Single molecule microscopy reveals key physical features of repair foci in living cells
In response to double strand breaks (DSB), repair proteins accumulate at damaged sites, forming membrane-less sub-compartments or foci. Here we explored the physical nature of these foci, using single molecule microscopy in living cells. Rad52, the functional homolog of BRCA2 in yeast, accumulates a...
Saved in:
| Published in: | eLife Vol. 10 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
eLife Sciences Publications Ltd
05.02.2021
eLife Sciences Publication eLife Sciences Publications, Ltd |
| Subjects: | |
| ISSN: | 2050-084X, 2050-084X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In response to double strand breaks (DSB), repair proteins accumulate at damaged sites, forming membrane-less sub-compartments or foci. Here we explored the physical nature of these foci, using single molecule microscopy in living cells. Rad52, the functional homolog of BRCA2 in yeast, accumulates at DSB sites and diffuses ~6 times faster within repair foci than the focus itself, exhibiting confined motion. The Rad52 confinement radius coincides with the focus size: foci resulting from 2 DSBs are twice larger in volume that the ones induced by a unique DSB and the Rad52 confinement radius scales accordingly. In contrast, molecules of the single strand binding protein Rfa1 follow anomalous diffusion similar to the focus itself or damaged chromatin. We conclude that while most Rfa1 molecules are bound to the ssDNA, Rad52 molecules are free to explore the entire focus reflecting the existence of a liquid droplet around damaged DNA. |
|---|---|
| AbstractList | In response to double strand breaks (DSB), repair proteins accumulate at damaged sites, forming membrane-less sub-compartments or foci. Here we explored the physical nature of these foci, using single molecule microscopy in living cells. Rad52, the functional homolog of BRCA2 in yeast, accumulates at DSB sites and diffuses ~6 times faster within repair foci than the focus itself, exhibiting confined motion. The Rad52 confinement radius coincides with the focus size: foci resulting from 2 DSBs are twice larger in volume that the ones induced by a unique DSB and the Rad52 confinement radius scales accordingly. In contrast, molecules of the single strand binding protein Rfa1 follow anomalous diffusion similar to the focus itself or damaged chromatin. We conclude that while most Rfa1 molecules are bound to the ssDNA, Rad52 molecules are free to explore the entire focus reflecting the existence of a liquid droplet around damaged DNA.In response to double strand breaks (DSB), repair proteins accumulate at damaged sites, forming membrane-less sub-compartments or foci. Here we explored the physical nature of these foci, using single molecule microscopy in living cells. Rad52, the functional homolog of BRCA2 in yeast, accumulates at DSB sites and diffuses ~6 times faster within repair foci than the focus itself, exhibiting confined motion. The Rad52 confinement radius coincides with the focus size: foci resulting from 2 DSBs are twice larger in volume that the ones induced by a unique DSB and the Rad52 confinement radius scales accordingly. In contrast, molecules of the single strand binding protein Rfa1 follow anomalous diffusion similar to the focus itself or damaged chromatin. We conclude that while most Rfa1 molecules are bound to the ssDNA, Rad52 molecules are free to explore the entire focus reflecting the existence of a liquid droplet around damaged DNA. In response to double strand breaks (DSB), repair proteins accumulate at damaged sites, forming membrane-less sub-compartments or foci. Here we explored the physical nature of these foci, using single molecule microscopy in living cells. Rad52, the functional homolog of BRCA2 in yeast, accumulates at DSB sites and diffuses ~6 times faster within repair foci than the focus itself, exhibiting confined motion. The Rad52 confinement radius coincides with the focus size: foci resulting from 2 DSBs are twice larger in volume that the ones induced by a unique DSB and the Rad52 confinement radius scales accordingly. In contrast, molecules of the single strand binding protein Rfa1 follow anomalous diffusion similar to the focus itself or damaged chromatin. We conclude that while most Rfa1 molecules are bound to the ssDNA, Rad52 molecules are free to explore the entire focus reflecting the existence of a liquid droplet around damaged DNA. |
| Author | Taddei, Angela Villemeur, Marie Walczak, Aleksandra M Dahan, Maxime Heltberg, Mathias Guedj, Chloé Mora, Thierry Miné-Hattab, Judith |
| Author_xml | – sequence: 1 givenname: Judith orcidid: 0000-0001-9986-4092 surname: Miné-Hattab fullname: Miné-Hattab, Judith organization: Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France – sequence: 2 givenname: Mathias surname: Heltberg fullname: Heltberg, Mathias organization: Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France, Laboratoire de Physique de l’Ecole Normale Supérieure, PSL University, CNRS, Sorbonne Université , Université de Paris, Paris, France – sequence: 3 givenname: Marie surname: Villemeur fullname: Villemeur, Marie organization: Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France – sequence: 4 givenname: Chloé surname: Guedj fullname: Guedj, Chloé organization: Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France – sequence: 5 givenname: Thierry orcidid: 0000-0002-5456-9361 surname: Mora fullname: Mora, Thierry organization: Laboratoire de Physique de l’Ecole Normale Supérieure, PSL University, CNRS, Sorbonne Université , Université de Paris, Paris, France – sequence: 6 givenname: Aleksandra M orcidid: 0000-0002-2686-5702 surname: Walczak fullname: Walczak, Aleksandra M organization: Laboratoire de Physique de l’Ecole Normale Supérieure, PSL University, CNRS, Sorbonne Université , Université de Paris, Paris, France – sequence: 7 givenname: Maxime surname: Dahan fullname: Dahan, Maxime organization: Institut Curie, PSL University, Sorbonne Université, CNRS, Physico Chimie Curie, Paris, France – sequence: 8 givenname: Angela orcidid: 0000-0002-3217-0739 surname: Taddei fullname: Taddei, Angela organization: Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France, Cogitamus Laboratory, Paris, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33543712$$D View this record in MEDLINE/PubMed https://hal.science/hal-03367836$$DView record in HAL |
| BookMark | eNptkk1vEzEQhleoiJbSE3e0EhcQSll_2xekqgJaKRIHQHCzvPY4cdisU3s3Uv493qRUbYQvHo2feWc8My-rkz72UFWvUXMpGKMfYR48XPKGCfGsOsMNa2aNpL9PHtmn1UXOq6YcQaVE6kV1SgijRCB8Vv36HvpFB_U6dmDHyQg2xWzjZlcn2ILpcv0HdvVmucvBmq72YIYxQa6jL8DGhFT7aEMd-roL2yJWW-i6_Kp67kssXNzf59XPL59_XN_M5t--3l5fzWeWCTbMCMGKC4W4aDETrWcGedwoyrjjzHPjjXXGcNQSEE62ylnHCHKt91x5D5ycV7cHXRfNSm9SWJu009EEvXfEtNAmDcF2oCmWnCtAloOjtiWtpc61UmBBmZBGFa1PB63N2K7BWeiHZLonok9f-rDUi7jVQmGqmCwC7w8Cy6Owm6u5nnwNIVxIwre4sO_uk6V4N0Ie9DrkqXWmhzhmjakUiDVYoYK-PUJXcUx9aavGTDEksSKsUG8eV_-Q_9-sC_DhAEwDzgn8A4IaPS2T3i-T3i9TodERbcNghhCnr4fuvzF_AXaYzac |
| CitedBy_id | crossref_primary_10_1096_fj_202501727R crossref_primary_10_1016_j_gde_2021_09_007 crossref_primary_10_1093_nar_gkac866 crossref_primary_10_1016_j_dnarep_2023_103524 crossref_primary_10_1073_pnas_2200667119 crossref_primary_10_3390_genes13020215 crossref_primary_10_1016_j_bpj_2022_03_026 crossref_primary_10_3390_ijms252312861 crossref_primary_10_1186_s13072_021_00424_5 crossref_primary_10_1016_j_dnarep_2023_103570 crossref_primary_10_1111_febs_16456 crossref_primary_10_1007_s00018_023_04992_5 crossref_primary_10_1038_s41556_024_01552_2 crossref_primary_10_1016_j_gde_2021_09_001 crossref_primary_10_1038_s41594_023_01068_7 crossref_primary_10_1016_j_tig_2021_08_016 crossref_primary_10_1111_febs_70143 crossref_primary_10_3389_fmolb_2022_826719 crossref_primary_10_1146_annurev_physchem_090722_010601 crossref_primary_10_1016_j_isci_2024_111259 crossref_primary_10_1038_s41594_023_00932_w crossref_primary_10_1093_nar_gkad803 crossref_primary_10_3389_fcell_2021_730998 crossref_primary_10_1016_j_bpj_2024_04_031 crossref_primary_10_3389_fbioe_2022_973314 crossref_primary_10_1016_j_molcel_2025_05_012 crossref_primary_10_3390_genes13010007 crossref_primary_10_7554_eLife_69181 crossref_primary_10_1016_j_jmb_2025_169308 crossref_primary_10_3390_genes13101846 crossref_primary_10_7554_eLife_81907 crossref_primary_10_1016_j_cell_2022_10_004 crossref_primary_10_3390_cancers13215561 crossref_primary_10_1016_j_dnarep_2023_103550 crossref_primary_10_1021_jacs_4c16907 crossref_primary_10_1016_j_neuron_2022_06_010 crossref_primary_10_7554_eLife_79903 crossref_primary_10_3390_ijms25021178 crossref_primary_10_1103_PhysRevResearch_3_043150 crossref_primary_10_3389_fgene_2021_746380 crossref_primary_10_1038_s41419_023_06267_0 crossref_primary_10_1093_nar_gkae559 crossref_primary_10_1016_j_dnarep_2021_103179 crossref_primary_10_1016_j_cbpa_2023_102371 crossref_primary_10_3390_ijms25074127 crossref_primary_10_7717_peerj_19402 crossref_primary_10_1038_s41467_025_60664_x crossref_primary_10_1038_s41580_025_00828_1 crossref_primary_10_7554_eLife_85671 crossref_primary_10_1016_j_dnarep_2023_103540 crossref_primary_10_1146_annurev_anchem_091922_073057 crossref_primary_10_1371_journal_pgen_1011148 crossref_primary_10_3389_fcell_2022_928113 |
| Cites_doi | 10.1038/d41586-019-01422-0 10.7554/eLife.47098 10.1038/nature22989 10.1093/nar/gkm752 10.1038/s41586-019-1243-y 10.7554/eLife.55667 10.1038/nmeth.1233 10.19185/matters.201702000010 10.1371/journal.pgen.1008001 10.1093/nar/gkz847 10.1038/nrg.2017.92 10.1046/j.1365-2443.1998.00176.x 10.1101/gad.331520.119 10.1093/nar/gkz848 10.1016/j.dnarep.2009.04.007 10.1101/cshperspect.a016535 10.1038/ncb2472 10.1016/j.ymeth.2017.04.001 10.1146/annurev.genet.40.110405.090451 10.1126/science.1202142 10.15252/embj.2018101379 10.1016/j.molcel.2019.01.005 10.1016/j.isci.2018.04.005 10.1016/j.tcb.2011.08.001 10.1038/s41586-020-2256-2 10.1534/genetics.114.166140 10.1371/journal.pone.0051314 10.1002/yea.1142 10.1038/s41556-019-0392-4 10.1038/sj.onc.1210870 10.1101/gr.236554.118 10.1016/S0006-3495(77)85544-6 10.1038/ncb2465 10.1038/ncomms9088 10.1146/annurev-cellbio-100913-013325 10.15698/mic2019.01.664 10.1091/mbc.e17-05-0317 10.1093/nar/gkq195 10.1016/S0304-3835(02)00692-4 10.1038/s41586-018-0237-5 10.1093/emboj/21.8.2030 10.1159/000077461 10.1016/j.cell.2011.02.012 10.15252/embj.201796631 10.1101/gr.157008.113 10.1371/journal.pgen.1003833 10.1091/mbc.e13-01-0031 10.3390/ijms19020519 10.1093/nar/gkx084 10.1073/pnas.121006298 10.1038/ncb997 10.1038/ncb1619 10.1016/j.ceb.2019.02.005 10.1038/nmeth.3256 10.1016/j.bpj.2017.11.1505 10.1038/nprot.2015.060 10.1101/171983v3 10.1242/jcs.089847 10.1038/nmeth.1176 10.1016/j.bpj.2018.03.011 10.1016/j.gde.2007.08.007 10.1073/pnas.1117849108 10.1038/s41467-020-14546-z 10.1016/j.dnarep.2016.04.001 10.1016/j.cell.2004.08.015 10.1038/nrg2224 10.1146/annurev.biophys.093008.131348 10.1039/C4CP00299G 10.1038/nsmb.3387 10.1016/j.molcel.2020.02.005 10.1371/journal.pone.0015611 10.1117/1.3088141 10.1126/science.1088845 10.1016/S0092-8674(03)00078-3 10.7554/eLife.33125 10.1007/s00294-018-0873-1 10.1186/s13059-015-0766-2 10.1038/nrm.2017.7 10.1038/nmeth.1855 |
| ContentType | Journal Article |
| Copyright | 2021, Miné-Hattab et al. 2021, Miné-Hattab et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution 2021, Miné-Hattab et al 2021 Miné-Hattab et al |
| Copyright_xml | – notice: 2021, Miné-Hattab et al. – notice: 2021, Miné-Hattab et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution – notice: 2021, Miné-Hattab et al 2021 Miné-Hattab et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM DOA |
| DOI | 10.7554/eLife.60577 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2050-084X |
| ExternalDocumentID | oai_doaj_org_article_428669e1c6ed4cb3bc4ddb87274578a9 PMC7924958 oai:HAL:hal-03367836v2 33543712 10_7554_eLife_60577 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: ; grantid: ANR-10-IDEX-0001-02 PSL – fundername: ; grantid: ANR-11-LABEX-0044 DEEP – fundername: ; grantid: DEP20151234398 – fundername: ; grantid: Q-life ANR-17-CONV-0005 – fundername: ; grantid: 80—PRIME MITI project PhONeS – fundername: ; grantid: ANR-12-PDOC0035–01 – fundername: ; grantid: ANR-15-CE12-0007 |
| GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RHI RNS RPM UKHRP 3V. ALIPV CGR CUY CVF ECM EIF FRP NPM RHF 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 1XC VOOES 5PM |
| ID | FETCH-LOGICAL-c575t-3329679167b257bf5a1f209456d65f6afacdaa61b3e7d8b9dcd531dbff69ffe63 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 55 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000625938900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2050-084X |
| IngestDate | Mon Nov 10 04:36:11 EST 2025 Tue Nov 04 01:57:45 EST 2025 Tue Oct 14 20:36:50 EDT 2025 Fri Sep 05 13:20:04 EDT 2025 Tue Oct 07 07:02:20 EDT 2025 Thu Jan 02 22:56:18 EST 2025 Sat Nov 29 06:24:04 EST 2025 Tue Nov 18 21:32:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | nuclear sub-compartments liquid-liquid phase separation single particle tracking single molecule microscopy DNA repair physics of living systems S. cerevisiae |
| Language | English |
| License | 2021, Miné-Hattab et al. Attribution: http://creativecommons.org/licenses/by This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c575t-3329679167b257bf5a1f209456d65f6afacdaa61b3e7d8b9dcd531dbff69ffe63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC7924958 Deceased. |
| ORCID | 0000-0001-9986-4092 0000-0002-3217-0739 0000-0002-2686-5702 0000-0002-5456-9361 |
| OpenAccessLink | https://www.proquest.com/docview/2595182935?pq-origsite=%requestingapplication% |
| PMID | 33543712 |
| PQID | 2595182935 |
| PQPubID | 2045579 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_428669e1c6ed4cb3bc4ddb87274578a9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7924958 hal_primary_oai_HAL_hal_03367836v2 proquest_miscellaneous_2487150291 proquest_journals_2595182935 pubmed_primary_33543712 crossref_primary_10_7554_eLife_60577 crossref_citationtrail_10_7554_eLife_60577 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-05 |
| PublicationDateYYYYMMDD | 2021-02-05 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | eLife |
| PublicationTitleAlternate | Elife |
| PublicationYear | 2021 |
| Publisher | eLife Sciences Publications Ltd eLife Sciences Publication eLife Sciences Publications, Ltd |
| Publisher_xml | – name: eLife Sciences Publications Ltd – name: eLife Sciences Publication – name: eLife Sciences Publications, Ltd |
| References | Berg (bib8) 1977; 20 Hajjoul (bib22) 2013; 23 Lisby (bib42) 2004; 118 Shinohara (bib69) 1998; 3 Kroschwald (bib37) 2017; 2017 Miné-Hattab (bib53) 2012; 14 Pessina (bib58) 2019; 21 McEvoy (bib46) 2012; 7 Lisby (bib41) 2003; 5 Neumaier (bib55) 2012; 109 Waterman (bib77) 2019; 15 Altmeyer (bib2) 2015; 6 Sollazzo (bib71) 2018; 19 Hocher (bib25) 2018; 28 Meldi (bib49) 2011; 21 Aymard (bib4) 2017; 24 Batté (bib7) 2017; 36 Chiolo (bib12) 2011; 144 Lisby (bib43) 2009; 8 Rippe (bib63) 2007; 17 Hozé (bib26) 2013; 24 Grimm (bib20) 2015; 12 Erdel (bib17) 2018; 114 Sánchez (bib64) 2017; 45 Lisby (bib40) 2001; 98 Oshidari (bib56) 2020; 11 Ranjan (bib60) 2020; 9 Schnell (bib66) 2012; 9 Dion (bib14) 2012; 14 Miné (bib51) 2007; 35 Hansen (bib24) 2018; 7 Sergé (bib68) 2008; 5 Lisby (bib44) 2015; 7 Hansen (bib23) 2017 Schrank (bib67) 2018; 559 Saotome (bib65) 2018; 3 Bordelet (bib9) 2019; 65 Miné-Hattab (bib54) 2019; 58 Chang (bib11) 2018; 114 Silva (bib70) 2016; 42 You (bib79) 2020; 48 Altmannova (bib1) 2010; 38 Guidi (bib21) 2015; 16 Rassool (bib61) 2003; 193 Aten (bib3) 2004; 303 Banani (bib5) 2017; 18 Esta (bib19) 2013; 9 Piazza (bib59) 2019; 73 Hyman (bib28) 2014; 30 Stracy (bib72) 2017; 120 Izeddin (bib30) 2011; 6 Barzel (bib6) 2008; 9 Strom (bib73) 2017; 547 Torres-Rosell (bib76) 2007; 9 Krawczyk (bib36) 2012; 125 Thorslund (bib75) 2007; 26 Mészáros (bib50) 2019; 48 Liang (bib39) 2009; 14 Erdel (bib16) 2020; 78 Essers (bib18) 2002; 21 Hübner (bib27) 2010; 39 Kaplan (bib33) 2015; 10 Dolgin (bib15) 2019; 569 Cabianca (bib10) 2019; 569 Janke (bib31) 2004; 21 Klein (bib35) 2019; 6 Riback (bib62) 2020; 581 Miné-Hattab (bib52) 2017; 28 Kaniecki (bib32) 2018; 19 Chubb (bib13) 2003; 112 Larson (bib38) 2011; 332 Oswald (bib57) 2014; 16 Wyman (bib78) 2006; 40 McSwiggen (bib48) 2019; 33 Iliakis (bib29) 2004; 104 McSwiggen (bib47) 2019; 8 Manley (bib45) 2008; 5 Kilic (bib34) 2019; 38 Symington (bib74) 2014; 198 |
| References_xml | – volume: 569 start-page: 190 year: 2019 ident: bib15 article-title: The full reference of this article is: The sounds of science: biochemistry and the cosmos inspire new music publication-title: Nature doi: 10.1038/d41586-019-01422-0 – volume: 8 year: 2019 ident: bib47 article-title: Evidence for DNA-mediated nuclear compartmentalization distinct from phase separation publication-title: eLife doi: 10.7554/eLife.47098 – volume: 547 start-page: 241 year: 2017 ident: bib73 article-title: Phase separation drives heterochromatin domain formation publication-title: Nature doi: 10.1038/nature22989 – volume: 35 start-page: 7171 year: 2007 ident: bib51 article-title: Real-time measurements of the nucleation, growth and dissociation of single Rad51-DNA nucleoprotein filaments publication-title: Nucleic Acids Research doi: 10.1093/nar/gkm752 – volume: 569 start-page: 734 year: 2019 ident: bib10 article-title: Active chromatin marks drive spatial sequestration of heterochromatin in C. elegans nuclei publication-title: Nature doi: 10.1038/s41586-019-1243-y – volume: 9 year: 2020 ident: bib60 article-title: Live-cell single particle imaging reveals the role of RNA polymerase II in histone H2A.Z eviction publication-title: eLife doi: 10.7554/eLife.55667 – volume: 5 start-page: 687 year: 2008 ident: bib68 article-title: Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes publication-title: Nature Methods doi: 10.1038/nmeth.1233 – volume: 2017 year: 2017 ident: bib37 article-title: Hexanediol: a chemical probe to investigate the material properties of membrane-less compartments publication-title: Matters doi: 10.19185/matters.201702000010 – volume: 15 year: 2019 ident: bib77 article-title: Live cell monitoring of double strand breaks S. cerevisiae publication-title: PLOS Genetics doi: 10.1371/journal.pgen.1008001 – volume: 48 start-page: D354 year: 2020 ident: bib79 article-title: PhaSepDB: a database of liquid-liquid phase separation related proteins publication-title: Nucleic Acids Research doi: 10.1093/nar/gkz847 – volume: 19 start-page: 191 year: 2018 ident: bib32 article-title: A change of view: homologous recombination at single-molecule resolution publication-title: Nature Reviews Genetics doi: 10.1038/nrg.2017.92 – volume: 3 start-page: 145 year: 1998 ident: bib69 article-title: Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing publication-title: Genes to Cells doi: 10.1046/j.1365-2443.1998.00176.x – volume: 33 start-page: 1619 year: 2019 ident: bib48 article-title: Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences publication-title: Genes & Development doi: 10.1101/gad.331520.119 – volume: 48 start-page: D360 year: 2019 ident: bib50 article-title: PhaSePro: the database of proteins driving liquid-liquid phase separation publication-title: Nucleic Acids Research doi: 10.1093/nar/gkz848 – volume: 8 start-page: 1068 year: 2009 ident: bib43 article-title: Choreography of recombination proteins during the DNA damage response publication-title: DNA Repair doi: 10.1016/j.dnarep.2009.04.007 – volume: 7 year: 2015 ident: bib44 article-title: Cell biology of mitotic recombination publication-title: Cold Spring Harbor Perspectives in Biology doi: 10.1101/cshperspect.a016535 – volume: 14 start-page: 510 year: 2012 ident: bib53 article-title: Increased chromosome mobility facilitates homology search during recombination publication-title: Nature Cell Biology doi: 10.1038/ncb2472 – volume: 120 start-page: 103 year: 2017 ident: bib72 article-title: Single-molecule and super-resolution imaging of transcription in living Bacteria publication-title: Methods doi: 10.1016/j.ymeth.2017.04.001 – volume: 40 start-page: 363 year: 2006 ident: bib78 article-title: DNA double-strand break repair: all's well that ends well publication-title: Annual Review of Genetics doi: 10.1146/annurev.genet.40.110405.090451 – volume: 332 start-page: 475 year: 2011 ident: bib38 article-title: Real-time observation of transcription initiation and elongation on an endogenous yeast gene publication-title: Science doi: 10.1126/science.1202142 – volume: 38 year: 2019 ident: bib34 article-title: Phase separation of 53bp1 determines liquid-like behavior of DNA repair compartments publication-title: The EMBO Journal doi: 10.15252/embj.2018101379 – volume: 73 start-page: 1255 year: 2019 ident: bib59 article-title: Dynamic processing of displacement loops during recombinational DNA repair publication-title: Molecular Cell doi: 10.1016/j.molcel.2019.01.005 – volume: 3 start-page: 50 year: 2018 ident: bib65 article-title: Structural basis of Homology-Directed DNA repair mediated by RAD52 publication-title: iScience doi: 10.1016/j.isci.2018.04.005 – volume: 21 start-page: 701 year: 2011 ident: bib49 article-title: Compartmentalization of the nucleus publication-title: Trends in Cell Biology doi: 10.1016/j.tcb.2011.08.001 – volume: 581 start-page: 209 year: 2020 ident: bib62 article-title: Composition-dependent thermodynamics of intracellular phase separation publication-title: Nature doi: 10.1038/s41586-020-2256-2 – volume: 198 start-page: 795 year: 2014 ident: bib74 article-title: Mechanisms and regulation of mitotic recombination in Saccharomyces cerevisiae publication-title: Genetics doi: 10.1534/genetics.114.166140 – volume: 7 year: 2012 ident: bib46 article-title: mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities publication-title: PLOS ONE doi: 10.1371/journal.pone.0051314 – volume: 21 start-page: 947 year: 2004 ident: bib31 article-title: A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes publication-title: Yeast doi: 10.1002/yea.1142 – volume: 21 start-page: 1286 year: 2019 ident: bib58 article-title: Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors publication-title: Nature Cell Biology doi: 10.1038/s41556-019-0392-4 – volume: 26 start-page: 7720 year: 2007 ident: bib75 article-title: BRCA2: a universal recombinase regulator publication-title: Oncogene doi: 10.1038/sj.onc.1210870 – volume: 28 start-page: 1867 year: 2018 ident: bib25 article-title: Expanding heterochromatin reveals discrete subtelomeric domains delimited by chromatin landscape transitions publication-title: Genome Research doi: 10.1101/gr.236554.118 – volume: 20 start-page: 193 year: 1977 ident: bib8 article-title: Physics of chemoreception publication-title: Biophysical Journal doi: 10.1016/S0006-3495(77)85544-6 – volume: 14 start-page: 502 year: 2012 ident: bib14 article-title: Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery publication-title: Nature Cell Biology doi: 10.1038/ncb2465 – volume: 6 year: 2015 ident: bib2 article-title: Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose) publication-title: Nature Communications doi: 10.1038/ncomms9088 – volume: 30 start-page: 39 year: 2014 ident: bib28 article-title: Liquid-liquid phase separation in biology publication-title: Annual Review of Cell and Developmental Biology doi: 10.1146/annurev-cellbio-100913-013325 – volume: 6 start-page: 1 year: 2019 ident: bib35 article-title: Guidelines for DNA recombination and repair studies: cellular assays of DNA repair pathways publication-title: Microbial Cell doi: 10.15698/mic2019.01.664 – volume: 28 start-page: 3323 year: 2017 ident: bib52 article-title: Multi-scale tracking reveals scale-dependent chromatin dynamics after DNA damage publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.e17-05-0317 – volume: 38 start-page: 4708 year: 2010 ident: bib1 article-title: Rad52 SUMOylation affects the efficiency of the DNA repair publication-title: Nucleic Acids Research doi: 10.1093/nar/gkq195 – volume: 193 start-page: 1 year: 2003 ident: bib61 article-title: DNA double strand breaks (DSB) and non-homologous end joining (NHEJ) pathways in human leukemia publication-title: Cancer Letters doi: 10.1016/S0304-3835(02)00692-4 – volume: 559 start-page: 61 year: 2018 ident: bib67 article-title: Nuclear ARP2/3 drives DNA break clustering for homology-directed repair publication-title: Nature doi: 10.1038/s41586-018-0237-5 – volume: 21 start-page: 2030 year: 2002 ident: bib18 article-title: Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage publication-title: The EMBO Journal doi: 10.1093/emboj/21.8.2030 – volume: 104 start-page: 14 year: 2004 ident: bib29 article-title: Mechanisms of DNA double strand break repair and chromosome aberration formation publication-title: Cytogenetic and Genome Research doi: 10.1159/000077461 – volume: 144 start-page: 732 year: 2011 ident: bib12 article-title: Double-strand breaks in Heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair publication-title: Cell doi: 10.1016/j.cell.2011.02.012 – volume: 36 start-page: 2609 year: 2017 ident: bib7 article-title: Recombination at Subtelomeres is regulated by physical distance, double-strand break resection and chromatin status publication-title: The EMBO Journal doi: 10.15252/embj.201796631 – volume: 23 start-page: 1829 year: 2013 ident: bib22 article-title: High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome publication-title: Genome Research doi: 10.1101/gr.157008.113 – volume: 9 year: 2013 ident: bib19 article-title: Rad52 sumoylation prevents the toxicity of unproductive Rad51 filaments independently of the anti-recombinase Srs2 publication-title: PLOS Genetics doi: 10.1371/journal.pgen.1003833 – volume: 24 start-page: 1791 year: 2013 ident: bib26 article-title: Spatial telomere organization and clustering in yeast Saccharomyces cerevisiae nucleus is generated by a random dynamics of aggregation-dissociation publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.e13-01-0031 – volume: 19 year: 2018 ident: bib71 article-title: Live dynamics of 53bp1 foci following simultaneous induction of clustered and dispersed DNA damage in U2OS cells publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms19020519 – volume: 45 start-page: 4507 year: 2017 ident: bib64 article-title: Architectural plasticity of human BRCA2-RAD51 complexes in DNA break repair publication-title: Nucleic Acids Research doi: 10.1093/nar/gkx084 – volume: 98 start-page: 8276 year: 2001 ident: bib40 article-title: Rad52 forms DNA repair and recombination centers during S phase publication-title: PNAS doi: 10.1073/pnas.121006298 – volume: 5 start-page: 572 year: 2003 ident: bib41 article-title: Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre publication-title: Nature Cell Biology doi: 10.1038/ncb997 – volume: 9 start-page: 923 year: 2007 ident: bib76 article-title: The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus publication-title: Nature Cell Biology doi: 10.1038/ncb1619 – volume: 58 start-page: 105 year: 2019 ident: bib54 article-title: Physical principles and functional consequences of nuclear compartmentalization in budding yeast publication-title: Current Opinion in Cell Biology doi: 10.1016/j.ceb.2019.02.005 – volume: 12 start-page: 244 year: 2015 ident: bib20 article-title: A general method to improve fluorophores for live-cell and single-molecule microscopy publication-title: Nature Methods doi: 10.1038/nmeth.3256 – volume: 114 year: 2018 ident: bib11 article-title: 1,6-Hexanediol, which is used to disrupt Protein-Rich liquid droplets in the cell cytoplasm, does not disrupt model cell membranes publication-title: Biophysical Journal doi: 10.1016/j.bpj.2017.11.1505 – volume: 10 start-page: 1007 year: 2015 ident: bib33 article-title: Optimized sample preparation for single-molecule localization-based superresolution microscopy in yeast publication-title: Nature Protocols doi: 10.1038/nprot.2015.060 – volume-title: bioRxiv year: 2017 ident: bib23 article-title: Spot-On: robust model-based analysis of single-particle tracking experiments doi: 10.1101/171983v3 – volume: 125 start-page: 2127 year: 2012 ident: bib36 article-title: Chromatin mobility is increased at sites of DNA double-strand breaks publication-title: Journal of Cell Science doi: 10.1242/jcs.089847 – volume: 5 start-page: 155 year: 2008 ident: bib45 article-title: High-density mapping of single-molecule trajectories with photoactivated localization microscopy publication-title: Nature Methods doi: 10.1038/nmeth.1176 – volume: 114 start-page: 2262 year: 2018 ident: bib17 article-title: Formation of chromatin subcompartments by Phase Separation publication-title: Biophysical Journal doi: 10.1016/j.bpj.2018.03.011 – volume: 17 start-page: 373 year: 2007 ident: bib63 article-title: Dynamic organization of the cell nucleus publication-title: Current Opinion in Genetics & Development doi: 10.1016/j.gde.2007.08.007 – volume: 109 start-page: 443 year: 2012 ident: bib55 article-title: Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells publication-title: PNAS doi: 10.1073/pnas.1117849108 – volume: 11 year: 2020 ident: bib56 article-title: DNA repair by Rad52 liquid droplets publication-title: Nature Communications doi: 10.1038/s41467-020-14546-z – volume: 42 start-page: 11 year: 2016 ident: bib70 article-title: SUMOylation of Rad52-Rad59 synergistically change the outcome of mitotic recombination publication-title: DNA Repair doi: 10.1016/j.dnarep.2016.04.001 – volume: 118 start-page: 699 year: 2004 ident: bib42 article-title: Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins publication-title: Cell doi: 10.1016/j.cell.2004.08.015 – volume: 9 start-page: 27 year: 2008 ident: bib6 article-title: Finding a match: how do homologous sequences get together for recombination? publication-title: Nature Reviews Genetics doi: 10.1038/nrg2224 – volume: 39 start-page: 471 year: 2010 ident: bib27 article-title: Chromatin dynamics publication-title: Annual Review of Biophysics doi: 10.1146/annurev.biophys.093008.131348 – volume: 16 start-page: 12625 year: 2014 ident: bib57 article-title: Imaging and quantification of trans-membrane protein diffusion in living Bacteria publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP00299G – volume: 24 start-page: 353 year: 2017 ident: bib4 article-title: Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes publication-title: Nature Structural & Molecular Biology doi: 10.1038/nsmb.3387 – volume: 78 start-page: 236 year: 2020 ident: bib16 article-title: Mouse heterochromatin adopts digital compaction states without showing hallmarks of HP1-Driven Liquid-Liquid phase separation publication-title: Molecular Cell doi: 10.1016/j.molcel.2020.02.005 – volume: 6 year: 2011 ident: bib30 article-title: Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe publication-title: PLOS ONE doi: 10.1371/journal.pone.0015611 – volume: 14 year: 2009 ident: bib39 article-title: Noninvasive determination of cell nucleoplasmic viscosity by fluorescence correlation spectroscopy publication-title: Journal of Biomedical Optics doi: 10.1117/1.3088141 – volume: 303 start-page: 92 year: 2004 ident: bib3 article-title: Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains publication-title: Science doi: 10.1126/science.1088845 – volume: 112 start-page: 403 year: 2003 ident: bib13 article-title: Considering nuclear compartmentalization in the light of nuclear dynamics publication-title: Cell doi: 10.1016/S0092-8674(03)00078-3 – volume: 7 year: 2018 ident: bib24 article-title: Robust model-based analysis of single-particle tracking experiments with Spot-On publication-title: eLife doi: 10.7554/eLife.33125 – volume: 65 start-page: 29 year: 2019 ident: bib9 article-title: Keep moving and stay in a good shape to find your homologous recombination partner publication-title: Current Genetics doi: 10.1007/s00294-018-0873-1 – volume: 16 year: 2015 ident: bib21 article-title: Spatial reorganization of telomeres in long-lived quiescent cells publication-title: Genome Biology doi: 10.1186/s13059-015-0766-2 – volume: 18 start-page: 285 year: 2017 ident: bib5 article-title: Biomolecular condensates: organizers of cellular biochemistry publication-title: Nature Reviews Molecular Cell Biology doi: 10.1038/nrm.2017.7 – volume: 9 start-page: 152 year: 2012 ident: bib66 article-title: Immunolabeling artifacts and the need for live-cell imaging publication-title: Nature Methods doi: 10.1038/nmeth.1855 |
| SSID | ssj0000748819 |
| Score | 2.5032845 |
| Snippet | In response to double strand breaks (DSB), repair proteins accumulate at damaged sites, forming membrane-less sub-compartments or foci. Here we explored the... |
| SourceID | doaj pubmedcentral hal proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| SubjectTerms | BRCA2 protein Cell cycle Chromatin DNA Damage DNA repair Life Sciences liquid-liquid phase separation Microscopy nuclear sub-compartments Physics of Living Systems Population Proteins Rad52 DNA Repair and Recombination Protein - chemistry Rad52 protein Replication Protein A - chemistry Saccharomyces cerevisiae - chemistry Saccharomyces cerevisiae Proteins - chemistry Single Molecule Imaging single molecule microscopy single particle tracking Yeast |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlpNBL6btuk6KWnApuIsuSrGMSGnIIodCW5mb0GmLYepfdTSD_vjOys6zbQi-9GWmQ7Xl4vpFHM4wdKOtDlC6VSUAsMf7ypQ0JSusiVD4C_crKzSbM5WVzdWW_bLX6opywoTzwwLhDhMda2ySCTrEOXvpQx-gbdLs1KpvLR_cQ9WwFU_kbbFAxhR0O5Bl0mYfpooP0CcG7MRMXlCv1o2O5pjzIP0Hm77mSW87n7Al7PKJGfjw87VP2IPXP2MOhj-Tdc_bjKzqgWeI_h163eEFpdnTg5I5TiSZUMY7GyhejUDikXM9zxeeABAvXLTmglHjX81lHWwycNvRXL9j3s8_fTs_LsWNCGRB2rUspK6sNIj7j0RQ9KCegwgBO6agVaAcuROe08DKZ2HgbQ0QbjB5AW4Ck5Uu208_79Jpxb6tQa6i9AFeL5sjVOhjfaGkCilaogn28Z2IbxnLi1NVi1mJYQRxvM8fbzPGCHWyIF0MVjb-TnZA0NiRU-joPoEK0o0K0_1KIgn1AWU7WOD--aGnsSEpNp1Zuq4Lt3Yu6HY121WIkqDDcshJf7v1mGs2NWO76NL9BGgzwEENXVhTs1aAZm1tJqWppBC5uJjozeZbpTN9d55LehsJg1bz5Hwx4yx5VlHhDqeVqj-2slzdpn-2G23W3Wr7LdvILixAbug priority: 102 providerName: Directory of Open Access Journals |
| Title | Single molecule microscopy reveals key physical features of repair foci in living cells |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33543712 https://www.proquest.com/docview/2595182935 https://www.proquest.com/docview/2487150291 https://hal.science/hal-03367836 https://pubmed.ncbi.nlm.nih.gov/PMC7924958 https://doaj.org/article/428669e1c6ed4cb3bc4ddb87274578a9 |
| Volume | 10 |
| WOSCitedRecordID | wos000625938900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M7P dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: 7X7 dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M2P dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfYBhIvfI8VximgPSGVrU2bNE9oQ5uGtJ0qPsTxVOWTVTp6t-tt0v57nLR3UEC88FJVjdVGtR3_7Dg2wF4ulDZU2tgmzsTof6lYaOtiIY1LlXF-Kys0m-DjcTGZiLIPuLV9WuVqTQwLtZlpHyPfR5ieIxYWNH87v4x91yi_u9q30NiALV8lgYbUvXIdY0HzWKDF647lcTSc-_asdvYNQnjOB4Yo1OtH83LhsyH_hJq_Z0z-YoJO7v_v5B_AvR58ksNOWh7CLds8gjtdO8qbx_DlI9qxqSXfu5a5eOOz9fy5lRviKz2hpBLUeTLveUucDWVBWzJzSDCX9YI4ZDapGzKtfaSC-H2B9gl8Pjn-9O407hsvxBrR2zKmNBWMI3DkCjVauVwmLkU_MGeG5Y5JJ7WRkiWKWm4KJYw2qMpGOceEc5bRbdhsZo3dAaJEqjPmMpU4mSXFgcyY5qpglGuUkCSP4PWKC5Xuq5L75hjTCr0Tz7IqsKwKLItgb00874px_J3syLNzTeIraIcHs8W3qlfICt0uxoRNNLMm04oqnRmjCoRzGS5iUkTwCoVh8I7Tw7PKPzuglPnDL9dpBLsrfle97rfVT2ZH8HI9jFrrf7ls7OwKadBPRCieiiSCp51orT9FaZ5RnuDL-UDoBnMZjjT1RagMzr03nRfP_j2t53A39Zk5Pvc834XN5eLKvoDb-npZt4sRbPAJD9diBFtHx-PywyhEKvB6npajoGI4Ur4_L7_-AMdAMKw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggEHlghTaxIkdHxAqj2qrLqtKFNFb8JNGWrLL7rZo_xS_kZkku7CAuPXALbJHTmJ_87LHMwCbuTLWce1jnwQXo_9lYmV9iJV2ITUu0FFWU2xCDgbF0ZE6WIPvi7swFFa5kImNoHYjS3vkW2im52gLK56_HH-NqWoUna4uSmi0sNj382_osk1f7L3B9X2aprtvD1_34q6qQGzRNJnFnKdKSLSKpEG4mpDrJKTo5OTCiTwIHbR1WovEcC9dYZSzDnHqTAhCheAFx3HPwXk0I9KiCRU8WO7poDouUMO21wAlKuot36-Cf44ug5Qriq-pD4Dq7JiiL_80bX-P0PxF5e1e_d8m6xpc6YxrttNyw3VY8_UNuNiW25zfhI_vUU8PPfvSlgTGB4pGpHs5c0aZrJATGco0Nu6wy4Jv0p5O2SggwVhXExYQzKyq2bCinRhG5x7TW_DhTP7qNqzXo9rfBWZUajMRMpMEnSXFts6ElaYQXFrkgCSP4Nli1UvbZV2n4h_DEr0vgkjZQKRsIBLB5pJ43CYb-TvZK4LPkoQyhDcNo8nnshM4JbqVQiifWOFdZg03NnPOFGiuZiiktYrgCYJvZYzeTr-ktm3OBV3uOU0j2Fjgq-xk27T8Ca4IHi-7USrRlOvaj06QBv1gdDVSlURwp4Xy8lWc5xmXCQ4uV0C-8i2rPXV13GQ-l7RbkBf3_v1Zj-BS7_Bdv-zvDfbvw-WUopAozj7fgPXZ5MQ_gAv2dFZNJw8b9mXw6axZ4AeKxIjd |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V8hAX3o9AgQWVSyWT2mvveg8IFUrUqlEUCRC9mX1SS8EJSVqUv8avY8Z2AgHErQdu1u5ovV5_89qdnQHYzpSxjmsf-Ti4CP0vEynrQ6S0C4lxgY6y6mITcjDIj4_VcAO-L-_CUFjlUibWgtqNLe2Rd9FMz9AWVjzrhjYsYrjfezX5GlEFKTppXZbTaCBy5Bff0H2bvTzcx3_9PEl6b9-_OYjaCgORRTNlHnGeKCHRQpIGoWtCpuOQoMOTCSeyIHTQ1mktYsO9dLlRzjrErDMhCBWCFxzHvQAXJSUtr8MGh6v9HVTNOWrb5kqgRKXd9f0y-BfoPki5pgTrWgGo2k4oEvNPM_f3aM1f1F_v-v-8cDfgWmt0s72GS27Chq9uweWmDOfiNnx8h_p75NmXplQwPlCUIt3XWTDKcIUcylDWsUmLaRZ8nQ51xsYBCSa6nLKAIGdlxUYl7dAwOg-Z3YEP5_JVd2GzGlf-PjCjEpuKkJo46DTOd3UqrDS54NIiZ8RZB3aWCChsm42dioKMCvTKCC5FDZeihksHtlfEkyYJyd_JXhOUViSUObxuGE8_F60gKtDdFEL52ArvUmu4salzJkczNkXhrVUHniEQ18Y42OsX1LbLuaBLP2dJB7aWWCtamTcrfgKtA09X3SitaMl15cenSIP-MbogiYo7cK-B9epVnGcplzEOLtcAvzaX9Z6qPKkzokvaRcjyB_-e1hO4gsgv-oeDo4dwNaHgJAq_z7Zgcz499Y_gkj2bl7Pp45qTGXw6bw74AXjpkZo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+molecule+microscopy+reveals+key+physical+features+of+repair+foci+in+living+cells&rft.jtitle=eLife&rft.au=Min%C3%A9-Hattab%2C+Judith&rft.au=Heltberg%2C+Mathias&rft.au=Villemeur%2C+Marie&rft.au=Guedj%2C+Chlo%C3%A9&rft.date=2021-02-05&rft.eissn=2050-084X&rft.volume=10&rft_id=info:doi/10.7554%2FeLife.60577&rft_id=info%3Apmid%2F33543712&rft.externalDocID=33543712 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |