Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility

The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The New phytologist Ročník 200; číslo 3; s. 847 - 860
Hlavní autoři: Clarke, Christopher R., Chinchilla, Delphine, Hind, Sarah R., Taguchi, Fumiko, Miki, Ryuji, Ichinose, Yuki, Martin, Gregory B., Leman, Scotland, Felix, Georg, Vinatzer, Boris A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: England New Phytologist Trust 01.11.2013
Wiley Subscription Services, Inc
Témata:
ISSN:0028-646X, 1469-8137, 1469-8137
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families is known. Here, we tested the significance of flgII-28 as a MAMP and the importance of allelic diversity in flg22 and flgII-28 in plant–pathogen interactions using purified peptides and a Pseudomonas syringae ΔfliC mutant complemented with different fliC alleles. The plant genotype and allelic diversity in flg22 and flgII-28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flgII-28 is restricted to a number of solanaceous species. Although the flgII-28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII-28 have FLS2-dependent effects on virulence. However, the expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII-28, and tomato plants silenced for FLS2 are not altered in flgII-28 recognition. Therefore, MAMP diversification is an effective pathogen virulence strategy, and flgII-28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS2-dependent virulence effect in Arabidopsis.
AbstractList Summary The bacterial flagellin (FliC) epitopes flg22 and flgII‐28 are microbe‐associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII‐28 receptor nor the extent of flgII‐28 recognition by different plant families is known. Here, we tested the significance of flgII‐28 as a MAMP and the importance of allelic diversity in flg22 and flgII‐28 in plant–pathogen interactions using purified peptides and a Pseudomonas syringae ∆fliC mutant complemented with different fliC alleles. The plant genotype and allelic diversity in flg22 and flgII‐28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flgII‐28 is restricted to a number of solanaceous species. Although the flgII‐28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII‐28 have FLS2‐dependent effects on virulence. However, the expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII‐28, and tomato plants silenced for FLS2 are not altered in flgII‐28 recognition. Therefore, MAMP diversification is an effective pathogen virulence strategy, and flgII‐28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS2‐dependent virulence effect in Arabidopsis.
The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families is known. Here, we tested the significance of flgII-28 as a MAMP and the importance of allelic diversity in flg22 and flgII-28 in plant-pathogen interactions using purified peptides and a Pseudomonas syringae ∆fliC mutant complemented with different fliC alleles. The plant genotype and allelic diversity in flg22 and flgII-28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flgII-28 is restricted to a number of solanaceous species. Although the flgII-28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII-28 have FLS2-dependent effects on virulence. However, the expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII-28, and tomato plants silenced for FLS2 are not altered in flgII-28 recognition. Therefore, MAMP diversification is an effective pathogen virulence strategy, and flgII-28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS2-dependent virulence effect in Arabidopsis.
The bacterial flagellin (FliC) epitopes flg22 and flg II ‐28 are microbe‐associated molecular patterns ( MAMP s). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS 2, neither the flg II ‐28 receptor nor the extent of flg II ‐28 recognition by different plant families is known. Here, we tested the significance of flg II ‐28 as a MAMP and the importance of allelic diversity in flg22 and flg II ‐28 in plant–pathogen interactions using purified peptides and a Pseudomonas syringae ∆ fliC mutant complemented with different fliC alleles. The plant genotype and allelic diversity in flg22 and flg II ‐28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flg II ‐28 is restricted to a number of solanaceous species. Although the flg II ‐28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flg II ‐28 have FLS 2 ‐dependent effects on virulence. However, the expression of a tomato allele of FLS 2 does not confer to Nicotiana benthamiana the ability to detect flg II ‐28, and tomato plants silenced for FLS 2 are not altered in flg II ‐28 recognition. Therefore, MAMP diversification is an effective pathogen virulence strategy, and flg II ‐28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS 2 ‐dependent virulence effect in Arabidopsis.
Summary The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families is known. Here, we tested the significance of flgII-28 as a MAMP and the importance of allelic diversity in flg22 and flgII-28 in plant-pathogen interactions using purified peptides and a Pseudomonas syringae [increment]fliC mutant complemented with different fliC alleles. The plant genotype and allelic diversity in flg22 and flgII-28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flgII-28 is restricted to a number of solanaceous species. Although the flgII-28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII-28 have FLS2-dependent effects on virulence. However, the expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII-28, and tomato plants silenced for FLS2 are not altered in flgII-28 recognition. Therefore, MAMP diversification is an effective pathogen virulence strategy, and flgII-28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS2-dependent virulence effect in Arabidopsis. [PUBLICATION ABSTRACT]
The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). While flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families is known.Here we tested the significance of flgII-28 as a MAMP and the importance of allelic diversity in flg22 and flgII-28 in plant–pathogen interactions using purified peptides and a Pseudomonas syringae ΔfliC mutant complemented with different fliC alleles.Plant genotype and allelic diversity in flg22 and flgII-28 were found to significantly affect the plant immune response but not bacterial motility. Recognition of flgII-28 is restricted to a number of Solanaceous species. While the flgII-28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII-28 have FLS2-dependent effects on virulence. However, expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII-28 and tomato plants silenced for FLS2 are not altered in flgII-28 recognition.Therefore, MAMP diversification is an effective pathogen virulence strategy and flgII-28 appears to be perceived by a yet unidentified receptor in the Solanaceae although it has an FLS2-dependent virulence effect in Arabidopsis.
The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families is known. Here, we tested the significance of flgII-28 as a MAMP and the importance of allelic diversity in flg22 and flgII-28 in plant–pathogen interactions using purified peptides and a Pseudomonas syringae ΔfliC mutant complemented with different fliC alleles. The plant genotype and allelic diversity in flg22 and flgII-28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flgII-28 is restricted to a number of solanaceous species. Although the flgII-28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII-28 have FLS2-dependent effects on virulence. However, the expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII-28, and tomato plants silenced for FLS2 are not altered in flgII-28 recognition. Therefore, MAMP diversification is an effective pathogen virulence strategy, and flgII-28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS2-dependent virulence effect in Arabidopsis.
The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families is known. Here, we tested the significance of flgII-28 as a MAMP and the importance of allelic diversity in flg22 and flgII-28 in plant-pathogen interactions using purified peptides and a Pseudomonas syringae ∆fliC mutant complemented with different fliC alleles. The plant genotype and allelic diversity in flg22 and flgII-28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flgII-28 is restricted to a number of solanaceous species. Although the flgII-28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII-28 have FLS2-dependent effects on virulence. However, the expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII-28, and tomato plants silenced for FLS2 are not altered in flgII-28 recognition. Therefore, MAMP diversification is an effective pathogen virulence strategy, and flgII-28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS2-dependent virulence effect in Arabidopsis.The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families is known. Here, we tested the significance of flgII-28 as a MAMP and the importance of allelic diversity in flg22 and flgII-28 in plant-pathogen interactions using purified peptides and a Pseudomonas syringae ∆fliC mutant complemented with different fliC alleles. The plant genotype and allelic diversity in flg22 and flgII-28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flgII-28 is restricted to a number of solanaceous species. Although the flgII-28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII-28 have FLS2-dependent effects on virulence. However, the expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII-28, and tomato plants silenced for FLS2 are not altered in flgII-28 recognition. Therefore, MAMP diversification is an effective pathogen virulence strategy, and flgII-28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS2-dependent virulence effect in Arabidopsis.
The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families is known. Here, we tested the significance of flgII-28 as a MAMP and the importance of allelic diversity in flg22 and flgII-28 in plant-pathogen interactions using purified peptides and a Pseudomonas syringae Delta fliC mutant complemented with different fliC alleles. The plant genotype and allelic diversity in flg22 and flgII-28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flgII-28 is restricted to a number of solanaceous species. Although the flgII-28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII-28 have FLS2-dependent effects on virulence. However, the expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII-28, and tomato plants silenced for FLS2 are not altered in flgII-28 recognition. Therefore, MAMP diversification is an effective pathogen virulence strategy, and flgII-28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS2-dependent virulence effect in Arabidopsis.
Author Delphine Chinchilla
Georg Felix
Boris A. Vinatzer
Fumiko Taguchi
Yuki Ichinose
Sarah R. Hind
Christopher R. Clarke
Ryuji Miki
Gregory B. Martin
Scotland Leman
AuthorAffiliation 3 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
6 Department of Statistics, Virginia Tech, Blacksburg, VA 24061, USA
1 Department of Plant Pathology, Physiology and Weed Sciences Latham Hall, Ag Quad Lane, Virginia Tech, Blacksburg, VA 24061, USA
2 Zurich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, Hebelstrasse 1, 4056 Basel, Switzerland
5 Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA; and Genomics and Biotechnology Section, Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
7 Zentrum für Molekularbiologie der Pflanzen, University Tübingen, 72076, Germany
4 Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka 1-1-1, Okayama 700-8530, Japan
AuthorAffiliation_xml – name: 3 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
– name: 5 Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA; and Genomics and Biotechnology Section, Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
– name: 6 Department of Statistics, Virginia Tech, Blacksburg, VA 24061, USA
– name: 7 Zentrum für Molekularbiologie der Pflanzen, University Tübingen, 72076, Germany
– name: 1 Department of Plant Pathology, Physiology and Weed Sciences Latham Hall, Ag Quad Lane, Virginia Tech, Blacksburg, VA 24061, USA
– name: 4 Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka 1-1-1, Okayama 700-8530, Japan
– name: 2 Zurich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, Hebelstrasse 1, 4056 Basel, Switzerland
Author_xml – sequence: 1
  givenname: Christopher R.
  surname: Clarke
  fullname: Clarke, Christopher R.
  organization: Virginia Tech
– sequence: 2
  givenname: Delphine
  surname: Chinchilla
  fullname: Chinchilla, Delphine
  organization: University of Basel
– sequence: 3
  givenname: Sarah R.
  surname: Hind
  fullname: Hind, Sarah R.
  organization: Boyce Thompson Institute for Plant Research
– sequence: 4
  givenname: Fumiko
  surname: Taguchi
  fullname: Taguchi, Fumiko
  organization: Okayama University
– sequence: 5
  givenname: Ryuji
  surname: Miki
  fullname: Miki, Ryuji
  organization: Okayama University
– sequence: 6
  givenname: Yuki
  surname: Ichinose
  fullname: Ichinose, Yuki
  organization: Okayama University
– sequence: 7
  givenname: Gregory B.
  surname: Martin
  fullname: Martin, Gregory B.
  organization: King Abdulaziz University
– sequence: 8
  givenname: Scotland
  surname: Leman
  fullname: Leman, Scotland
  organization: Virginia Tech
– sequence: 9
  givenname: Georg
  surname: Felix
  fullname: Felix, Georg
  organization: University Tübingen
– sequence: 10
  givenname: Boris A.
  surname: Vinatzer
  fullname: Vinatzer, Boris A.
  organization: Virginia Tech
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23865782$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhSNURKeFBS-ALLGBRVr_JXE2SFUFFKmCLrpgZznOnRmPHDvYTkfzILwvns5MBRV_3vhK_s650vE5KY6cd1AULwk-I_mcu3F5RijH4kkxI7xuS0FYc1TMMKairHn99bg4iXGFMW6rmj4rjikTddUIOiu-X1gL1mh0p4JRyXiHjENp7VFvYjJOJ3QTYer94J2KKG6CcQsFaG7VAqzNLIwm-REiGnw_WZXylJaAYgrgFmmJ_ByNVrmEzDBMDlCAOHoXM9ZNCTmfUKd0grzdZotkrEmb58XTubIRXuzv0-L2w_vby6vy-svHT5cX16WumkqUVdd2PZ1jzdum7jpc4Tn0vCdEK0yrTnet6DHRWDPooWe61RznsWsr3VHM2Wnxbmc7Tt0AvQaXgrJyDGZQYSO9MvLXF2eWcuHvJGvahtRbgzd7g-C_TRCTHEzUORflwE9R0opymj-ANP9ECeeCEiJE9T8oy7YtbzP6-hG68lNwObO8mzAmBGd_pbIXqZu8eLv21c9pPMRwKEsGzneADj7GAHOpTbrvTA7HWEmw3NZR5jrK-zpmxdtHioPp79i9-9pY2PwZlJ9vrg6KcqdYxeTDg8LBelxukrd-kSssKcaSScEb9gO7jgME
CitedBy_id crossref_primary_10_1371_journal_pone_0157155
crossref_primary_10_3389_fpls_2015_00219
crossref_primary_10_1094_MPMI_11_14_0372_R
crossref_primary_10_1007_s10327_024_01172_6
crossref_primary_10_1111_tpj_13808
crossref_primary_10_1016_j_pbi_2014_04_007
crossref_primary_10_1016_j_it_2014_05_004
crossref_primary_10_1016_j_ncrops_2024_100014
crossref_primary_10_1038_s41467_024_48108_4
crossref_primary_10_1111_mpp_12688
crossref_primary_10_1186_s12870_021_03200_5
crossref_primary_10_1105_tpc_15_00774
crossref_primary_10_1111_pbi_70255
crossref_primary_10_1128_JB_00576_17
crossref_primary_10_1146_annurev_phyto_080516_035623
crossref_primary_10_1186_s13059_016_0955_7
crossref_primary_10_1073_pnas_1403248111
crossref_primary_10_3390_microorganisms8060815
crossref_primary_10_3390_plants9040516
crossref_primary_10_1016_j_molp_2015_01_012
crossref_primary_10_1007_s13580_021_00415_1
crossref_primary_10_7717_peerj_2570
crossref_primary_10_1094_MPMI_34_6
crossref_primary_10_1186_gb_2013_14_12_r139
crossref_primary_10_1016_S2095_3119_18_62009_X
crossref_primary_10_1094_MPMI_03_17_0056_R
crossref_primary_10_1186_1746_4811_10_6
crossref_primary_10_3389_fpls_2022_1004184
crossref_primary_10_1093_plphys_kiae401
crossref_primary_10_1111_jipb_12123
crossref_primary_10_1111_mpp_12297
crossref_primary_10_1002_mbo3_1255
crossref_primary_10_1111_mpp_13300
crossref_primary_10_3389_fpls_2023_1176705
crossref_primary_10_1111_nph_15596
crossref_primary_10_1016_j_chom_2021_02_006
crossref_primary_10_1094_MPMI_07_20_0173_CR
crossref_primary_10_1038_nplants_2016_128
crossref_primary_10_1146_annurev_phyto_082718_100008
crossref_primary_10_1016_j_chom_2021_02_008
crossref_primary_10_1111_mpp_12655
crossref_primary_10_3835_plantgenome2015_02_0006
crossref_primary_10_1038_s41467_020_17573_y
crossref_primary_10_1371_journal_ppat_1004578
crossref_primary_10_1016_j_pbi_2017_04_011
crossref_primary_10_1094_MPMI_08_21_0211_R
crossref_primary_10_1093_plphys_kiac577
crossref_primary_10_1094_MPMI_06_19_0164_R
crossref_primary_10_3390_plants12030590
crossref_primary_10_1073_pnas_2121568119
crossref_primary_10_1371_journal_ppat_1004491
crossref_primary_10_1111_pbi_12874
crossref_primary_10_1038_nplants_2016_136
crossref_primary_10_1042_BCJ20190299
crossref_primary_10_1093_plcell_koaf109
crossref_primary_10_1111_mpp_12140
crossref_primary_10_1186_s40538_024_00714_6
crossref_primary_10_3390_agronomy8080134
crossref_primary_10_1007_s10327_022_01105_1
crossref_primary_10_1111_tpj_16502
crossref_primary_10_1186_s12864_016_2534_4
crossref_primary_10_1128_JB_00418_19
crossref_primary_10_1007_s10327_018_0779_2
crossref_primary_10_1094_PHYTO_09_22_0357_SA
crossref_primary_10_1093_mp_sst145
crossref_primary_10_1094_MPMI_11_16_0247_R
crossref_primary_10_1094_MPMI_35_2
crossref_primary_10_1371_journal_ppat_1004483
crossref_primary_10_1128_AEM_01798_15
crossref_primary_10_1038_nplants_2016_185
crossref_primary_10_1094_MPMI_04_17_0084_R
crossref_primary_10_1007_s00122_017_2876_6
crossref_primary_10_3389_fpls_2014_00677
crossref_primary_10_1111_nph_13551
crossref_primary_10_1094_MPMI_01_18_0008_R
crossref_primary_10_1016_j_tplants_2023_09_013
crossref_primary_10_1038_srep44905
crossref_primary_10_1111_mpp_13445
crossref_primary_10_1371_journal_pone_0106119
crossref_primary_10_1146_annurev_phyto_080614_120114
crossref_primary_10_1094_MPMI_02_22_0037_CR
crossref_primary_10_1146_annurev_phyto_102313_045907
crossref_primary_10_1007_s11104_020_04495_3
crossref_primary_10_1371_journal_ppat_1005686
crossref_primary_10_1094_MPMI_11_17_0279_TA
crossref_primary_10_1093_plphys_kiac312
crossref_primary_10_1128_spectrum_01099_22
crossref_primary_10_1186_s13059_014_0492_1
crossref_primary_10_3389_fmicb_2014_00141
Cites_doi 10.1016/S1097-2765(00)80265-8
10.1046/j.1365-313X.1999.00265.x
10.1111/1462‐2920.12113
10.1094/PHYTO-11-10-0318
10.1016/j.cub.2008.10.063
10.1016/j.chom.2011.10.013
10.1126/science.295.5560.1722
10.1016/j.cell.2006.02.008
10.1038/nbt.1613
10.1038/nature11119
10.1104/pp.110.157016
10.1038/35074106
10.1038/nature01830
10.1038/nature10394
10.1016/j.pbi.2007.04.021
10.3389/fpls.2012.00169
10.1074/jbc.M004796200
10.1073/pnas.1013031108
10.1146/annurev.arplant.57.032905.105346
10.1093/molbev/mss011
10.1016/j.chom.2008.05.017
10.1046/j.1365-313X.1999.00451.x
10.1093/pcp/pcg042
10.1016/j.pbi.2005.05.004
10.1007/s00438-003-0817-3
10.1094/MPMI-23-6-0715
10.1073/pnas.0705306104
10.1105/tpc.106.048801
10.1105/tpc.10.9.1561
10.1126/science.1215584
10.1371/journal.ppat.1002130
10.1038/nature05999
10.1105/tpc.105.036574
10.1007/s11103-007-9173-8
10.1111/j.1365-2958.2011.07571.x
10.1038/ni1253
10.1101/gad.366506
10.1371/journal.pone.0041056
10.1371/journal.ppat.1002132
10.1016/S0015-3796(82)80041-3
10.1105/tpc.111.093815
10.1105/tpc.105.037648
10.1016/j.mib.2010.12.005
10.1038/nature08794
10.1073/pnas.0502040102
10.1038/nature02485
10.1128/JB.185.22.6658-6665.2003
10.1016/j.cell.2006.06.054
10.1007/978-3-642-23044-8_9
10.1038/nature10510
10.1038/nature05286
10.1074/jbc.M102390200
10.1094/MPMI.2004.17.6.696
10.1007/978-0-387-71767-8_25
10.1016/j.cub.2007.12.020
10.1016/j.ejcb.2009.11.015
10.1073/pnas.64.4.1300
10.1073/pnas.1113893109
10.1046/j.1365-313X.1996.09030341.x
10.1016/j.syapm.2010.02.001
10.1046/j.1365-313X.2002.01394.x
ContentType Journal Article
Copyright 2013 New Phytologist Trust
2013 The Authors. New Phytologist © 2013 New Phytologist Trust
2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Copyright © 2013 New Phytologist Trust
Copyright_xml – notice: 2013 New Phytologist Trust
– notice: 2013 The Authors. New Phytologist © 2013 New Phytologist Trust
– notice: 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
– notice: Copyright © 2013 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7QL
7T5
7T7
H94
7S9
L.6
5PM
DOI 10.1111/nph.12408
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
AIDS and Cancer Research Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

AGRICOLA

Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 860
ExternalDocumentID PMC3797164
3097703671
23865782
10_1111_nph_12408
NPH12408
newphytologist.200.3.847
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: R01‐GM078021
– fundername: NSF
  funderid: #0746501
– fundername: Swiss National Foundation
  funderid: 31003A_138255; IOS‐1025642
– fundername: NIGMS NIH HHS
  grantid: R01 GM078021
– fundername: NIGMS NIH HHS
  grantid: R01-GM078021
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
31~
AASVR
ABEFU
ABEML
ABGDZ
ACQPF
ADXHL
AGHNM
AS~
CAG
COF
GTFYD
HF~
HGD
HQ2
HTVGU
LPU
MVM
NEJ
RCA
WHG
YXE
ZCG
AAYXX
ABUFD
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
XOL
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7QL
7T5
7T7
H94
7S9
L.6
5PM
ID FETCH-LOGICAL-c5758-5b9bd2f0c4976bb050fed4d11ca025bcb98d01c0c3eded3c9c403edb95cb2043
IEDL.DBID WIN
ISICitedReferencesCount 99
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000325555400026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-646X
1469-8137
IngestDate Tue Nov 04 01:45:44 EST 2025
Fri Sep 05 17:13:33 EDT 2025
Tue Oct 07 09:25:29 EDT 2025
Thu Oct 02 04:18:16 EDT 2025
Fri Jul 25 12:19:05 EDT 2025
Sun Jul 13 05:17:43 EDT 2025
Mon Jul 21 05:43:49 EDT 2025
Sat Nov 29 04:38:14 EST 2025
Tue Nov 18 21:56:26 EST 2025
Sun Sep 21 06:21:26 EDT 2025
Thu Jul 03 22:54:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords flgII-28
FLS2
flagellin
pattern-triggered immunity (PTI)
flg22
microbe-associated molecular pattern (MAMP)
pathogen-associated molecular pattern (PAMP)
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5758-5b9bd2f0c4976bb050fed4d11ca025bcb98d01c0c3eded3c9c403edb95cb2043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://doi.org/10.1111/nph.12408
PMID 23865782
PQID 1441672115
PQPubID 2026848
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3797164
proquest_miscellaneous_2524264617
proquest_miscellaneous_1448211885
proquest_miscellaneous_1443426949
proquest_journals_2513388439
proquest_journals_1441672115
pubmed_primary_23865782
crossref_citationtrail_10_1111_nph_12408
crossref_primary_10_1111_nph_12408
wiley_primary_10_1111_nph_12408_NPH12408
jstor_primary_newphytologist_200_3_847
PublicationCentury 2000
PublicationDate November 2013
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: November 2013
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2013
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 2007; 104
2011; 477
2012; 485
2000; 5
1954; 44
2010; 464
2011; 10
2011; 14
2008; 4
2010; 23
2001; 410
2006; 20
2000; 12
2005; 102
1999; 18
2010; 28
1982; 177
2010; 153
2012; 29
2007; 64
2006; 126
2012; 24
2012; 335
1998; 10
1996; 9
2006; 444
2003; 44
2006; 124
2010; 33
1991; 3
2007; 19
2012
2002; 31
2011; 80
2009; 60
2002; 295
2008; 18
2006; 18
2007b; 448
2000; 275
2004; 428
2007; 10
2011; 7
2012; 109
2010; 89
2001; 276
2011; 108
2003; 424
2007a
2004; 17
2005; 8
1969; 64
2005; 6
2013
2003; 269
2012; 7
2011; 101
2003; 185
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
Dong X (e_1_2_6_23_1) 1991; 3
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
King EO (e_1_2_6_34_1) 1954; 44
e_1_2_6_60_1
e_1_2_6_9_1
Martin GB (e_1_2_6_38_1) 2012
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
Meindl T (e_1_2_6_41_1) 2000; 12
References_xml – volume: 18
  start-page: 465
  year: 2006
  end-page: 476
  article-title: The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception
  publication-title: Plant Cell
– volume: 448
  start-page: 497
  year: 2007b
  end-page: 500
  article-title: A flagellin‐induced complex of the receptor FLS2 and BAK1 initiates plant defence
  publication-title: Nature
– volume: 20
  start-page: 537
  year: 2006
  end-page: 542
  article-title: Ligand‐induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis
  publication-title: Genes & Development
– volume: 185
  start-page: 6658
  year: 2003
  end-page: 6665
  article-title: Flagellin glycosylation island in pv. and its role in host specificity
  publication-title: Journal of Bacteriology
– volume: 335
  start-page: 859
  year: 2012
  end-page: 864
  article-title: Structural basis of TLR5‐Flagellin recognition and signaling
  publication-title: Science
– volume: 18
  start-page: 265
  year: 1999
  end-page: 276
  article-title: Plants have a sensitive perception system for the most conserved domain of bacterial flagellin
  publication-title: Plant Journal
– volume: 444
  start-page: 323
  year: 2006
  end-page: 329
  article-title: The plant immune system
  publication-title: Nature
– volume: 109
  start-page: 4215
  year: 2012
  end-page: 4220
  article-title: Identification of innate immunity elicitors using molecular signatures of natural selection
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 18
  start-page: 1824
  year: 2008
  end-page: 1832
  article-title: Plant pattern‐recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase avrptoB
  publication-title: Current Biology
– start-page: 358
  year: 2007a
  end-page: 371
– volume: 153
  start-page: 1188
  year: 2010
  end-page: 1198
  article-title: A prominent role of the Flagellin receptor FLS2 in mediating stomatal response to pv. tomato DC3000 in Arabidopsis
  publication-title: Plant Physiology
– volume: 64
  start-page: 1300
  year: 1969
  end-page: 1307
  article-title: mutants defective in chemotaxis toward specific chemicals
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 7
  start-page: e41056
  year: 2012
  article-title: Plant innate immunity induced by flagellin suppresses the hypersensitive response in non‐host plants elicited by e pv.
  publication-title: PLoS ONE
– volume: 108
  start-page: 2975
  year: 2011
  end-page: 2980
  article-title: Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire of type III effectors in
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 477
  start-page: 596
  year: 2011
  end-page: 600
  article-title: The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus
  publication-title: Nature
– volume: 295
  start-page: 1722
  year: 2002
  end-page: 1726
  article-title: A functional screen for the Type III (Hrp) secretome of the plant pathogen
  publication-title: Science
– volume: 60
  start-page: 379
  year: 2009
  end-page: 406
  article-title: A renaissance of elicitors: perception of microbe‐associated molecular patterns and danger signals by pattern‐recognition receptors
  publication-title: Annual Review of Plant Biology
– volume: 23
  start-page: 715
  year: 2010
  end-page: 726
  article-title: Identification of genes involved in pathogen‐associated molecular pattern‐triggered immunity
  publication-title: Molecular Plant–Microbe Interactions
– volume: 6
  start-page: 973
  year: 2005
  end-page: 979
  article-title: Are innate immune signaling pathways in plants and animals conserved?
  publication-title: Nature Immunology
– volume: 104
  start-page: 12217
  year: 2007
  end-page: 12222
  article-title: The receptor‐like kinase SERK3/BAK1 is a central regulator of innate immunity in plants
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 3
  start-page: 61
  year: 1991
  end-page: 72
  article-title: Induction of defense genes by virulent and avirulent strains and by a cloned avirulence gene
  publication-title: Plant Cell
– volume: 12
  start-page: 1783
  year: 2000
  end-page: 1794
  article-title: The bacterial elicitor flagellin activates its receptor in tomato cells according to the address–message concept
  publication-title: Plant Cell
– volume: 126
  start-page: 969
  year: 2006
  end-page: 980
  article-title: Plant stomata function in innate immunity against bacterial invasion
  publication-title: Cell
– volume: 7
  start-page: e1002132
  year: 2011
  article-title: Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 isolates
  publication-title: PLoS Pathogens
– volume: 424
  start-page: 643
  year: 2003
  end-page: 650
  article-title: Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy
  publication-title: Nature
– volume: 477
  start-page: 592
  year: 2011
  end-page: 595
  article-title: Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity
  publication-title: Nature
– volume: 102
  start-page: 9247
  year: 2005
  end-page: 9252
  article-title: Evasion of Toll‐like receptor 5 by flagellated bacteria
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 10
  start-page: 616
  year: 2011
  end-page: 626
  article-title: Structural analysis of AvrPtoB bound to host BAK1 reveals two similar kinase‐interacting domains in a type III effector
  publication-title: Cell Host & Microbe
– volume: 29
  start-page: 1655
  year: 2012
  end-page: 1667
  article-title: Flagellin perception varies quantitatively in and its relatives
  publication-title: Molecular Biology and Evolution
– volume: 124
  start-page: 803
  year: 2006
  end-page: 814
  article-title: Host–microbe interactions: shaping the evolution of the plant immune response
  publication-title: Cell
– year: 2013
  article-title: Salmonella colonization activates the plant immune system and benefits from association with plant pathogenic bacteria
  publication-title: Environmental Microbiology
– volume: 5
  start-page: 1003
  year: 2000
  end-page: 1011
  article-title: FLS2: an LRR receptor‐like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis
  publication-title: Molecular Cell
– volume: 101
  start-page: 847
  year: 2011
  end-page: 858
  article-title: Multilocus sequence typing of sensu lato confirms previously described genomospecies and permits rapid identification of pv. and pv. causing bacterial leaf spot on parsley
  publication-title: Phytopathology
– volume: 33
  start-page: 105
  year: 2010
  end-page: 115
  article-title: pv. pv. nov., and pv. (Cintas Koike and Bull, 2000) comb. nov., are members of the emended species (ex Sutic & Dowson 1959) Gardan, Shafik, Belouin, Brosch, Grimont & Grimont 1999
  publication-title: Systematic and Applied Microbiology
– volume: 18
  start-page: 277
  year: 1999
  end-page: 284
  article-title: A single locus determines sensitivity to bacterial flagellin in
  publication-title: Plant Journal
– volume: 89
  start-page: 200
  year: 2010
  end-page: 207
  article-title: Regulation of cell behaviour by plant receptor kinases: pattern recognition receptors as prototypical models
  publication-title: European Journal of Cell Biology
– start-page: 145
  year: 2012
  end-page: 172
– year: 2012
  article-title: MAP kinase cascades in plant innate immunity
  publication-title: Frontiers in Plant Science
– volume: 428
  start-page: 764
  year: 2004
  end-page: 767
  article-title: Bacterial disease resistance in Arabidopsis through flagellin perception
  publication-title: Nature
– volume: 64
  start-page: 539
  year: 2007
  end-page: 547
  article-title: Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities
  publication-title: Plant Molecular Biology
– volume: 44
  start-page: 301
  year: 1954
  end-page: 307
  article-title: Two simple media for the demonstration of pyocyanin and fluorescein
  publication-title: Journal of Laboratory Clinical Medicine
– volume: 10
  start-page: 335
  year: 2007
  end-page: 341
  article-title: Microbe‐associated molecular patterns (MAMPs) probe plant immunity
  publication-title: Current Opinion in Plant Biology
– volume: 276
  start-page: 45669
  year: 2001
  end-page: 45676
  article-title: Sensitivity of different ecotypes and mutants of toward the bacterial elicitor flagellin correlates with the presence of receptor‐binding sites
  publication-title: Journal of Biological Chemistry
– volume: 31
  start-page: 777
  year: 2002
  end-page: 786
  article-title: Virus‐induced gene silencing in tomato
  publication-title: Plant Journal
– volume: 44
  start-page: 342
  year: 2003
  end-page: 349
  article-title: Post‐translational modification of Flagellin determines the specificity of HR induction
  publication-title: Plant and Cell Physiology
– volume: 18
  start-page: 764
  year: 2006
  end-page: 779
  article-title: Within‐species flagellin polymorphism in pv campestris and its impact on elicitation of Arabidopsis FLAGELLIN SENSING2‐dependent defenses
  publication-title: Plant Cell
– volume: 19
  start-page: 3297
  year: 2007
  end-page: 3313
  article-title: Identification and mutational analysis of Arabidopsis FLS2 leucine‐rich repeat domain residues that contribute to flagellin perception
  publication-title: Plant Cell
– volume: 14
  start-page: 54
  year: 2011
  end-page: 61
  article-title: Activation of plant pattern‐recognition receptors by bacteria
  publication-title: Current Opinion in Microbiology
– volume: 9
  start-page: 341
  year: 1996
  end-page: 356
  article-title: Genetic characterization of five powdery mildew disease resistance loci in
  publication-title: Plant Journal
– volume: 275
  start-page: 32347
  year: 2000
  end-page: 32356
  article-title: Flagellin from an incompatible strain of induces a resistance response in cultured rice cells
  publication-title: Journal of Biological Chemistry
– volume: 177
  start-page: 483
  year: 1982
  end-page: 499
  article-title: Growth cycle of suspension cultures of and
  publication-title: Biochemie und Physiologie der Pflanzen
– volume: 28
  start-page: 365
  year: 2010
  end-page: 369
  article-title: Interfamily transfer of a plant pattern‐recognition receptor confers broad‐spectrum bacterial resistance
  publication-title: Nature Biotechnology
– volume: 18
  start-page: 74
  year: 2008
  end-page: 80
  article-title: effector AvrPto blocks innate immunity by targeting receptor kinases
  publication-title: Current Biology
– volume: 269
  start-page: 21
  year: 2003
  end-page: 30
  article-title: The deltafliD mutant of e pv. which secretes flagellin monomers, induces a strong hypersensitive reaction (HR) in non‐host tomato cells
  publication-title: Molecular Genetics and Genomics
– volume: 80
  start-page: 364
  year: 2011
  end-page: 377
  article-title: AlgW regulates multiple virulence strategies
  publication-title: Molecular Microbiology
– volume: 24
  start-page: 3193
  year: 2012
  end-page: 3197
  article-title: Contamination risks in work with synthetic peptides: flg22 as an example of a pirate in commercial peptide preparations
  publication-title: Plant Cell
– volume: 464
  start-page: 418
  year: 2010
  end-page: 422
  article-title: Differential innate immune signalling via Ca sensor protein kinases
  publication-title: Nature
– volume: 7
  start-page: e1002130
  year: 2011
  article-title: The plant pathogen pv. is genetically monomorphic and under strong selection to evade tomato immunity
  publication-title: PLoS Pathogens
– volume: 4
  start-page: 17
  year: 2008
  end-page: 27
  article-title: Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor‐signaling complexes and impede plant immunity
  publication-title: Cell Host & Microbe
– volume: 410
  start-page: 1099
  year: 2001
  end-page: 1103
  article-title: The innate immune response to bacterial flagellin is mediated by Toll‐like receptor 5
  publication-title: Nature
– start-page: 123
  year: 2012
  end-page: 154
– volume: 10
  start-page: 1561
  year: 1998
  end-page: 1570
  article-title: The plant wound hormone systemin binds with the N‐terminal part to its receptor but needs the C‐terminal part to activate it
  publication-title: Plant Cell
– volume: 17
  start-page: 696
  year: 2004
  end-page: 706
  article-title: Flagellin is not a major defense elicitor in cells or extracts applied to
  publication-title: Molecular Plant–Microbe Interactions
– volume: 8
  start-page: 353
  year: 2005
  end-page: 360
  article-title: Plants and animals: a different taste for microbes?
  publication-title: Current Opinion in Plant Biology
– volume: 485
  start-page: 635
  year: 2012
  end-page: 641
  article-title: The tomato genome sequence provides insights into fleshy fruit evolution
  publication-title: Nature
– ident: e_1_2_6_27_1
  doi: 10.1016/S1097-2765(00)80265-8
– ident: e_1_2_6_25_1
  doi: 10.1046/j.1365-313X.1999.00265.x
– ident: e_1_2_6_43_1
  doi: 10.1111/1462‐2920.12113
– ident: e_1_2_6_11_1
  doi: 10.1094/PHYTO-11-10-0318
– ident: e_1_2_6_26_1
  doi: 10.1016/j.cub.2008.10.063
– ident: e_1_2_6_16_1
  doi: 10.1016/j.chom.2011.10.013
– ident: e_1_2_6_29_1
  doi: 10.1126/science.295.5560.1722
– start-page: 123
  volume-title: Effectors in plant–microbe interactions
  year: 2012
  ident: e_1_2_6_38_1
– ident: e_1_2_6_20_1
  doi: 10.1016/j.cell.2006.02.008
– ident: e_1_2_6_36_1
  doi: 10.1038/nbt.1613
– ident: e_1_2_6_21_1
  doi: 10.1038/nature11119
– ident: e_1_2_6_63_1
  doi: 10.1104/pp.110.157016
– ident: e_1_2_6_30_1
  doi: 10.1038/35074106
– ident: e_1_2_6_61_1
  doi: 10.1038/nature01830
– ident: e_1_2_6_35_1
  doi: 10.1038/nature10394
– ident: e_1_2_6_8_1
  doi: 10.1016/j.pbi.2007.04.021
– ident: e_1_2_6_47_1
  doi: 10.3389/fpls.2012.00169
– ident: e_1_2_6_15_1
  doi: 10.1074/jbc.M004796200
– ident: e_1_2_6_22_1
  doi: 10.1073/pnas.1013031108
– ident: e_1_2_6_9_1
  doi: 10.1146/annurev.arplant.57.032905.105346
– ident: e_1_2_6_58_1
  doi: 10.1093/molbev/mss011
– ident: e_1_2_6_53_1
  doi: 10.1016/j.chom.2008.05.017
– ident: e_1_2_6_28_1
  doi: 10.1046/j.1365-313X.1999.00451.x
– ident: e_1_2_6_56_1
  doi: 10.1093/pcp/pcg042
– ident: e_1_2_6_65_1
  doi: 10.1016/j.pbi.2005.05.004
– ident: e_1_2_6_54_1
  doi: 10.1007/s00438-003-0817-3
– volume: 3
  start-page: 61
  year: 1991
  ident: e_1_2_6_23_1
  article-title: Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene
  publication-title: Plant Cell
– ident: e_1_2_6_14_1
  doi: 10.1094/MPMI-23-6-0715
– ident: e_1_2_6_32_1
  doi: 10.1073/pnas.0705306104
– ident: e_1_2_6_24_1
  doi: 10.1105/tpc.106.048801
– ident: e_1_2_6_40_1
  doi: 10.1105/tpc.10.9.1561
– ident: e_1_2_6_62_1
  doi: 10.1126/science.1215584
– ident: e_1_2_6_13_1
  doi: 10.1371/journal.ppat.1002130
– ident: e_1_2_6_19_1
  doi: 10.1038/nature05999
– ident: e_1_2_6_17_1
  doi: 10.1105/tpc.105.036574
– ident: e_1_2_6_48_1
  doi: 10.1007/s11103-007-9173-8
– ident: e_1_2_6_51_1
  doi: 10.1111/j.1365-2958.2011.07571.x
– ident: e_1_2_6_5_1
  doi: 10.1038/ni1253
– ident: e_1_2_6_49_1
  doi: 10.1101/gad.366506
– ident: e_1_2_6_59_1
  doi: 10.1371/journal.pone.0041056
– ident: e_1_2_6_6_1
  doi: 10.1371/journal.ppat.1002132
– volume: 44
  start-page: 301
  year: 1954
  ident: e_1_2_6_34_1
  article-title: Two simple media for the demonstration of pyocyanin and fluorescein
  publication-title: Journal of Laboratory Clinical Medicine
– ident: e_1_2_6_45_1
  doi: 10.1016/S0015-3796(82)80041-3
– ident: e_1_2_6_44_1
  doi: 10.1105/tpc.111.093815
– ident: e_1_2_6_55_1
  doi: 10.1105/tpc.105.037648
– ident: e_1_2_6_52_1
  doi: 10.1016/j.mib.2010.12.005
– ident: e_1_2_6_10_1
  doi: 10.1038/nature08794
– ident: e_1_2_6_4_1
  doi: 10.1073/pnas.0502040102
– ident: e_1_2_6_66_1
  doi: 10.1038/nature02485
– ident: e_1_2_6_57_1
  doi: 10.1128/JB.185.22.6658-6665.2003
– ident: e_1_2_6_42_1
  doi: 10.1016/j.cell.2006.06.054
– ident: e_1_2_6_50_1
  doi: 10.1007/978-3-642-23044-8_9
– ident: e_1_2_6_64_1
  doi: 10.1038/nature10510
– ident: e_1_2_6_33_1
  doi: 10.1038/nature05286
– ident: e_1_2_6_7_1
  doi: 10.1074/jbc.M102390200
– ident: e_1_2_6_46_1
  doi: 10.1094/MPMI.2004.17.6.696
– ident: e_1_2_6_18_1
  doi: 10.1007/978-0-387-71767-8_25
– ident: e_1_2_6_60_1
  doi: 10.1016/j.cub.2007.12.020
– ident: e_1_2_6_3_1
  doi: 10.1016/j.ejcb.2009.11.015
– ident: e_1_2_6_31_1
  doi: 10.1073/pnas.64.4.1300
– ident: e_1_2_6_39_1
  doi: 10.1073/pnas.1113893109
– volume: 12
  start-page: 1783
  year: 2000
  ident: e_1_2_6_41_1
  article-title: The bacterial elicitor flagellin activates its receptor in tomato cells according to the address–message concept
  publication-title: Plant Cell
– ident: e_1_2_6_2_1
  doi: 10.1046/j.1365-313X.1996.09030341.x
– ident: e_1_2_6_12_1
  doi: 10.1016/j.syapm.2010.02.001
– ident: e_1_2_6_37_1
  doi: 10.1046/j.1365-313X.2002.01394.x
SSID ssj0009562
Score 2.4435685
Snippet The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many plant...
Summary The bacterial flagellin (FliC) epitopes flg22 and flgII‐28 are microbe‐associated molecular patterns (MAMPs). Although flg22 is recognized by many...
The bacterial flagellin (FliC) epitopes flg22 and flg II ‐28 are microbe‐associated molecular patterns ( MAMP s). Although flg22 is recognized by many plant...
Summary The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many...
The bacterial flagellin (FliC) epitopes flg22 and flgII‐28 are microbe‐associated molecular patterns (MAMPs). Although flg22 is recognized by many plant...
The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). While flg22 is recognized by many plant species...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 847
SubjectTerms Alleles
allelic variation
Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis - microbiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Bacteria
bacterial motility
Defence mechanisms
Epitopes
Flagellin
Flagellin - genetics
flg22
flgII‐28
FLS2
Gene Expression Regulation, Plant
Genetic diversity
Genotype
Genotypes
Host-Pathogen Interactions - genetics
Immune response
Immune system
Immunity
Infections
Inoculation
Lycopersicon esculentum
microbe‐associated molecular pattern (MAMP)
Motility
mutants
Mutation
Nicotiana - genetics
Nicotiana - metabolism
Nicotiana - microbiology
Nicotiana benthamiana
Pathogens
pathogen‐associated molecular pattern (PAMP)
Pattern recognition
Pattern recognition receptors
pattern‐triggered immunity (PTI)
Peptides
Plant bacterial diseases
Plant Diseases - genetics
Plant immunity
Plant Immunity - genetics
Plant species
Plants
Protein Kinases - genetics
Protein Kinases - metabolism
Pseudomonas
Pseudomonas syringae
Pseudomonas syringae - genetics
Pseudomonas syringae - pathogenicity
Pseudomonas syringae - physiology
Reactive oxygen species
Receptors
Solanaceae
Solanaceae - genetics
Solanaceae - metabolism
Solanaceae - microbiology
Solanum lycopersicum - genetics
Solanum lycopersicum - metabolism
Solanum lycopersicum - microbiology
Tomatoes
Virulence
Title Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility
URI https://www.jstor.org/stable/newphytologist.200.3.847
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.12408
https://www.ncbi.nlm.nih.gov/pubmed/23865782
https://www.proquest.com/docview/1441672115
https://www.proquest.com/docview/2513388439
https://www.proquest.com/docview/1443426949
https://www.proquest.com/docview/1448211885
https://www.proquest.com/docview/2524264617
https://pubmed.ncbi.nlm.nih.gov/PMC3797164
Volume 200
WOSCitedRecordID wos000325555400026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1469-8137
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009562
  issn: 0028-646X
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1469-8137
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009562
  issn: 0028-646X
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9tAEB7SNA996X0oTc22lNIXFR2riz6lh0mhGFNS6jehPRQbVElYckJ-SP9vZ1YHNnVKoW8LO9axOzP7jTzzDcBrPOFU4mfSzrnwbc693MYwwrNdwaVI_IRHkTLNJqLZLF4skvkBvB9qYTp-iPGDG1mG8ddk4Jlotoy8rJfvXCLoQv_rcmOUP77Mtgh3Q29gYA55uOhZhSiLZ_zlzlnUpSPuA5p_5ktu41hzEE3v_dcr3Ie7Pf5kp53CPIADXT6Eow8VYsTrR_DrtCjwmpJdYght9oytStZeVUyRLyhly-aN3qgKlTdrWHNNXwUzzfIC3RKxezNdo4uodcN-Voo6g-EIISajkpTyol2yKmd1gbvJVlSYotm6y9FFMbFpWVm1THT80fiQlCdIUcJjOJ9-Pv94ZveNG2yJ6C-2A5EI5eWO5KgKQjiBk2vFlevKDCGWQCWIleNKR_paaeXLRHIHhyIJpKBa3SdwWFalfgYsTyInR0SBYpJnMooR8KkwQ5gWOpknpAVvhx1MZU9qTr01inQIbnCNU7PGFrwaReuOyWOf0BujBqMExjao7qaVMK4zNe1M_RRPdAtOBj1Je6tvUgpOQwqpg73THvXSiWOEgBa8HKfRnOk_mqzU1cZcwjfVxX-XifEmcRzcLOMFBusiPrXgaae94zt51OcVkaEF0Y5ejwJEOb47U66Whnrcj4hyjOOyG72-eSHT2fzMDI7_XfQ53PGo2Yip9DyBw3a90S_gSF62q2Y9gVvRIp7A7U_fpt-_Toyx_wblkFtv
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZixNBEC7W7IK-eB-jq7Yi4sssc_Rc4Mt6hIgxBImQt2H6GBOIMyEzWdkf4v-1qucgwawIvjV0ZZLp_qr7q07XVwCvcIdTiZ9JO-fCtzn3chvDCM92BZci8RMeRcoUm4gmk3g-T6ZH8LbLhWn0IfoDN_IMs16Tg9OB9I6XF-vFmUsKXdfgmCOMggEcf_g6_DbeEd0NvU6FOeThvFUWops8_Yf39qPmSuIhsvnnncldLms2o-Gt_3uN23CzJaHsvEHNHTjSxV04eVciUby8B7_OVyt8qGQXGEebiWPLgtU_S6ZoQShkzaaV3qoSEZxVrLqko8FMs3yFaxNJfDO9xnVirSv2o1RUHgxbyDMZ5aUU3-sFK3O2XuGUsiVlp2i2aS7qopnY1qwoayYaEWn8kXRZkEKF-zAbfpy9H9lt9QZbIgWM7UAkQnm5IzniQQgncHKtuHJdmSHPEoiEWDmudKSvlVa-TCR3sCmSQApK2H0Ag6Is9CNgeRI5OdIKNJM8k1GMrE-FGXK10Mk8IS14001hKltlcyqwsUq7CAfHODVjbMHL3nTdyHkcMnptcNBbYICDmDf1hHGcqXJn6qe4rVtw2gElbV2_SilCDSmuDg52e1RQJ46RB1rwou9Gn6Y_arJCl1vzCN-kGP_dJsYviePgahsvMIQXSaoFDxv49u_kUbFXpIcWRHvA7g1Id3y_p1gujP64H5HuGMdhN8C-eiDTyXRkGo__3fQ5XB_NvozT8afJ5ydww6PqIyb18xQG9Warn8KJvKiX1eZZ6-2_Aa1KXjM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zi9RAEC7W3UV88T6iq7Yi4kuWHJ0LfFldhxWXYZAV5i2kjzgDMQmTzMr-EP-vVZ2DGZwVwbeGrslRXdX9VabqK4A3eMKpxM-knXPh25x7uY1hhGe7gkuR-AmPImWaTUTTaTyfJ7M9eD_UwnT8EOMHN_IMs1-Tg-ta5RteXtaLY5cYum7AAQ-SEN3y4PTr5Nv5Bulu6A0szCEP5z2zEGXyjD_eOo-6lMRdYPPPnMlNLGsOo8md_3uNu3C7B6HspLOae7Cny_tw-KFCoHj1AH6dFAVeVLJLjKPNwrFlydqfFVO0IZSyZbNGr1WFFpw1rLmiT4OZZnmBexNRfDNd4z5R64b9qBS1B8MR4kxGdSnl93bBqpzVBS4pW1J1imarLlEXxcS6ZWXVMtGRSONDUrIghQoP4WLy6eLjmd13b7AlQsDYDkQilJc7kqM9COEETq4VV64rM8RZAi0hVo4rHelrpZUvE8kdHIokkIIKdh_BflmV-gmwPImcHGEFikmeyShG1KfCDLFa6GSekBa8G5YwlT2zOTXYKNIhwkEdp0bHFrweReuOzmOX0FtjB6MEBjho86afMOqZOnemforHugVHg6Gkves3KUWoIcXVwc5pjxrqxDHiQAtejdPo0_RHTVbqam0u4ZsS47_LxHiTOA6ul_ECA3gRpFrwuDPf8Z08avaK8NCCaMuwRwHiHd-eKZcLwz_uR8Q7xlHtxrCvV2Q6nZ2ZwdN_F30JN2enk_T88_TLM7jlUfMRU_l5BPvtaq2fw6G8bJfN6kXv7L8BslNdrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Allelic+variation+in+two+distinct+Pseudomonas+syringae+flagellin+epitopes+modulates+the+strength+of+plant+immune+responses+but+not+bacterial+motility&rft.jtitle=The+New+phytologist&rft.au=Clarke%2C+Christopher+R&rft.au=Chinchilla%2C+Delphine&rft.au=Hind%2C+Sarah+R&rft.au=Taguchi%2C+Fumiko&rft.date=2013-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=200&rft.issue=3&rft.spage=847&rft_id=info:doi/10.1111%2Fnph.12408&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3097703671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon