Single molecule microscopy reveals key physical features of repair foci in living cells

In response to double strand breaks (DSB), repair proteins accumulate at damaged sites, forming membrane-less sub-compartments or foci. Here we explored the physical nature of these foci, using single molecule microscopy in living cells. Rad52, the functional homolog of BRCA2 in yeast, accumulates a...

Full description

Saved in:
Bibliographic Details
Published in:eLife Vol. 10
Main Authors: Miné-Hattab, Judith, Heltberg, Mathias, Villemeur, Marie, Guedj, Chloé, Mora, Thierry, Walczak, Aleksandra M, Dahan, Maxime, Taddei, Angela
Format: Journal Article
Language:English
Published: England eLife Sciences Publications Ltd 05.02.2021
eLife Sciences Publication
eLife Sciences Publications, Ltd
Subjects:
ISSN:2050-084X, 2050-084X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In response to double strand breaks (DSB), repair proteins accumulate at damaged sites, forming membrane-less sub-compartments or foci. Here we explored the physical nature of these foci, using single molecule microscopy in living cells. Rad52, the functional homolog of BRCA2 in yeast, accumulates at DSB sites and diffuses ~6 times faster within repair foci than the focus itself, exhibiting confined motion. The Rad52 confinement radius coincides with the focus size: foci resulting from 2 DSBs are twice larger in volume that the ones induced by a unique DSB and the Rad52 confinement radius scales accordingly. In contrast, molecules of the single strand binding protein Rfa1 follow anomalous diffusion similar to the focus itself or damaged chromatin. We conclude that while most Rfa1 molecules are bound to the ssDNA, Rad52 molecules are free to explore the entire focus reflecting the existence of a liquid droplet around damaged DNA.
AbstractList In response to double strand breaks (DSB), repair proteins accumulate at damaged sites, forming membrane-less sub-compartments or foci. Here we explored the physical nature of these foci, using single molecule microscopy in living cells. Rad52, the functional homolog of BRCA2 in yeast, accumulates at DSB sites and diffuses ~6 times faster within repair foci than the focus itself, exhibiting confined motion. The Rad52 confinement radius coincides with the focus size: foci resulting from 2 DSBs are twice larger in volume that the ones induced by a unique DSB and the Rad52 confinement radius scales accordingly. In contrast, molecules of the single strand binding protein Rfa1 follow anomalous diffusion similar to the focus itself or damaged chromatin. We conclude that while most Rfa1 molecules are bound to the ssDNA, Rad52 molecules are free to explore the entire focus reflecting the existence of a liquid droplet around damaged DNA.In response to double strand breaks (DSB), repair proteins accumulate at damaged sites, forming membrane-less sub-compartments or foci. Here we explored the physical nature of these foci, using single molecule microscopy in living cells. Rad52, the functional homolog of BRCA2 in yeast, accumulates at DSB sites and diffuses ~6 times faster within repair foci than the focus itself, exhibiting confined motion. The Rad52 confinement radius coincides with the focus size: foci resulting from 2 DSBs are twice larger in volume that the ones induced by a unique DSB and the Rad52 confinement radius scales accordingly. In contrast, molecules of the single strand binding protein Rfa1 follow anomalous diffusion similar to the focus itself or damaged chromatin. We conclude that while most Rfa1 molecules are bound to the ssDNA, Rad52 molecules are free to explore the entire focus reflecting the existence of a liquid droplet around damaged DNA.
In response to double strand breaks (DSB), repair proteins accumulate at damaged sites, forming membrane-less sub-compartments or foci. Here we explored the physical nature of these foci, using single molecule microscopy in living cells. Rad52, the functional homolog of BRCA2 in yeast, accumulates at DSB sites and diffuses ~6 times faster within repair foci than the focus itself, exhibiting confined motion. The Rad52 confinement radius coincides with the focus size: foci resulting from 2 DSBs are twice larger in volume that the ones induced by a unique DSB and the Rad52 confinement radius scales accordingly. In contrast, molecules of the single strand binding protein Rfa1 follow anomalous diffusion similar to the focus itself or damaged chromatin. We conclude that while most Rfa1 molecules are bound to the ssDNA, Rad52 molecules are free to explore the entire focus reflecting the existence of a liquid droplet around damaged DNA.
Author Taddei, Angela
Villemeur, Marie
Walczak, Aleksandra M
Dahan, Maxime
Heltberg, Mathias
Guedj, Chloé
Mora, Thierry
Miné-Hattab, Judith
Author_xml – sequence: 1
  givenname: Judith
  orcidid: 0000-0001-9986-4092
  surname: Miné-Hattab
  fullname: Miné-Hattab, Judith
  organization: Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France
– sequence: 2
  givenname: Mathias
  surname: Heltberg
  fullname: Heltberg, Mathias
  organization: Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France, Laboratoire de Physique de l’Ecole Normale Supérieure, PSL University, CNRS, Sorbonne Université , Université de Paris, Paris, France
– sequence: 3
  givenname: Marie
  surname: Villemeur
  fullname: Villemeur, Marie
  organization: Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France
– sequence: 4
  givenname: Chloé
  surname: Guedj
  fullname: Guedj, Chloé
  organization: Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France
– sequence: 5
  givenname: Thierry
  orcidid: 0000-0002-5456-9361
  surname: Mora
  fullname: Mora, Thierry
  organization: Laboratoire de Physique de l’Ecole Normale Supérieure, PSL University, CNRS, Sorbonne Université , Université de Paris, Paris, France
– sequence: 6
  givenname: Aleksandra M
  orcidid: 0000-0002-2686-5702
  surname: Walczak
  fullname: Walczak, Aleksandra M
  organization: Laboratoire de Physique de l’Ecole Normale Supérieure, PSL University, CNRS, Sorbonne Université , Université de Paris, Paris, France
– sequence: 7
  givenname: Maxime
  surname: Dahan
  fullname: Dahan, Maxime
  organization: Institut Curie, PSL University, Sorbonne Université, CNRS, Physico Chimie Curie, Paris, France
– sequence: 8
  givenname: Angela
  orcidid: 0000-0002-3217-0739
  surname: Taddei
  fullname: Taddei, Angela
  organization: Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France, Cogitamus Laboratory, Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33543712$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03367836$$DView record in HAL
BookMark eNptkk1vEzEQhleoiJbSE3e0EhcQSll_2xekqgJaKRIHQHCzvPY4cdisU3s3Uv493qRUbYQvHo2feWc8My-rkz72UFWvUXMpGKMfYR48XPKGCfGsOsMNa2aNpL9PHtmn1UXOq6YcQaVE6kV1SgijRCB8Vv36HvpFB_U6dmDHyQg2xWzjZlcn2ILpcv0HdvVmucvBmq72YIYxQa6jL8DGhFT7aEMd-roL2yJWW-i6_Kp67kssXNzf59XPL59_XN_M5t--3l5fzWeWCTbMCMGKC4W4aDETrWcGedwoyrjjzHPjjXXGcNQSEE62ylnHCHKt91x5D5ycV7cHXRfNSm9SWJu009EEvXfEtNAmDcF2oCmWnCtAloOjtiWtpc61UmBBmZBGFa1PB63N2K7BWeiHZLonok9f-rDUi7jVQmGqmCwC7w8Cy6Owm6u5nnwNIVxIwre4sO_uk6V4N0Ie9DrkqXWmhzhmjakUiDVYoYK-PUJXcUx9aavGTDEksSKsUG8eV_-Q_9-sC_DhAEwDzgn8A4IaPS2T3i-T3i9TodERbcNghhCnr4fuvzF_AXaYzac
CitedBy_id crossref_primary_10_1096_fj_202501727R
crossref_primary_10_1016_j_gde_2021_09_007
crossref_primary_10_1093_nar_gkac866
crossref_primary_10_1016_j_dnarep_2023_103524
crossref_primary_10_1073_pnas_2200667119
crossref_primary_10_3390_genes13020215
crossref_primary_10_1016_j_bpj_2022_03_026
crossref_primary_10_3390_ijms252312861
crossref_primary_10_1186_s13072_021_00424_5
crossref_primary_10_1016_j_dnarep_2023_103570
crossref_primary_10_1111_febs_16456
crossref_primary_10_1007_s00018_023_04992_5
crossref_primary_10_1038_s41556_024_01552_2
crossref_primary_10_1016_j_gde_2021_09_001
crossref_primary_10_1038_s41594_023_01068_7
crossref_primary_10_1016_j_tig_2021_08_016
crossref_primary_10_1111_febs_70143
crossref_primary_10_3389_fmolb_2022_826719
crossref_primary_10_1146_annurev_physchem_090722_010601
crossref_primary_10_1016_j_isci_2024_111259
crossref_primary_10_1038_s41594_023_00932_w
crossref_primary_10_1093_nar_gkad803
crossref_primary_10_3389_fcell_2021_730998
crossref_primary_10_1016_j_bpj_2024_04_031
crossref_primary_10_3389_fbioe_2022_973314
crossref_primary_10_1016_j_molcel_2025_05_012
crossref_primary_10_3390_genes13010007
crossref_primary_10_7554_eLife_69181
crossref_primary_10_1016_j_jmb_2025_169308
crossref_primary_10_3390_genes13101846
crossref_primary_10_7554_eLife_81907
crossref_primary_10_1016_j_cell_2022_10_004
crossref_primary_10_3390_cancers13215561
crossref_primary_10_1016_j_dnarep_2023_103550
crossref_primary_10_1021_jacs_4c16907
crossref_primary_10_1016_j_neuron_2022_06_010
crossref_primary_10_7554_eLife_79903
crossref_primary_10_3390_ijms25021178
crossref_primary_10_1103_PhysRevResearch_3_043150
crossref_primary_10_3389_fgene_2021_746380
crossref_primary_10_1038_s41419_023_06267_0
crossref_primary_10_1093_nar_gkae559
crossref_primary_10_1016_j_dnarep_2021_103179
crossref_primary_10_1016_j_cbpa_2023_102371
crossref_primary_10_3390_ijms25074127
crossref_primary_10_7717_peerj_19402
crossref_primary_10_1038_s41467_025_60664_x
crossref_primary_10_1038_s41580_025_00828_1
crossref_primary_10_7554_eLife_85671
crossref_primary_10_1016_j_dnarep_2023_103540
crossref_primary_10_1146_annurev_anchem_091922_073057
crossref_primary_10_1371_journal_pgen_1011148
crossref_primary_10_3389_fcell_2022_928113
Cites_doi 10.1038/d41586-019-01422-0
10.7554/eLife.47098
10.1038/nature22989
10.1093/nar/gkm752
10.1038/s41586-019-1243-y
10.7554/eLife.55667
10.1038/nmeth.1233
10.19185/matters.201702000010
10.1371/journal.pgen.1008001
10.1093/nar/gkz847
10.1038/nrg.2017.92
10.1046/j.1365-2443.1998.00176.x
10.1101/gad.331520.119
10.1093/nar/gkz848
10.1016/j.dnarep.2009.04.007
10.1101/cshperspect.a016535
10.1038/ncb2472
10.1016/j.ymeth.2017.04.001
10.1146/annurev.genet.40.110405.090451
10.1126/science.1202142
10.15252/embj.2018101379
10.1016/j.molcel.2019.01.005
10.1016/j.isci.2018.04.005
10.1016/j.tcb.2011.08.001
10.1038/s41586-020-2256-2
10.1534/genetics.114.166140
10.1371/journal.pone.0051314
10.1002/yea.1142
10.1038/s41556-019-0392-4
10.1038/sj.onc.1210870
10.1101/gr.236554.118
10.1016/S0006-3495(77)85544-6
10.1038/ncb2465
10.1038/ncomms9088
10.1146/annurev-cellbio-100913-013325
10.15698/mic2019.01.664
10.1091/mbc.e17-05-0317
10.1093/nar/gkq195
10.1016/S0304-3835(02)00692-4
10.1038/s41586-018-0237-5
10.1093/emboj/21.8.2030
10.1159/000077461
10.1016/j.cell.2011.02.012
10.15252/embj.201796631
10.1101/gr.157008.113
10.1371/journal.pgen.1003833
10.1091/mbc.e13-01-0031
10.3390/ijms19020519
10.1093/nar/gkx084
10.1073/pnas.121006298
10.1038/ncb997
10.1038/ncb1619
10.1016/j.ceb.2019.02.005
10.1038/nmeth.3256
10.1016/j.bpj.2017.11.1505
10.1038/nprot.2015.060
10.1101/171983v3
10.1242/jcs.089847
10.1038/nmeth.1176
10.1016/j.bpj.2018.03.011
10.1016/j.gde.2007.08.007
10.1073/pnas.1117849108
10.1038/s41467-020-14546-z
10.1016/j.dnarep.2016.04.001
10.1016/j.cell.2004.08.015
10.1038/nrg2224
10.1146/annurev.biophys.093008.131348
10.1039/C4CP00299G
10.1038/nsmb.3387
10.1016/j.molcel.2020.02.005
10.1371/journal.pone.0015611
10.1117/1.3088141
10.1126/science.1088845
10.1016/S0092-8674(03)00078-3
10.7554/eLife.33125
10.1007/s00294-018-0873-1
10.1186/s13059-015-0766-2
10.1038/nrm.2017.7
10.1038/nmeth.1855
ContentType Journal Article
Copyright 2021, Miné-Hattab et al.
2021, Miné-Hattab et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
2021, Miné-Hattab et al 2021 Miné-Hattab et al
Copyright_xml – notice: 2021, Miné-Hattab et al.
– notice: 2021, Miné-Hattab et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
– notice: 2021, Miné-Hattab et al 2021 Miné-Hattab et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.7554/eLife.60577
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
Publicly Available Content Database
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_428669e1c6ed4cb3bc4ddb87274578a9
PMC7924958
oai:HAL:hal-03367836v2
33543712
10_7554_eLife_60577
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: ANR-10-IDEX-0001-02 PSL
– fundername: ;
  grantid: ANR-11-LABEX-0044 DEEP
– fundername: ;
  grantid: DEP20151234398
– fundername: ;
  grantid: Q-life ANR-17-CONV-0005
– fundername: ;
  grantid: 80—PRIME MITI project PhONeS
– fundername: ;
  grantid: ANR-12-PDOC0035–01
– fundername: ;
  grantid: ANR-15-CE12-0007
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
3V.
ALIPV
CGR
CUY
CVF
ECM
EIF
FRP
NPM
RHF
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
1XC
VOOES
5PM
ID FETCH-LOGICAL-c575t-3329679167b257bf5a1f209456d65f6afacdaa61b3e7d8b9dcd531dbff69ffe63
IEDL.DBID M7P
ISICitedReferencesCount 55
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000625938900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-084X
IngestDate Mon Nov 10 04:36:11 EST 2025
Tue Nov 04 01:57:45 EST 2025
Tue Oct 14 20:36:50 EDT 2025
Fri Sep 05 13:20:04 EDT 2025
Tue Oct 07 07:02:20 EDT 2025
Thu Jan 02 22:56:18 EST 2025
Sat Nov 29 06:24:04 EST 2025
Tue Nov 18 21:32:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords nuclear sub-compartments
liquid-liquid phase separation
single particle tracking
single molecule microscopy
DNA repair
physics of living systems
S. cerevisiae
Language English
License 2021, Miné-Hattab et al.
Attribution: http://creativecommons.org/licenses/by
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-3329679167b257bf5a1f209456d65f6afacdaa61b3e7d8b9dcd531dbff69ffe63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC7924958
Deceased.
ORCID 0000-0001-9986-4092
0000-0002-3217-0739
0000-0002-2686-5702
0000-0002-5456-9361
OpenAccessLink https://www.proquest.com/docview/2595182935?pq-origsite=%requestingapplication%
PMID 33543712
PQID 2595182935
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_428669e1c6ed4cb3bc4ddb87274578a9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7924958
hal_primary_oai_HAL_hal_03367836v2
proquest_miscellaneous_2487150291
proquest_journals_2595182935
pubmed_primary_33543712
crossref_primary_10_7554_eLife_60577
crossref_citationtrail_10_7554_eLife_60577
PublicationCentury 2000
PublicationDate 2021-02-05
PublicationDateYYYYMMDD 2021-02-05
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-05
  day: 05
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2021
Publisher eLife Sciences Publications Ltd
eLife Sciences Publication
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Sciences Publications Ltd
– name: eLife Sciences Publication
– name: eLife Sciences Publications, Ltd
References Berg (bib8) 1977; 20
Hajjoul (bib22) 2013; 23
Lisby (bib42) 2004; 118
Shinohara (bib69) 1998; 3
Kroschwald (bib37) 2017; 2017
Miné-Hattab (bib53) 2012; 14
Pessina (bib58) 2019; 21
McEvoy (bib46) 2012; 7
Lisby (bib41) 2003; 5
Neumaier (bib55) 2012; 109
Waterman (bib77) 2019; 15
Altmeyer (bib2) 2015; 6
Sollazzo (bib71) 2018; 19
Hocher (bib25) 2018; 28
Meldi (bib49) 2011; 21
Aymard (bib4) 2017; 24
Batté (bib7) 2017; 36
Chiolo (bib12) 2011; 144
Lisby (bib43) 2009; 8
Rippe (bib63) 2007; 17
Hozé (bib26) 2013; 24
Grimm (bib20) 2015; 12
Erdel (bib17) 2018; 114
Sánchez (bib64) 2017; 45
Lisby (bib40) 2001; 98
Oshidari (bib56) 2020; 11
Ranjan (bib60) 2020; 9
Schnell (bib66) 2012; 9
Dion (bib14) 2012; 14
Miné (bib51) 2007; 35
Hansen (bib24) 2018; 7
Sergé (bib68) 2008; 5
Lisby (bib44) 2015; 7
Hansen (bib23) 2017
Schrank (bib67) 2018; 559
Saotome (bib65) 2018; 3
Bordelet (bib9) 2019; 65
Miné-Hattab (bib54) 2019; 58
Chang (bib11) 2018; 114
Silva (bib70) 2016; 42
You (bib79) 2020; 48
Altmannova (bib1) 2010; 38
Guidi (bib21) 2015; 16
Rassool (bib61) 2003; 193
Aten (bib3) 2004; 303
Banani (bib5) 2017; 18
Esta (bib19) 2013; 9
Piazza (bib59) 2019; 73
Hyman (bib28) 2014; 30
Stracy (bib72) 2017; 120
Izeddin (bib30) 2011; 6
Barzel (bib6) 2008; 9
Strom (bib73) 2017; 547
Torres-Rosell (bib76) 2007; 9
Krawczyk (bib36) 2012; 125
Thorslund (bib75) 2007; 26
Mészáros (bib50) 2019; 48
Liang (bib39) 2009; 14
Erdel (bib16) 2020; 78
Essers (bib18) 2002; 21
Hübner (bib27) 2010; 39
Kaplan (bib33) 2015; 10
Dolgin (bib15) 2019; 569
Cabianca (bib10) 2019; 569
Janke (bib31) 2004; 21
Klein (bib35) 2019; 6
Riback (bib62) 2020; 581
Miné-Hattab (bib52) 2017; 28
Kaniecki (bib32) 2018; 19
Chubb (bib13) 2003; 112
Larson (bib38) 2011; 332
Oswald (bib57) 2014; 16
Wyman (bib78) 2006; 40
McSwiggen (bib48) 2019; 33
Iliakis (bib29) 2004; 104
McSwiggen (bib47) 2019; 8
Manley (bib45) 2008; 5
Kilic (bib34) 2019; 38
Symington (bib74) 2014; 198
References_xml – volume: 569
  start-page: 190
  year: 2019
  ident: bib15
  article-title: The full reference of this article is: The sounds of science: biochemistry and the cosmos inspire new music
  publication-title: Nature
  doi: 10.1038/d41586-019-01422-0
– volume: 8
  year: 2019
  ident: bib47
  article-title: Evidence for DNA-mediated nuclear compartmentalization distinct from phase separation
  publication-title: eLife
  doi: 10.7554/eLife.47098
– volume: 547
  start-page: 241
  year: 2017
  ident: bib73
  article-title: Phase separation drives heterochromatin domain formation
  publication-title: Nature
  doi: 10.1038/nature22989
– volume: 35
  start-page: 7171
  year: 2007
  ident: bib51
  article-title: Real-time measurements of the nucleation, growth and dissociation of single Rad51-DNA nucleoprotein filaments
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkm752
– volume: 569
  start-page: 734
  year: 2019
  ident: bib10
  article-title: Active chromatin marks drive spatial sequestration of heterochromatin in C. elegans nuclei
  publication-title: Nature
  doi: 10.1038/s41586-019-1243-y
– volume: 9
  year: 2020
  ident: bib60
  article-title: Live-cell single particle imaging reveals the role of RNA polymerase II in histone H2A.Z eviction
  publication-title: eLife
  doi: 10.7554/eLife.55667
– volume: 5
  start-page: 687
  year: 2008
  ident: bib68
  article-title: Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1233
– volume: 2017
  year: 2017
  ident: bib37
  article-title: Hexanediol: a chemical probe to investigate the material properties of membrane-less compartments
  publication-title: Matters
  doi: 10.19185/matters.201702000010
– volume: 15
  year: 2019
  ident: bib77
  article-title: Live cell monitoring of double strand breaks S. cerevisiae
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.1008001
– volume: 48
  start-page: D354
  year: 2020
  ident: bib79
  article-title: PhaSepDB: a database of liquid-liquid phase separation related proteins
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkz847
– volume: 19
  start-page: 191
  year: 2018
  ident: bib32
  article-title: A change of view: homologous recombination at single-molecule resolution
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg.2017.92
– volume: 3
  start-page: 145
  year: 1998
  ident: bib69
  article-title: Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing
  publication-title: Genes to Cells
  doi: 10.1046/j.1365-2443.1998.00176.x
– volume: 33
  start-page: 1619
  year: 2019
  ident: bib48
  article-title: Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences
  publication-title: Genes & Development
  doi: 10.1101/gad.331520.119
– volume: 48
  start-page: D360
  year: 2019
  ident: bib50
  article-title: PhaSePro: the database of proteins driving liquid-liquid phase separation
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkz848
– volume: 8
  start-page: 1068
  year: 2009
  ident: bib43
  article-title: Choreography of recombination proteins during the DNA damage response
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2009.04.007
– volume: 7
  year: 2015
  ident: bib44
  article-title: Cell biology of mitotic recombination
  publication-title: Cold Spring Harbor Perspectives in Biology
  doi: 10.1101/cshperspect.a016535
– volume: 14
  start-page: 510
  year: 2012
  ident: bib53
  article-title: Increased chromosome mobility facilitates homology search during recombination
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb2472
– volume: 120
  start-page: 103
  year: 2017
  ident: bib72
  article-title: Single-molecule and super-resolution imaging of transcription in living Bacteria
  publication-title: Methods
  doi: 10.1016/j.ymeth.2017.04.001
– volume: 40
  start-page: 363
  year: 2006
  ident: bib78
  article-title: DNA double-strand break repair: all's well that ends well
  publication-title: Annual Review of Genetics
  doi: 10.1146/annurev.genet.40.110405.090451
– volume: 332
  start-page: 475
  year: 2011
  ident: bib38
  article-title: Real-time observation of transcription initiation and elongation on an endogenous yeast gene
  publication-title: Science
  doi: 10.1126/science.1202142
– volume: 38
  year: 2019
  ident: bib34
  article-title: Phase separation of 53bp1 determines liquid-like behavior of DNA repair compartments
  publication-title: The EMBO Journal
  doi: 10.15252/embj.2018101379
– volume: 73
  start-page: 1255
  year: 2019
  ident: bib59
  article-title: Dynamic processing of displacement loops during recombinational DNA repair
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2019.01.005
– volume: 3
  start-page: 50
  year: 2018
  ident: bib65
  article-title: Structural basis of Homology-Directed DNA repair mediated by RAD52
  publication-title: iScience
  doi: 10.1016/j.isci.2018.04.005
– volume: 21
  start-page: 701
  year: 2011
  ident: bib49
  article-title: Compartmentalization of the nucleus
  publication-title: Trends in Cell Biology
  doi: 10.1016/j.tcb.2011.08.001
– volume: 581
  start-page: 209
  year: 2020
  ident: bib62
  article-title: Composition-dependent thermodynamics of intracellular phase separation
  publication-title: Nature
  doi: 10.1038/s41586-020-2256-2
– volume: 198
  start-page: 795
  year: 2014
  ident: bib74
  article-title: Mechanisms and regulation of mitotic recombination in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1534/genetics.114.166140
– volume: 7
  year: 2012
  ident: bib46
  article-title: mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0051314
– volume: 21
  start-page: 947
  year: 2004
  ident: bib31
  article-title: A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes
  publication-title: Yeast
  doi: 10.1002/yea.1142
– volume: 21
  start-page: 1286
  year: 2019
  ident: bib58
  article-title: Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors
  publication-title: Nature Cell Biology
  doi: 10.1038/s41556-019-0392-4
– volume: 26
  start-page: 7720
  year: 2007
  ident: bib75
  article-title: BRCA2: a universal recombinase regulator
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210870
– volume: 28
  start-page: 1867
  year: 2018
  ident: bib25
  article-title: Expanding heterochromatin reveals discrete subtelomeric domains delimited by chromatin landscape transitions
  publication-title: Genome Research
  doi: 10.1101/gr.236554.118
– volume: 20
  start-page: 193
  year: 1977
  ident: bib8
  article-title: Physics of chemoreception
  publication-title: Biophysical Journal
  doi: 10.1016/S0006-3495(77)85544-6
– volume: 14
  start-page: 502
  year: 2012
  ident: bib14
  article-title: Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb2465
– volume: 6
  year: 2015
  ident: bib2
  article-title: Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose)
  publication-title: Nature Communications
  doi: 10.1038/ncomms9088
– volume: 30
  start-page: 39
  year: 2014
  ident: bib28
  article-title: Liquid-liquid phase separation in biology
  publication-title: Annual Review of Cell and Developmental Biology
  doi: 10.1146/annurev-cellbio-100913-013325
– volume: 6
  start-page: 1
  year: 2019
  ident: bib35
  article-title: Guidelines for DNA recombination and repair studies: cellular assays of DNA repair pathways
  publication-title: Microbial Cell
  doi: 10.15698/mic2019.01.664
– volume: 28
  start-page: 3323
  year: 2017
  ident: bib52
  article-title: Multi-scale tracking reveals scale-dependent chromatin dynamics after DNA damage
  publication-title: Molecular Biology of the Cell
  doi: 10.1091/mbc.e17-05-0317
– volume: 38
  start-page: 4708
  year: 2010
  ident: bib1
  article-title: Rad52 SUMOylation affects the efficiency of the DNA repair
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkq195
– volume: 193
  start-page: 1
  year: 2003
  ident: bib61
  article-title: DNA double strand breaks (DSB) and non-homologous end joining (NHEJ) pathways in human leukemia
  publication-title: Cancer Letters
  doi: 10.1016/S0304-3835(02)00692-4
– volume: 559
  start-page: 61
  year: 2018
  ident: bib67
  article-title: Nuclear ARP2/3 drives DNA break clustering for homology-directed repair
  publication-title: Nature
  doi: 10.1038/s41586-018-0237-5
– volume: 21
  start-page: 2030
  year: 2002
  ident: bib18
  article-title: Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage
  publication-title: The EMBO Journal
  doi: 10.1093/emboj/21.8.2030
– volume: 104
  start-page: 14
  year: 2004
  ident: bib29
  article-title: Mechanisms of DNA double strand break repair and chromosome aberration formation
  publication-title: Cytogenetic and Genome Research
  doi: 10.1159/000077461
– volume: 144
  start-page: 732
  year: 2011
  ident: bib12
  article-title: Double-strand breaks in Heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.012
– volume: 36
  start-page: 2609
  year: 2017
  ident: bib7
  article-title: Recombination at Subtelomeres is regulated by physical distance, double-strand break resection and chromatin status
  publication-title: The EMBO Journal
  doi: 10.15252/embj.201796631
– volume: 23
  start-page: 1829
  year: 2013
  ident: bib22
  article-title: High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome
  publication-title: Genome Research
  doi: 10.1101/gr.157008.113
– volume: 9
  year: 2013
  ident: bib19
  article-title: Rad52 sumoylation prevents the toxicity of unproductive Rad51 filaments independently of the anti-recombinase Srs2
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.1003833
– volume: 24
  start-page: 1791
  year: 2013
  ident: bib26
  article-title: Spatial telomere organization and clustering in yeast Saccharomyces cerevisiae nucleus is generated by a random dynamics of aggregation-dissociation
  publication-title: Molecular Biology of the Cell
  doi: 10.1091/mbc.e13-01-0031
– volume: 19
  year: 2018
  ident: bib71
  article-title: Live dynamics of 53bp1 foci following simultaneous induction of clustered and dispersed DNA damage in U2OS cells
  publication-title: International Journal of Molecular Sciences
  doi: 10.3390/ijms19020519
– volume: 45
  start-page: 4507
  year: 2017
  ident: bib64
  article-title: Architectural plasticity of human BRCA2-RAD51 complexes in DNA break repair
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkx084
– volume: 98
  start-page: 8276
  year: 2001
  ident: bib40
  article-title: Rad52 forms DNA repair and recombination centers during S phase
  publication-title: PNAS
  doi: 10.1073/pnas.121006298
– volume: 5
  start-page: 572
  year: 2003
  ident: bib41
  article-title: Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb997
– volume: 9
  start-page: 923
  year: 2007
  ident: bib76
  article-title: The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb1619
– volume: 58
  start-page: 105
  year: 2019
  ident: bib54
  article-title: Physical principles and functional consequences of nuclear compartmentalization in budding yeast
  publication-title: Current Opinion in Cell Biology
  doi: 10.1016/j.ceb.2019.02.005
– volume: 12
  start-page: 244
  year: 2015
  ident: bib20
  article-title: A general method to improve fluorophores for live-cell and single-molecule microscopy
  publication-title: Nature Methods
  doi: 10.1038/nmeth.3256
– volume: 114
  year: 2018
  ident: bib11
  article-title: 1,6-Hexanediol, which is used to disrupt Protein-Rich liquid droplets in the cell cytoplasm, does not disrupt model cell membranes
  publication-title: Biophysical Journal
  doi: 10.1016/j.bpj.2017.11.1505
– volume: 10
  start-page: 1007
  year: 2015
  ident: bib33
  article-title: Optimized sample preparation for single-molecule localization-based superresolution microscopy in yeast
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2015.060
– volume-title: bioRxiv
  year: 2017
  ident: bib23
  article-title: Spot-On: robust model-based analysis of single-particle tracking experiments
  doi: 10.1101/171983v3
– volume: 125
  start-page: 2127
  year: 2012
  ident: bib36
  article-title: Chromatin mobility is increased at sites of DNA double-strand breaks
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.089847
– volume: 5
  start-page: 155
  year: 2008
  ident: bib45
  article-title: High-density mapping of single-molecule trajectories with photoactivated localization microscopy
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1176
– volume: 114
  start-page: 2262
  year: 2018
  ident: bib17
  article-title: Formation of chromatin subcompartments by Phase Separation
  publication-title: Biophysical Journal
  doi: 10.1016/j.bpj.2018.03.011
– volume: 17
  start-page: 373
  year: 2007
  ident: bib63
  article-title: Dynamic organization of the cell nucleus
  publication-title: Current Opinion in Genetics & Development
  doi: 10.1016/j.gde.2007.08.007
– volume: 109
  start-page: 443
  year: 2012
  ident: bib55
  article-title: Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells
  publication-title: PNAS
  doi: 10.1073/pnas.1117849108
– volume: 11
  year: 2020
  ident: bib56
  article-title: DNA repair by Rad52 liquid droplets
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-14546-z
– volume: 42
  start-page: 11
  year: 2016
  ident: bib70
  article-title: SUMOylation of Rad52-Rad59 synergistically change the outcome of mitotic recombination
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2016.04.001
– volume: 118
  start-page: 699
  year: 2004
  ident: bib42
  article-title: Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2004.08.015
– volume: 9
  start-page: 27
  year: 2008
  ident: bib6
  article-title: Finding a match: how do homologous sequences get together for recombination?
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg2224
– volume: 39
  start-page: 471
  year: 2010
  ident: bib27
  article-title: Chromatin dynamics
  publication-title: Annual Review of Biophysics
  doi: 10.1146/annurev.biophys.093008.131348
– volume: 16
  start-page: 12625
  year: 2014
  ident: bib57
  article-title: Imaging and quantification of trans-membrane protein diffusion in living Bacteria
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP00299G
– volume: 24
  start-page: 353
  year: 2017
  ident: bib4
  article-title: Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes
  publication-title: Nature Structural & Molecular Biology
  doi: 10.1038/nsmb.3387
– volume: 78
  start-page: 236
  year: 2020
  ident: bib16
  article-title: Mouse heterochromatin adopts digital compaction states without showing hallmarks of HP1-Driven Liquid-Liquid phase separation
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2020.02.005
– volume: 6
  year: 2011
  ident: bib30
  article-title: Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0015611
– volume: 14
  year: 2009
  ident: bib39
  article-title: Noninvasive determination of cell nucleoplasmic viscosity by fluorescence correlation spectroscopy
  publication-title: Journal of Biomedical Optics
  doi: 10.1117/1.3088141
– volume: 303
  start-page: 92
  year: 2004
  ident: bib3
  article-title: Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains
  publication-title: Science
  doi: 10.1126/science.1088845
– volume: 112
  start-page: 403
  year: 2003
  ident: bib13
  article-title: Considering nuclear compartmentalization in the light of nuclear dynamics
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00078-3
– volume: 7
  year: 2018
  ident: bib24
  article-title: Robust model-based analysis of single-particle tracking experiments with Spot-On
  publication-title: eLife
  doi: 10.7554/eLife.33125
– volume: 65
  start-page: 29
  year: 2019
  ident: bib9
  article-title: Keep moving and stay in a good shape to find your homologous recombination partner
  publication-title: Current Genetics
  doi: 10.1007/s00294-018-0873-1
– volume: 16
  year: 2015
  ident: bib21
  article-title: Spatial reorganization of telomeres in long-lived quiescent cells
  publication-title: Genome Biology
  doi: 10.1186/s13059-015-0766-2
– volume: 18
  start-page: 285
  year: 2017
  ident: bib5
  article-title: Biomolecular condensates: organizers of cellular biochemistry
  publication-title: Nature Reviews Molecular Cell Biology
  doi: 10.1038/nrm.2017.7
– volume: 9
  start-page: 152
  year: 2012
  ident: bib66
  article-title: Immunolabeling artifacts and the need for live-cell imaging
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1855
SSID ssj0000748819
Score 2.5032845
Snippet In response to double strand breaks (DSB), repair proteins accumulate at damaged sites, forming membrane-less sub-compartments or foci. Here we explored the...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms BRCA2 protein
Cell cycle
Chromatin
DNA Damage
DNA repair
Life Sciences
liquid-liquid phase separation
Microscopy
nuclear sub-compartments
Physics of Living Systems
Population
Proteins
Rad52 DNA Repair and Recombination Protein - chemistry
Rad52 protein
Replication Protein A - chemistry
Saccharomyces cerevisiae - chemistry
Saccharomyces cerevisiae Proteins - chemistry
Single Molecule Imaging
single molecule microscopy
single particle tracking
Yeast
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlpNBL6btuk6KWnApuIsuSrGMSGnIIodCW5mb0GmLYepfdTSD_vjOys6zbQi-9GWmQ7Xl4vpFHM4wdKOtDlC6VSUAsMf7ypQ0JSusiVD4C_crKzSbM5WVzdWW_bLX6opywoTzwwLhDhMda2ySCTrEOXvpQx-gbdLs1KpvLR_cQ9WwFU_kbbFAxhR0O5Bl0mYfpooP0CcG7MRMXlCv1o2O5pjzIP0Hm77mSW87n7Al7PKJGfjw87VP2IPXP2MOhj-Tdc_bjKzqgWeI_h163eEFpdnTg5I5TiSZUMY7GyhejUDikXM9zxeeABAvXLTmglHjX81lHWwycNvRXL9j3s8_fTs_LsWNCGRB2rUspK6sNIj7j0RQ9KCegwgBO6agVaAcuROe08DKZ2HgbQ0QbjB5AW4Ck5Uu208_79Jpxb6tQa6i9AFeL5sjVOhjfaGkCilaogn28Z2IbxnLi1NVi1mJYQRxvM8fbzPGCHWyIF0MVjb-TnZA0NiRU-joPoEK0o0K0_1KIgn1AWU7WOD--aGnsSEpNp1Zuq4Lt3Yu6HY121WIkqDDcshJf7v1mGs2NWO76NL9BGgzwEENXVhTs1aAZm1tJqWppBC5uJjozeZbpTN9d55LehsJg1bz5Hwx4yx5VlHhDqeVqj-2slzdpn-2G23W3Wr7LdvILixAbug
  priority: 102
  providerName: Directory of Open Access Journals
Title Single molecule microscopy reveals key physical features of repair foci in living cells
URI https://www.ncbi.nlm.nih.gov/pubmed/33543712
https://www.proquest.com/docview/2595182935
https://www.proquest.com/docview/2487150291
https://hal.science/hal-03367836
https://pubmed.ncbi.nlm.nih.gov/PMC7924958
https://doaj.org/article/428669e1c6ed4cb3bc4ddb87274578a9
Volume 10
WOSCitedRecordID wos000625938900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M7P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M2P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfYBhIvfI8VximgPSGVrU2bNE9oQ5uGtJ0qPsTxVOWTVTp6t-tt0v57nLR3UEC88FJVjdVGtR3_7Dg2wF4ulDZU2tgmzsTof6lYaOtiIY1LlXF-Kys0m-DjcTGZiLIPuLV9WuVqTQwLtZlpHyPfR5ieIxYWNH87v4x91yi_u9q30NiALV8lgYbUvXIdY0HzWKDF647lcTSc-_asdvYNQnjOB4Yo1OtH83LhsyH_hJq_Z0z-YoJO7v_v5B_AvR58ksNOWh7CLds8gjtdO8qbx_DlI9qxqSXfu5a5eOOz9fy5lRviKz2hpBLUeTLveUucDWVBWzJzSDCX9YI4ZDapGzKtfaSC-H2B9gl8Pjn-9O407hsvxBrR2zKmNBWMI3DkCjVauVwmLkU_MGeG5Y5JJ7WRkiWKWm4KJYw2qMpGOceEc5bRbdhsZo3dAaJEqjPmMpU4mSXFgcyY5qpglGuUkCSP4PWKC5Xuq5L75hjTCr0Tz7IqsKwKLItgb00874px_J3syLNzTeIraIcHs8W3qlfICt0uxoRNNLMm04oqnRmjCoRzGS5iUkTwCoVh8I7Tw7PKPzuglPnDL9dpBLsrfle97rfVT2ZH8HI9jFrrf7ls7OwKadBPRCieiiSCp51orT9FaZ5RnuDL-UDoBnMZjjT1RagMzr03nRfP_j2t53A39Zk5Pvc834XN5eLKvoDb-npZt4sRbPAJD9diBFtHx-PywyhEKvB6npajoGI4Ur4_L7_-AMdAMKw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggEHlghTaxIkdHxAqj2qrLqtKFNFb8JNGWrLL7rZo_xS_kZkku7CAuPXALbJHTmJ_87LHMwCbuTLWce1jnwQXo_9lYmV9iJV2ITUu0FFWU2xCDgbF0ZE6WIPvi7swFFa5kImNoHYjS3vkW2im52gLK56_HH-NqWoUna4uSmi0sNj382_osk1f7L3B9X2aprtvD1_34q6qQGzRNJnFnKdKSLSKpEG4mpDrJKTo5OTCiTwIHbR1WovEcC9dYZSzDnHqTAhCheAFx3HPwXk0I9KiCRU8WO7poDouUMO21wAlKuot36-Cf44ug5Qriq-pD4Dq7JiiL_80bX-P0PxF5e1e_d8m6xpc6YxrttNyw3VY8_UNuNiW25zfhI_vUU8PPfvSlgTGB4pGpHs5c0aZrJATGco0Nu6wy4Jv0p5O2SggwVhXExYQzKyq2bCinRhG5x7TW_DhTP7qNqzXo9rfBWZUajMRMpMEnSXFts6ElaYQXFrkgCSP4Nli1UvbZV2n4h_DEr0vgkjZQKRsIBLB5pJ43CYb-TvZK4LPkoQyhDcNo8nnshM4JbqVQiifWOFdZg03NnPOFGiuZiiktYrgCYJvZYzeTr-ktm3OBV3uOU0j2Fjgq-xk27T8Ca4IHi-7USrRlOvaj06QBv1gdDVSlURwp4Xy8lWc5xmXCQ4uV0C-8i2rPXV13GQ-l7RbkBf3_v1Zj-BS7_Bdv-zvDfbvw-WUopAozj7fgPXZ5MQ_gAv2dFZNJw8b9mXw6axZ4AeKxIjd
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V8hAX3o9AgQWVSyWT2mvveg8IFUrUqlEUCRC9mX1SS8EJSVqUv8avY8Z2AgHErQdu1u5ovV5_89qdnQHYzpSxjmsf-Ti4CP0vEynrQ6S0C4lxgY6y6mITcjDIj4_VcAO-L-_CUFjlUibWgtqNLe2Rd9FMz9AWVjzrhjYsYrjfezX5GlEFKTppXZbTaCBy5Bff0H2bvTzcx3_9PEl6b9-_OYjaCgORRTNlHnGeKCHRQpIGoWtCpuOQoMOTCSeyIHTQ1mktYsO9dLlRzjrErDMhCBWCFxzHvQAXJSUtr8MGh6v9HVTNOWrb5kqgRKXd9f0y-BfoPki5pgTrWgGo2k4oEvNPM_f3aM1f1F_v-v-8cDfgWmt0s72GS27Chq9uweWmDOfiNnx8h_p75NmXplQwPlCUIt3XWTDKcIUcylDWsUmLaRZ8nQ51xsYBCSa6nLKAIGdlxUYl7dAwOg-Z3YEP5_JVd2GzGlf-PjCjEpuKkJo46DTOd3UqrDS54NIiZ8RZB3aWCChsm42dioKMCvTKCC5FDZeihksHtlfEkyYJyd_JXhOUViSUObxuGE8_F60gKtDdFEL52ArvUmu4salzJkczNkXhrVUHniEQ18Y42OsX1LbLuaBLP2dJB7aWWCtamTcrfgKtA09X3SitaMl15cenSIP-MbogiYo7cK-B9epVnGcplzEOLtcAvzaX9Z6qPKkzokvaRcjyB_-e1hO4gsgv-oeDo4dwNaHgJAq_z7Zgcz499Y_gkj2bl7Pp45qTGXw6bw74AXjpkZo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+molecule+microscopy+reveals+key+physical+features+of+repair+foci+in+living+cells&rft.jtitle=eLife&rft.au=Min%C3%A9-Hattab%2C+Judith&rft.au=Heltberg%2C+Mathias&rft.au=Villemeur%2C+Marie&rft.au=Guedj%2C+Chlo%C3%A9&rft.date=2021-02-05&rft.eissn=2050-084X&rft.volume=10&rft_id=info:doi/10.7554%2FeLife.60577&rft_id=info%3Apmid%2F33543712&rft.externalDocID=33543712
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon