FY2022 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 5PM |
| ID | FETCH-LOGICAL-c575t-cae0a140d46146dd63539a683a9e9fd9d2e3500b6611f077448001d301d025dc3 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001193059800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:41:13 EDT 2025 Tue Nov 04 02:05:42 EST 2025 Sun Nov 09 14:32:15 EST 2025 Tue Oct 07 07:23:13 EDT 2025 Tue Nov 04 18:25:35 EST 2025 Wed Feb 19 02:03:47 EST 2025 Sat Nov 29 07:18:48 EST 2025 Tue Nov 18 22:14:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Improved Denoising Diffusion Probabilistic Models (IDDPM) Digital Holographic Microscopy (DHM) noise filtering |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c575t-cae0a140d46146dd63539a683a9e9fd9d2e3500b6611f077448001d301d025dc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
| ORCID | 0000-0001-8469-0288 0000-0003-1381-6116 0000-0003-2896-770X |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/3003426908?pq-origsite=%requestingapplication% |
| PMID | 38544214 |
| PQID | 3003426908 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9577b438e6804351a345f5e7ef1c08d0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10974359 proquest_miscellaneous_3014002849 proquest_journals_3003426908 gale_infotracacademiconefile_A788253884 pubmed_primary_38544214 crossref_primary_10_3390_s24061950 crossref_citationtrail_10_3390_s24061950 |
| PublicationCentury | 2000 |
| PublicationDate | 20240319 |
| PublicationDateYYYYMMDD | 2024-03-19 |
| PublicationDate_xml | – month: 3 year: 2024 text: 20240319 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Li (ref_20) 2021; 60 Joo (ref_16) 2023; 54 Kumari (ref_18) 2024; 87 ref_14 ref_11 Mazurowski (ref_29) 2023; 89 Tu (ref_21) 2017; 19 ref_17 Zeng (ref_2) 2015; 64 Amirrajab (ref_5) 2023; 84 Chen (ref_4) 2023; 36 Moore (ref_3) 2023; 18 Rekola (ref_10) 2020; 10 Zhou (ref_7) 2021; 18 ref_25 ref_24 Wang (ref_27) 2004; 13 Situ (ref_1) 2022; 3 Kim (ref_13) 2023; 45 Ho (ref_23) 2020; 33 Goldstein (ref_26) 1988; 23 Shin (ref_15) 2018; 72 Xiao (ref_22) 2019; 10 ref_28 ref_8 Gioffre (ref_9) 2010; 16 Kim (ref_12) 2023; 21 Hong (ref_19) 2017; 382 ref_6 |
| References_xml | – ident: ref_28 – volume: 72 start-page: 863 year: 2018 ident: ref_15 article-title: Fine metal mask 3-dimensional measurement by using scanning digital holographic microscope publication-title: J. Korean Phys. Soc. doi: 10.3938/jkps.72.863 – ident: ref_6 doi: 10.1117/12.946709 – ident: ref_17 doi: 10.3390/cells12050762 – volume: 33 start-page: 6840 year: 2020 ident: ref_23 article-title: Denoising diffusion probabilistic models publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_24 – volume: 18 start-page: 990 year: 2023 ident: ref_3 article-title: Micro-CT acquisition and image processing to track and characterize pulmonary nodules in mice publication-title: Nat. Protoc. doi: 10.1038/s41596-022-00769-5 – ident: ref_11 doi: 10.3390/biomimetics8080563 – volume: 10 start-page: 19642 year: 2020 ident: ref_10 article-title: Digital holographic microscopy for real-time observation of surface-relief grating formation on azobenzene-containing films publication-title: Sci. Rep. doi: 10.1038/s41598-020-76573-6 – volume: 19 start-page: 065604 year: 2017 ident: ref_21 article-title: Synthetic aperture common-path digital holographic microscopy with spiral phase filter publication-title: J. Opt. doi: 10.1088/2040-8986/aa6ccb – volume: 89 start-page: 102918 year: 2023 ident: ref_29 article-title: Segment anything model for medical image analysis: An experimental study publication-title: Med. Image Anal. doi: 10.1016/j.media.2023.102918 – volume: 16 start-page: 833 year: 2010 ident: ref_9 article-title: Quantitative label-free animal sperm imaging by means of digital holographic microscopy publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2009.2036741 – ident: ref_14 doi: 10.3390/s22134844 – ident: ref_8 doi: 10.3390/s22103793 – volume: 23 start-page: 713 year: 1988 ident: ref_26 article-title: Satellite radar interferometry: Two-dimensional phase un-wrapping publication-title: Radio Sci. doi: 10.1029/RS023i004p00713 – volume: 21 start-page: 90 year: 2023 ident: ref_12 article-title: Phase Differences Averaging (PDA) Method for Reducing the Phase Error in Digital Holographic Microscopy (DHM) publication-title: J. Korea Inst. Inf. Commun. Eng. – volume: 60 start-page: 051207 year: 2021 ident: ref_20 article-title: Adaptive spatial filtering based on fuzzy C-means and phase in off-axis digital holographic microscopy publication-title: Opt. Eng. doi: 10.1117/1.OE.60.5.051207 – ident: ref_25 – volume: 36 start-page: 204 year: 2023 ident: ref_4 article-title: Deep learning for image enhancement and correction in magnetic resonance imaging—State-of-the-art and challenges publication-title: J. Digital Imaging doi: 10.1007/s10278-022-00721-9 – volume: 18 start-page: 64 year: 2021 ident: ref_7 article-title: Dihydromyricetin ameliorates liver fibrosis via inhibition of hepatic stellate cells by inducing autophagy and natural killer cell-mediated killing effect publication-title: Nutr. Metab. doi: 10.1186/s12986-021-00589-6 – volume: 64 start-page: 47 year: 2015 ident: ref_2 article-title: Latest development of dynamic holographic 3d display publication-title: Acta Phys. Sin. – volume: 84 start-page: 102688 year: 2023 ident: ref_5 article-title: On the usability of synthetic data for improving the robustness of deep learning-based segmentation of cardiac magnetic resonance images publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102688 – volume: 13 start-page: 600 year: 2004 ident: ref_27 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Trans. Image Process doi: 10.1109/TIP.2003.819861 – volume: 10 start-page: 1613 year: 2019 ident: ref_22 article-title: Adaptive frequency filtering based on convolutional neural networks in off-axis digital holographic microscopy publication-title: Biomed. Opt. Express doi: 10.1364/BOE.10.001613 – volume: 54 start-page: 1388 year: 2023 ident: ref_16 article-title: P-89: Digital Holography Microscope with liquid crystal phase modulator publication-title: SID Symp. Dig. Tech. Pap. doi: 10.1002/sdtp.16843 – volume: 382 start-page: 624 year: 2017 ident: ref_19 article-title: Weighted adaptive spatial filtering in digital holographic microscopy publication-title: Opt. Commun. doi: 10.1016/j.optcom.2016.08.056 – volume: 3 start-page: 278 year: 2022 ident: ref_1 article-title: Deep holography publication-title: Light Adv. Manuf. – volume: 87 start-page: 23 year: 2024 ident: ref_18 article-title: Telecentric phase imaging at extended depth of focus using digital holographic microscopy publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2024.01.014 – volume: 45 start-page: 131 year: 2023 ident: ref_13 article-title: Noise reduction method using a variance map of the phase differences in digital holographic microscopy publication-title: ETRI J. doi: 10.4218/etrij.2021-0311 |
| SSID | ssj0023338 |
| Score | 2.4862564 |
| Snippet | Digital Holographic Microscopy (DHM) is a 3D imaging technology widely applied in biology, microelectronics, and medical research. However, the noise generated... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1950 |
| SubjectTerms | Algorithms Data mining Deep learning Digital Holographic Microscopy (DHM) Fourier transforms Image processing Imaging systems Improved Denoising Diffusion Probabilistic Models (IDDPM) Methods Microscope and microscopy Microscopy Noise control noise filtering Technology application Three dimensional imaging |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQ1QMcEOUz0CKDkOAS1Ykdxz5uWapyoOJQpN6srD-2kdpstbtF6om_zozjRFmBxIVr4l3Z4xnPe7vjN4R8kKEEEsDqXAN7yEVRyHzhtMoB2kpXAYAuhY3NJurzc3V5qb9PWn1hTVgvD9wb7lhXdb0QXHmpGKT2ouGiCpWvfSgsUy6ydVbrgUwlqsWBefU6QhxI_fEm5i2Nl-sn2SeK9P95FE9y0W6d5CTxnD4hjxNipLN-pgfkge-ekkcTHcFn5NfXGzgWaCr6h0f0YpBm3VBApXT86YD2mhn3dBUon-MnUJiJth2dt0vsH0LPBhXr1tJvWK2H91buaSwtoHPvb2mSZF3S2fVytW63VzfPyY_TLxefz_LUWSG3AM-2uW08a4BaOQHZWToHqIPrRireaK-D0670vGJsAcm7CAwQogBcWTg4DBxgJGf5C7LXrTr_ilApQ_DKauaDF5AGG-ejxIv1XNa6sRn5NFjc2CQ7jt0vrg3QD9wcM25ORt6PQ297rY2_DTrBbRsHoDx2fABOY5LTmH85TUY-4qYbDGKYjG3SXQRYElrdzGogHpAKlMjI4eAXJkX3xvAonCg1Uxl5N76GuMQ_W5rOr-5wDNgXwJvQGXnZu9E4Z64qIcoCvlztONjOonbfdO1V1P7GggFYkX79P8zwhjwsIRixpK7Qh2Rvu77zR2Tf_ty2m_XbGFG_ASY8JE4 priority: 102 providerName: Directory of Open Access Journals |
| Title | Image Processing Techniques for Improving Quality of 3D Profile in Digital Holographic Microscopy Using Deep Learning Algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38544214 https://www.proquest.com/docview/3003426908 https://www.proquest.com/docview/3014002849 https://pubmed.ncbi.nlm.nih.gov/PMC10974359 https://doaj.org/article/9577b438e6804351a345f5e7ef1c08d0 |
| Volume | 24 |
| WOSCitedRecordID | wos001193059800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH5iLQc4jJ-DwqgMQoJL1KROE_uEOtppO7Sq0JDKKUptp4u0JaXpJu0C_zrvOW5oBeLEJYfEiez4-b3v2e99D-B9lPXRCfBjT6L34IVBEHkLLYWH0DbSAwTQ_VDZYhPxdCrmczlz6dGVC6vc6kSrqGu2Z4rbRiXc06WiHfMet9R16NmJT6vvHtWQorNWV1DjANpEvOW3oD07n8y-NQ4YR3-sZhfi6Or3KmvNJKXc79gkS93_p4LesVD70ZM75uj00f8dyGM4dLCUDWs5egL3TPEUHu6QFT6Dn-fXqHuYyyzAW-xiy_9aMYS-rNmfYDUxxx0rM8ZH9AaxP7G8YKN8SUVK2NmWKjtXbEIhgZQcc8ds_AIbGbNijvd1yYZXS-zv5vL6OXw9HV98PvNc-QZPIQbceCo1for-mw4RAkRaI7ThMo0ET6WRmZa6b_jA9xeIEILMRxgaIngNNGocjUBMK34EraIszEtgUZRlRijpm8yEaGtTbSyPjDI8imWqOvBxO4GJctzmVGLjKkEfh-Y6aea6A--apqua0ONvjU5ICpoGxMFtb5TrZeKWdCIHcbwIuTCR8BF0BikPB9nAxCYLlC80fuQDyVBCmgI7o1KX8IBDor-eDGP0btDeiLADx1tRSZwKqZLfktGBt81jXPx0opMWpryhNvh_ESGGsgMvaqls-swFroF-gB8Xe_K6N6j9J0V-aQnGKSoBRyRf_btfr-FBH9cyReQF8hham_WNeQP31e0mr9ZdOIjnsb2KLrRPxtPZl67d8cDr5Me46xbnLzYCRbg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48H4YCiwIBBertteP3QNCgVAlahPlEKT2ZJzddRqptUOcgnLiH_EbmfGLRCBuPXC116vd8Ty-sWe_AXgVph4mAU5kS8webN91Q3uqpbAR2oY6QADt-apsNhGNRuL4WI534GdzFobKKhufWDpqnSv6Rr7PS7I6zOXE-8VXm7pG0d_VpoVGpRaHZv0dU7bi3aCH7_e15x18mnzs23VXAVshNFnZKjFOgmmF9jEyhVpjxOUyCQVPpJGpltozPHCcKQYuN3UQHfmIqVyNhqARH2jFcd4rsOujsjsd2B0PhuOTNsXjmPFV_EWcS2e_KOOlpEP9G1GvbA7wZwjYiIHb9ZkbAe_g1v8mqttws4bWrFvZwh3YMdlduLFBuHgPfgzO0X-y-nQEXmKThsO2YAjfWfuNhVXkImuWp4z36AlisGLzjPXmM2q0wvoN3fdcsSGVNdIBnzUrazBYz5gFq7lrZ6x7NkP5rE7P78PnS5HAA-hkeWYeAQvDNDVCScekxke8kGhTcuEow8NIJsqCt42KxKrmZ6c2IWcx5mmkTXGrTRa8bIcuKlKSvw36QHrWDiAe8fJCvpzFtVuKZRBFU58LEwoHgbObcD9IAxOZ1FWO0DjJG9LSmLwdLkYl9aEN3BJJPe5GmKFhzBS-BXuNMsa1Gyzi35powYv2Njow-iuVZCa_oDEoX0S5vrTgYaX37Zq5CNDOXJxcbFnE1qa272Tz05IknSorcEfy8b_X9Ryu9SfDo_hoMDp8Atc99E1UYejKPeislhfmKVxV31bzYvmsNnUGXy7bZH4B2LiOzw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKFy4E0JFFgQqFys2N61vXtAKCWNGhWiCBWpN-PsrlNLrROSFJQT_4tfx4xfJAJx64GrvV7tjufxjT37DcCrMPUxCXAjR2H24AjPC52xUdJBaBuaAAG0L3TRbCIaDuXpqRptwc_6LAyVVdY-sXDUZqrpG3mHF2R1mMvJTlqVRYx6_Xezrw51kKI_rXU7jVJFju3qO6Zvi7eDHr7r177fPzx5f-RUHQYcjTBl6ejEugmmGEZglAqNwejLVRJKniirUqOMb3ngumMMYl7qIlISiK88g0ZhECsYzXHea7AdcdxvC7YPDoejT026xzH7K7mMOFduZ1HETkUH_NciYNEo4M9wsBYPN2s114Jf__b_LLY7cKuC3Kxb2shd2LL5Pbi5RsR4H34MLtCvsurUBF5iJzW37YIhrGfNtxdWko6s2DRlvEdPELMVy3LWyybUgIUd1TTgmWYfqdyRDv6sWFGbwXrWzljFaTth3fMJymd5dvEAPl-JBB5CK5_m9hGwMExTK7VybWoF4ojE2IIjR1seRirRbXhTq0usK952ah9yHmP-RpoVN5rVhpfN0FlJVvK3QQekc80A4hcvLkznk7hyV7EKomgsuLShdBFQewkXQRrYyKaedqXBSfZJY2PygrgYnVSHOXBLJPW4G2HmhrFUijbs1YoZV-5xEf_Wyja8aG6jY6O_VUlup5c0BuWL6FeoNuyWNtCsmctACN_DyeWGdWxsavNOnp0V5OlUcYE7Uo__va7ncAPtJP4wGB4_gR0fXRYVHnpqD1rL-aV9Ctf1t2W2mD-rrJ7Bl6u2mF_aJpdp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Processing+Techniques+for+Improving+Quality+of+3D+Profile+in+Digital+Holographic+Microscopy+Using+Deep+Learning+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kim%2C+Hyun-Woo&rft.au=Cho%2C+Myungjin&rft.au=Lee%2C+Min-Chul&rft.date=2024-03-19&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=24&rft.issue=6&rft_id=info:doi/10.3390%2Fs24061950&rft_id=info%3Apmid%2F38544214&rft.externalDocID=PMC10974359 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |