Outlier Detection Method in Linear Regression Based on Sum of Arithmetic Progression
We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio ( R ) of the sum of the minimum and the maximum elements and the sum of all elements...
Saved in:
| Published in: | TheScientificWorld Vol. 2014; no. 2014; pp. 1 - 12 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2014
John Wiley & Sons, Inc Wiley |
| Subjects: | |
| ISSN: | 2356-6140, 1537-744X, 1537-744X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio ( R ) of the sum of the minimum and the maximum elements and the sum of all elements is always 2 / n : ( 0,1 ] . R ≠ 2 / n always implies the existence of outliers. Usually, R < 2 / n implies that the minimum is an outlier, and R > 2 / n implies that the maximum is an outlier. Based upon this, we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets with 6 to 1000 elements containing 50% outliers which deviated by a factor of ± 1.0 e - 2 to ± 1.0 e + 2 from the correct value. |
|---|---|
| AbstractList | We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio (R) of the sum of the minimum and the maximum elements and the sum of all elements is always 2/n : (0,1]. R ≠ 2/n always implies the existence of outliers. Usually, R < 2/n implies that the minimum is an outlier, and R > 2/n implies that the maximum is an outlier. Based upon this, we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets with 6 to 1000 elements containing 50% outliers which deviated by a factor of ±1.0e − 2 to ±1.0e + 2 from the correct value. We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio ( R ) of the sum of the minimum and the maximum elements and the sum of all elements is always 2 / n : ( 0,1 ] . R ...0; 2 / n always implies the existence of outliers. Usually, R < 2 / n implies that the minimum is an outlier, and R > 2 / n implies that the maximum is an outlier. Based upon this, we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets with 6 to 1000 elements containing 50% outliers which deviated by a factor of ± 1.0 e - 2 to ± 1.0 e + 2 from the correct value. We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio ( R ) of the sum of the minimum and the maximum elements and the sum of all elements is always 2 / n : ( 0,1 ] . R ≠ 2 / n always implies the existence of outliers. Usually, R < 2 / n implies that the minimum is an outlier, and R > 2 / n implies that the maximum is an outlier. Based upon this, we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets with 6 to 1000 elements containing 50% outliers which deviated by a factor of ± 1.0 e - 2 to ± 1.0 e + 2 from the correct value. We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio (R) of the sum of the minimum and the maximum elements and the sum of all elements is always 2/n : (0,1]. R [not equal to] 2/n always implies the existence of outliers. Usually, R < 2/n implies that the minimum is an outlier, and R > 2/n implies that the maximum is an outlier. Based upon this, we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets with 6 to 1000 elements containing 50% outliers which deviated by a factor of [+ or -] 1.0e - 2 to [+ or -] 1.0e + 2 from the correct value. We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio (R) of the sum of the minimum and the maximum elements and the sum of all elements is always 2/n:(0,1]. R≠2/n always implies the existence of outliers. Usually, R<2/n implies that the minimum is an outlier, and R>2/n implies that the maximum is an outlier. Based upon this, we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets with 6 to 1000 elements containing 50% outliers which deviated by a factor of ±1.0e-2 to ±1.0e+2 from the correct value. We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio (R) of the sum of the minimum and the maximum elements and the sum of all elements is always 2/n : (0,1]. R ≠ 2/n always implies the existence of outliers. Usually, R < 2/n implies that the minimum is an outlier, and R > 2/n implies that the maximum is an outlier. Based upon this, we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets with 6 to 1000 elements containing 50% outliers which deviated by a factor of ±1.0e - 2 to ±1.0e + 2 from the correct value. We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio (R) of the sum of the minimum and the maximum elements and the sum of all elements is always 2/n : (0,1]. R ≠ 2/n always implies the existence of outliers. Usually, R < 2/n implies that the minimum is an outlier, and R > 2/n implies that the maximum is an outlier. Based upon this, we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets with 6 to 1000 elements containing 50% outliers which deviated by a factor of ±1.0e - 2 to ±1.0e + 2 from the correct value.We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio (R) of the sum of the minimum and the maximum elements and the sum of all elements is always 2/n : (0,1]. R ≠ 2/n always implies the existence of outliers. Usually, R < 2/n implies that the minimum is an outlier, and R > 2/n implies that the maximum is an outlier. Based upon this, we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets with 6 to 1000 elements containing 50% outliers which deviated by a factor of ±1.0e - 2 to ±1.0e + 2 from the correct value. We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio ( R ) of the sum of the minimum and the maximum elements and the sum of all elements is always 2 / n : ( 0,1 ] . R ≠ 2 / n always implies the existence of outliers. Usually, R < 2 / n implies that the minimum is an outlier, and R > 2 / n implies that the maximum is an outlier. Based upon this, we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets with 6 to 1000 elements containing 50% outliers which deviated by a factor of ± 1.0 e - 2 to ± 1.0 e + 2 from the correct value. |
| Audience | Academic |
| Author | Effenberger, M. Adikaram, K. K. L. B. Hussein, M. A. Becker, T. |
| AuthorAffiliation | 1 Group Bio-Process Analysis Technology, Technische Universität München, Weihenstephaner Steig 20, 85354 Freising, Germany 2 Institut für Landtechnik und Tierhaltung, Vöttinger Straße 36, 85354 Freising, Germany 3 Computer Unit, Faculty of Agriculture, University of Ruhuna, Mapalana, 81100 Kamburupitiya, Sri Lanka |
| AuthorAffiliation_xml | – name: 1 Group Bio-Process Analysis Technology, Technische Universität München, Weihenstephaner Steig 20, 85354 Freising, Germany – name: 3 Computer Unit, Faculty of Agriculture, University of Ruhuna, Mapalana, 81100 Kamburupitiya, Sri Lanka – name: 2 Institut für Landtechnik und Tierhaltung, Vöttinger Straße 36, 85354 Freising, Germany |
| Author_xml | – sequence: 1 fullname: Becker, T. – sequence: 2 fullname: Effenberger, M. – sequence: 3 fullname: Hussein, M. A. – sequence: 4 fullname: Adikaram, K. K. L. B. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25121139$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk1v1DAQhi1URLcLJ-4oEhcESuux43xcKi3lq9KiIigSN8uxJ7teJXGxExD_HofsorZCwj7YGj_zeux5T8hR73ok5CnQUwAhzhiF7KxkkDP-gCxA8CItsuzbEVkwLvI0h4wek5MQdpTysgDxiBwzAQyAVwtyfTUOrUWfvMEB9WBdn3zEYetMYvtkbXtUPvmMG48hTGevVUCTxM2XsUtck6y8HbYdDlYnn7w7YI_Jw0a1AZ_s1yX5-u7t9cWHdH31_vJitU61KNiQooGS53XJ66pueM14rY1mrBAAGnUhGiHAUE6VQVpTrhswvKaqFIgsM6XhS3I56xqndvLG2075X9IpK_8EnN9I5WNtLcoacjSmzpsmV5nBqjYsjqIweZlRpCJqnc9aN2PdodHYD161d0TvnvR2Kzfuh8ziVzJWRYEXewHvvo8YBtnZoLFtVY9uDDK2ihdAM8Yi-vweunOj7-NXTRQrgU_NXJLTmdqo-ADbNy7eq-M02FkdPdDYGF9lEGU5FGVMeHb7CX9rP3Q7AjAD2rsQPDZS20FNTY_KtpVA5eQoOTlKzo6KOa_u5Rxk_02_nOmt7Y36af8D7-vFiGCjbsHRAlXFfwN4-OE2 |
| CitedBy_id | crossref_primary_10_1002_cem_3143 crossref_primary_10_1016_j_schres_2019_08_013 crossref_primary_10_1007_s11356_023_27176_x crossref_primary_10_1016_j_molliq_2017_04_109 crossref_primary_10_1016_j_epsr_2020_106885 crossref_primary_10_1080_03610918_2021_2007400 crossref_primary_10_1186_s13640_019_0416_9 |
| Cites_doi | 10.1016/0734-189X(83)90047-6 10.1155/2013/720392 10.1155/2010/513810 10.1155/2014/796279 10.1016/j.sigpro.2010.03.014 10.1080/19466315.2013.847383 10.1023/B:AIRE.0000045502.10941.a9 10.1080/00401706.1969.10490657 10.2307/1268354 10.1016/j.acha.2010.11.007 10.1080/00401706.1981.10486239 10.1007/978-3-642-23881-9_50 10.1007/11731139_66 10.1016/j.compchemeng.2004.01.009 10.1076/edre.7.4.353.8937 10.1198/jasa.2009.tm08163 10.1016/j.jsp.2009.10.001 10.1198/jbes.2009.07161 10.1037//1082-989X.7.2.147 10.1155/2014/746451 |
| ContentType | Journal Article |
| Copyright | Copyright © 2014 K. K. L. B. Adikaram et al. COPYRIGHT 2014 John Wiley & Sons, Inc. Copyright © 2014 K. K. L. B. Adikaram et al. K. K. L. B. Adikaram et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2014 K. K. L. B. Adikaram et al. 2014 |
| Copyright_xml | – notice: Copyright © 2014 K. K. L. B. Adikaram et al. – notice: COPYRIGHT 2014 John Wiley & Sons, Inc. – notice: Copyright © 2014 K. K. L. B. Adikaram et al. K. K. L. B. Adikaram et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright © 2014 K. K. L. B. Adikaram et al. 2014 |
| DBID | ADJCN AHFXO RHU RHW RHX AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TK 7TM 7X2 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU CWDGH DWQXO FR3 FYUFA GHDGH HCIFZ K9. M0K M0S M1P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 5PM DOA |
| DOI | 10.1155/2014/821623 |
| DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Middle East & Africa Database ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Agricultural Science Database ProQuest Health & Medical Collection Medical Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Middle East & Africa Database Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1537-744X |
| Editor | He, Zengyou |
| Editor_xml | – sequence: 1 givenname: Zengyou surname: He fullname: He, Zengyou |
| EndPage | 12 |
| ExternalDocumentID | oai_doaj_org_article_b16eddb6ff6a4de9bd222277d6840e05 PMC4121229 3400521781 A413713178 25121139 10_1155_2014_821623 1051199 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | 0R~ 123 24P 4.4 53G 5VS 7X2 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAHBH AAMMB AAWTL ABUWG ACCMX ADBBV ADDVE ADJCN ADMLS ADRAZ AEFGJ AEGXH AEUYN AFKRA AFKWF AFPKN AGXDD AHFXO AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CS3 CWDGH DA7 DIK E3Z EBD EBS EJD EMOBN FAC FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IEP IGS INH INR IPNFZ ITC KQ8 M0K M1P M48 OK1 P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RIG RPM SV3 TUS UKHRP 3V. AAJEY ACHIH M~E RHU RHW RHX AAYXX AFFHD ALUQN CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK 7TM 7XB 8FD 8FK AZQEC DWQXO FR3 K9. P64 PKEHL PQEST PQUKI RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c572t-ed1836b83b9bf3b23bcdc227511cec75f551d030ade0b03cf1d3b0a85ee24d8d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343542100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2356-6140 1537-744X |
| IngestDate | Tue Oct 14 19:03:22 EDT 2025 Tue Nov 04 02:01:21 EST 2025 Thu Oct 02 03:58:19 EDT 2025 Sat Nov 29 14:36:11 EST 2025 Tue Nov 04 18:22:45 EST 2025 Mon Jul 21 06:03:37 EDT 2025 Sat Nov 29 03:08:06 EST 2025 Tue Nov 18 20:58:04 EST 2025 Sun Jun 02 18:51:14 EDT 2024 Thu Sep 25 15:10:16 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2014 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/3.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c572t-ed1836b83b9bf3b23bcdc227511cec75f551d030ade0b03cf1d3b0a85ee24d8d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: Zengyou He |
| OpenAccessLink | https://doaj.org/article/b16eddb6ff6a4de9bd222277d6840e05 |
| PMID | 25121139 |
| PQID | 1552813162 |
| PQPubID | 1136335 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b16eddb6ff6a4de9bd222277d6840e05 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4121229 proquest_miscellaneous_1553710422 proquest_journals_1552813162 gale_infotracacademiconefile_A413713178 pubmed_primary_25121139 crossref_citationtrail_10_1155_2014_821623 crossref_primary_10_1155_2014_821623 hindawi_primary_10_1155_2014_821623 emarefa_primary_1051199 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-01-01 |
| PublicationDateYYYYMMDD | 2014-01-01 |
| PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Cairo, Egypt |
| PublicationPlace_xml | – name: Cairo, Egypt – name: United States – name: Cairo |
| PublicationTitle | TheScientificWorld |
| PublicationTitleAlternate | ScientificWorldJournal |
| PublicationYear | 2014 |
| Publisher | Hindawi Publishing Corporation John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: Hindawi Publishing Corporation – name: John Wiley & Sons, Inc – name: Wiley |
| References | Kriegel H.-P. Schubert M. S. Zimek A. Angle-based outlier detection in high-dimensional data Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’08) August 2008 Las Vegas, Nev, USA ACM 444 452 2-s2.0-65449145220 10.1145/1401890.1401946 (20) 2010; 48 (2) 2010; 28 (22) 2010; 2010 (28) 1981; 23 (24) 2013; 5 (15) 2004; 28 Ben-Gal I. Maimon O. Rokach L. Outlier detection Data Mining and Knowledge Discovery Handbook 2005 New York, NY, USA Springer 131 146 (23) 2011; 31 Acuña E. Rodriguez C. Banks D. House L. McMorris F. R. Arabie P. Gaul W. The treatment of missing values and its effect on classifier accuracy Classification, Clustering, and Data Mining Applications 2004 Berlin, Germany Springer 639 647 (14) 2014; 2014 Jin W. Tung A. K. H. Han J. Mining top-n local outliers in large databases Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’01) August 2001 San Francisco, Calif, USA ACM 293 298 2-s2.0-0035788909 Williams G. Baxter R. He H. Hawkins S. Gu L. A comparative study of RNN for outlier detection in data mining Proceedings of the IEEE International Conference on Data Mining (ICDM '02) December 2002 709 712 2-s2.0-27144452309 (1) 1983; 25 (4) 2004; 22 (21) 2013; 2013 (26) 1969; 11 (27) 1975; 17 (11) 1983; 24 (29) 2014; 2014 Fan H. Zaïane O. R. Foss A. Wu J. Ng W.-K. Kitsuregawa M. Li J. Chang K. A nonparametric outlier detection for effectively discovering top-N outliers from engineering data Advances in Knowledge Discovery and Data Mining 2006 3918 Berlin, Germany Springer 557 566 Lecture Notes in Computer Science 2-s2.0-33745800069 (16) 2001; 7 Gelb A. Applied Optimal Estimation 1974 MIT Press (13) 2011; 91 (3) 2009; 104 (17) 2011; 5 Aryabhata The Aryabhatiya of Aryabhata: An Ancient Indian Work on Mathematics and Astronomy 2006 1 Kessinger Publishing (18) 2002; 7 Niu Z. X. Shi S. Sun J. He X. A survey of outlier detection methodologies and their applications Artificial Intelligence and Computational Intelligence 2011 7002 380 387 Lecture Notes in Computer Science 2-s2.0-80054705446 10.1007/978-3-642-23881-9_50 22 23 24 26 29 (25) 2006; 1 (10) 2006; 3918 13 14 15 18 2 3 4 5 (12) 1974 (19) 2004 (8) 2005 20 21 |
| References_xml | – volume: 2010 year: 2010 end-page: 14 ident: 22 article-title: Incomplete time series prediction using max-margin classification of data with absent features – reference: Aryabhata The Aryabhatiya of Aryabhata: An Ancient Indian Work on Mathematics and Astronomy 2006 1 Kessinger Publishing – volume: 28 start-page: 1635 issue: 9 year: 2004 end-page: 1647 ident: 15 article-title: On-line outlier detection and data cleaning – volume: 48 start-page: 5 issue: 1 year: 2010 end-page: 37 ident: 20 article-title: An introduction to modern missing data analyses – volume: 7 start-page: 147 issue: 2 year: 2002 end-page: 177 ident: 18 article-title: Missing data: our view of the state of the art – volume: 2013 year: 2013 end-page: 10 ident: 21 article-title: Clustering-based multiple imputation via gray relational analysis for missing data and its application to aerospace field – volume: 104 start-page: 1492 issue: 488 year: 2009 end-page: 1503 ident: 3 article-title: Empirical likelihood in missing data problems – volume: 11 start-page: 1 issue: 1 year: 1969 end-page: 21 ident: 26 article-title: Procedures for detecting outlying observations in samples – volume: 2014 year: 2014 end-page: 9 ident: 14 article-title: Using Kalman filters to reduce noise from RFID location system – volume: 2014 year: 2014 end-page: 27 ident: 29 article-title: Comparative performance of four single extreme outlier discordancy tests from Monte Carlo simulations – volume: 28 start-page: 82 issue: 1 year: 2010 end-page: 95 ident: 2 article-title: Missing treatments – volume: 24 start-page: 255 issue: 2 year: 1983 end-page: 269 ident: 11 article-title: Digital image smoothing and the sigma filter – volume: 5 start-page: 383 issue: 4 year: 2013 end-page: 393 ident: 24 article-title: Missing data in noninferiority trials – reference: Fan H. Zaïane O. R. Foss A. Wu J. Ng W.-K. Kitsuregawa M. Li J. Chang K. A nonparametric outlier detection for effectively discovering top-N outliers from engineering data Advances in Knowledge Discovery and Data Mining 2006 3918 Berlin, Germany Springer 557 566 Lecture Notes in Computer Science 2-s2.0-33745800069 – volume: 5 start-page: 1 issue: 1–4 year: 2011 end-page: 13 ident: 17 article-title: Review of the methods for handling missing data in longitudinal data analysis – volume: 17 start-page: 221 issue: 2 year: 1975 end-page: 227 ident: 27 article-title: On the detection of many outliers – reference: Williams G. Baxter R. He H. Hawkins S. Gu L. A comparative study of RNN for outlier detection in data mining Proceedings of the IEEE International Conference on Data Mining (ICDM '02) December 2002 709 712 2-s2.0-27144452309 – reference: Jin W. Tung A. K. H. Han J. Mining top-n local outliers in large databases Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’01) August 2001 San Francisco, Calif, USA ACM 293 298 2-s2.0-0035788909 – volume: 22 start-page: 85 issue: 2 year: 2004 end-page: 126 ident: 4 article-title: A survey of outlier detection methodologies – volume: 91 start-page: 542 issue: 3 year: 2011 end-page: 552 ident: 13 article-title: Improved fractional Kalman filter and its application to estimation over lossy networks – reference: Niu Z. X. Shi S. Sun J. He X. A survey of outlier detection methodologies and their applications Artificial Intelligence and Computational Intelligence 2011 7002 380 387 Lecture Notes in Computer Science 2-s2.0-80054705446 10.1007/978-3-642-23881-9_50 – volume: 7 start-page: 353 issue: 4 year: 2001 end-page: 383 ident: 16 article-title: A review of methods for missing data – reference: Kriegel H.-P. Schubert M. S. Zimek A. Angle-based outlier detection in high-dimensional data Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’08) August 2008 Las Vegas, Nev, USA ACM 444 452 2-s2.0-65449145220 10.1145/1401890.1401946 – volume: 23 start-page: 71 issue: 1 year: 1981 end-page: 75 ident: 28 article-title: Percentage points of many-outlier detection procedures – volume: 31 start-page: 185 issue: 2 year: 2011 end-page: 204 ident: 23 article-title: Approximation of frame based missing data recovery – reference: Ben-Gal I. Maimon O. Rokach L. Outlier detection Data Mining and Knowledge Discovery Handbook 2005 New York, NY, USA Springer 131 146 – volume: 25 start-page: 119 issue: 2 year: 1983 end-page: 149 ident: 1 article-title: Outlier. . . . . . . . . . s – reference: Acuña E. Rodriguez C. Banks D. House L. McMorris F. R. Arabie P. Gaul W. The treatment of missing values and its effect on classifier accuracy Classification, Clustering, and Data Mining Applications 2004 Berlin, Germany Springer 639 647 – reference: Gelb A. Applied Optimal Estimation 1974 MIT Press – volume: 1 year: 2006 ident: 25 – volume: 24 start-page: 255 issue: 2 year: 1983 ident: 11 publication-title: Computer Vision, Graphics and Image Processing doi: 10.1016/0734-189X(83)90047-6 – ident: 21 doi: 10.1155/2013/720392 – ident: 22 doi: 10.1155/2010/513810 – ident: 14 doi: 10.1155/2014/796279 – ident: 13 doi: 10.1016/j.sigpro.2010.03.014 – ident: 24 doi: 10.1080/19466315.2013.847383 – ident: 4 doi: 10.1023/B:AIRE.0000045502.10941.a9 – volume: 25 start-page: 119 issue: 2 year: 1983 ident: 1 publication-title: Technometrics – start-page: 131 volume-title: Outlier detection year: 2005 ident: 8 – ident: 26 doi: 10.1080/00401706.1969.10490657 – volume: 17 start-page: 221 issue: 2 year: 1975 ident: 27 publication-title: Technometrics doi: 10.2307/1268354 – ident: 23 doi: 10.1016/j.acha.2010.11.007 – volume: 23 start-page: 71 issue: 1 year: 1981 ident: 28 publication-title: Technometrics doi: 10.1080/00401706.1981.10486239 – start-page: 639 volume-title: The treatment of missing values and its effect on classifier accuracy year: 2004 ident: 19 – ident: 5 doi: 10.1007/978-3-642-23881-9_50 – volume: 3918 start-page: 557 volume-title: A nonparametric outlier detection for effectively discovering top-N outliers from engineering data year: 2006 ident: 10 doi: 10.1007/11731139_66 – year: 1974 ident: 12 – ident: 15 doi: 10.1016/j.compchemeng.2004.01.009 – volume: 7 start-page: 353 issue: 4 year: 2001 ident: 16 publication-title: Educational Research and Evaluation doi: 10.1076/edre.7.4.353.8937 – ident: 3 doi: 10.1198/jasa.2009.tm08163 – volume: 5 start-page: 1 issue: 1–4 year: 2011 ident: 17 publication-title: International Journal of Mathematical Analysis – ident: 20 doi: 10.1016/j.jsp.2009.10.001 – ident: 2 doi: 10.1198/jbes.2009.07161 – ident: 18 doi: 10.1037//1082-989X.7.2.147 – ident: 29 doi: 10.1155/2014/746451 |
| SSID | ssj0038715 ssib053847956 |
| Score | 2.088423 |
| Snippet | We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref hindawi emarefa |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Biogas Colleges & universities Data Interpretation, Statistical Electronic data processing Genetic algorithms Linear Models Linear models (Statistics) Linear regression models Mathematical Concepts Methods Numerical Analysis, Computer-Assisted Regression analysis |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYBBIvaONr2QYyYhIfUkTixLHzuAHTHmBMY0h9s_wVGmlLUZuOf587x43WMSHemsaNXd-d737x3c-EHAgtMlkLnebamLS0hU0NA4E0hckq5qWQNhQKfxGnp3Iyqc9iguzi7y188HYAz_Pyg2Q5OOoNsiE5Jm6dn0xWWgMWW4oaGWGG9bcACMDDkXK8AmBUZrEq79aj1vxQoOsPNbkarvW4PD-YIjD-3d4Vft7Oorzhlo63yKMYT9LDQQG2yT3fPSbb0WIX9G2klX73hFx8W_YQcM7pJ9-H_KuOfg3HR9O2owBJQeXpuf855MV29Ajcm6Pw4fvyis4a6KHtp1dY8kjPMKdraPaU_Dj-fPHxJI1nKqSWC9an3oENV0YWpjYgD1YY6yxjAuIu663gDURQDgxfO5-ZrLBN7kBqWnLvWemkK56RzW7W-R1CuS2EaDBAck1pAUlntakcIDgNENBolpD3qxlWNhKO47kXlyoAD84VikMN4kjIwdj418CzcXezIxTV2ATJscMXoDAq2poyeeUdlhc2lS6dr41jWPErHBLb-Iwn5HkU9I2ucD-1TsgbFLxC44ahWh1rFOAPI02WOgSXD6g-FzIhr6Nu_Hu4-yu9UXFtWCgkvZPwkApm6NV4G6wat2p052fL0AY6Qn42GOygZmM_GJHmELgnRKwp4NqkrN_p2mlgDi_hl4zVu_81-D3yEK-G9037ZLOfL_0Lct9e9-1i_jLY4B-nzSZ3 priority: 102 providerName: Hindawi Publishing – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMQFKM9AQUZU4iFFm9hJ7JxQC1QcoFRQpL1ZfqUbiWbLbhb-PjOON3RR1Qu3zWYS25nxPGzPN4TsCi0yWQud5tqYtLDcpoYBQxpusop5KaQNicKfxOGhnE7ro7jgtozHKtc6MShqN7e4Rj5BqDCZ87xib89-plg1CndXYwmNq-Qals1GORfT0ZzCXC5EjVgxg2bmEByUodhcWUHIVGQxXw9ePQE7WEwkg9fzDQsVgPxDtq6Gaz0q7hszDJl_txc5pv-erzxnsA5u_-9Q75Bb0VWle4NsbZMrvrtLtqMyWNJXEbH69T1y_GXVgy-7oO99H452dfRzqExN245CtAuziX71J8OR247ug-V0FH58W53SeQMttP3sFLMp6REeFxvI7pPvBx-O331MY7mG1JaC9al3oB4qI7mpDbCacWOdZUyAS2e9FWUDzpkDnaKdz0zGbZM7EAgtS-9Z4aTjD8hWN-_8I0JLy4Vo0PdyTWEhSM9qUzkIDjVEl0azhLxZs0jZiGWOJTV-qBDTlKVCfqqBnwnZHYnPBgiPi8n2kdcjCeJuhz_mixMVp7EyeeUdZi42lS6cr41jmEwsHGLm-KxMyMMoKeeawq3aOiEvUXIU6g3oqtUx_QEGjAhcag-8CQFMFzIhL6JwXd7dnbXwqKh2luqv5CTk-XgbFAbuAunOz1eBBhpC6Dfo7CCnYzvo7OYQEyREbEjwxkfZvNO1swBKXsCTjNWPL-_WE3ITxzCsYe2QrX6x8k_Jdfurb5eLZ2H2_gEWmUeT priority: 102 providerName: ProQuest |
| Title | Outlier Detection Method in Linear Regression Based on Sum of Arithmetic Progression |
| URI | https://search.emarefa.net/detail/BIM-1051199 https://dx.doi.org/10.1155/2014/821623 https://www.ncbi.nlm.nih.gov/pubmed/25121139 https://www.proquest.com/docview/1552813162 https://www.proquest.com/docview/1553710422 https://pubmed.ncbi.nlm.nih.gov/PMC4121229 https://doaj.org/article/b16eddb6ff6a4de9bd222277d6840e05 |
| Volume | 2014 |
| WOSCitedRecordID | wos000343542100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1537-744X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038715 issn: 2356-6140 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1537-744X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038715 issn: 2356-6140 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1537-744X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038715 issn: 2356-6140 databaseCode: M0K dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1537-744X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038715 issn: 2356-6140 databaseCode: 7X7 dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Middle East & Africa Database (ProQuest) customDbUrl: eissn: 1537-744X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038715 issn: 2356-6140 databaseCode: CWDGH dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1537-744X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038715 issn: 2356-6140 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1537-744X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038715 issn: 2356-6140 databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1537-744X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038715 issn: 2356-6140 databaseCode: 24P dateStart: 20000101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZggMQLYlwDozJiEhcpWuJc7DyusGkIWqIxpLKXyLfQSixFbQp_n3Nsr2rRBC-8RE3txva52OdrfD4Tss8lT0TFZZxKpeJcZzpWDBTSZiopmRVcaJco_JGPx2IyqeqNo75wT5inB_aCO1BpaQ3mirWlzI2tlGGYvskNspRYz16a8GoDTIElgRfnvEKWGD8nZwALCnfMXFECWMqTkKkHiymg_zQ_ECwtWba1NjkKf5enK-FerqfsW1MEy79mV4Wkf-6s3Fiqju-SOyHGpId-bLvkmu3ukd3gxUv6KlBNv75Pzj6teghCF_Sd7d2erI6O3JHSdNZRgKngBvTUfvN7ZTs6hCXPUPjweXVB5y20MOunF5gGSWvc5-WrPSBfjo_O3p7E4ZyFWBec9bE14NelEpmqFOiIZUobDTKGWExbzYsWoioDk4E0NlFJptvUgCalKKxluREme0h2unlnHxNa6IzzFoMm0-Ya0HVSqdIAqpMAC5VkEXlzKeFGBxJyPAvje-PASFE0qI7GqyMi--vKPzz3xtXVhqiqdRUkzHZfgBk1wYyaf5lRRB4FRW80he9Yq4i8RMU36PDQVS1D3gIMGKmzmkMIAwDpp1xE5EWwjb93d-_SbpowXywbJMIT8JASJPR8XQyejq9vZGfnK1cHGkLONuisN7N1OxilphDMR4RvGeCWULZLutnUsYnn8EvGqif_Q4pPyW0cqf-Lao_s9IuVfUZu6p_9bLkYkOt8wt1VDMiN4dG4Ph04t4XrKPkA17o4h5L6_aj-CnenJ5PfOdtCnw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB6VFAQvQDkNBRZRxCFZsdfH2g8ItZSqUZMSlSCVJ-M93ESiTkkcKv4Uv5EZexMaVPWtD7zF8dg7a387h3cOgA2RCy9JRe76uZRuqALlSo4vpAikF3OTiETVicJdsb-fHB6m_RX4Pc-FobDKuUysBbUeK_pG3qZSYYkf-DF_f_LDpa5RtLs6b6HRwGLP_DpFl236rrON7_cl5zsfBx92XdtVwFWR4JVrNKI4lkkgU4kc8UAqrTgXaHkoo0RUoA2hEfq5Np70AlX4GvnOk8gYHupEB3jfK7AaEthbsNrv9Ppf5whG6RGKlKrTNLogQHckqtvbRTE6aaFnMwRxMm3UvGE74TihYEkn1q0D6vzgHI_zhaq4NiQn_XR0nin8b0TnGRW5c-t_e7i34aY1xtlms3rWYMWUd2DNirspe21rcr-5C4NPswqt9QnbNlUdvFayXt17m41Khv488s4OzFETVFyyLbQNNMMfn2fHbFzgCKNqeEz5oqxPAXEN2T34cimzuw-tclyah8AiFQhRkHWpi1AlKEVTGWt0f3P0n2XOHXg7h0SmbLV2ahryPau9tijKCD9Zgx8HNhbEJ02RkvPJtghbCxKqLF7_MZ4cZVZQZdKPjabczCLOQ21SqTmlSwtNVYGMFznwwCLzzFC0GZ068IqQmpFkRFZVbhM8cMJUYyzbRHtJIMhE4sALC-aL2V2fgzWzgnWa_UWqA88Xp1Ek0j5XXprxrKbBgai4HTLbrIvFOGTO--j1OCCWVszSQ1k-U46Gddn1EK_kPH10MVvP4PruoNfNup39vcdwg-bTfLFbh1Y1mZkncFX9rEbTyVMrOxh8u-wV9QePC6gx |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEF6VcogXoJyGAoso4pCs2Otj7QeEWkJE1RIiKFLFi9nLjSXqlMSh4q_x65hZr0ODqr71gbc4Xntn7G9mZ7xzELLBBQ-ynAs_FFL6sYqULxm8kDKSQcpMxjNlE4V3-XCY7e_noxXyu8uFwbDKTidaRa0nCr-R97BUWBZGYcp6pQuLGPUHb45--NhBCndau3YaLUR2zK9jcN9mr7f78K6fMTZ4t_f2ve86DPgq4azxjQZEpzKLZC6BOhZJpRVjHKwQZRRPSrAnNIiB0CaQQaTKUAMPIkuMYbHOdAT3vUAucvAxMZxwlHztsAx6JOY51qlpV4UIHJPENrpLUnDX4sDlCgJbPViD417GgLVoaXW0TQRsprCAY7FYNC6P0V0_rk4ziv-N7TyxWA6u_8-P-Qa55kx0utnK1BpZMfVNsuaU4Iy-cJW6X94iex_nDdjwU9o3jQ1pq-kH25GbVjUFLx9op5_MQRtqXNMtsBg0hR-f54d0UsIMVTM-xCxSOsIwuXbYbfLlXLi7Q1brSW3uEZqoiPMSbU5dxioD3ZrLVINTLMCrloJ55FUHj0K5Gu7YSuR7YX25JCkQS0WLJY9sLAYftaVLTh-2hThbDMF64_aPyfSgcOqrkGFqNGZslqmItcmlZphEzTXWCjJB4pG7DqUnpsIt6twjzxG1BepLIFUJl_YBDGPlsWITrCgOgOOZR546YJ9N7noH3MKp21nxF7UeebI4DYoSd79EbSZzOwYmwpJ3QGwrI4t50MgPwRfyCF-SnqWHsnymrsa2GHsMVzKW3z-brMfkCohRsbs93HlAriI77We8dbLaTOfmIbmkfjbVbPrIKhFKvp23OP0BWoevlA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Outlier+Detection+Method+in+Linear+Regression+Based+on+Sum+of+Arithmetic+Progression&rft.jtitle=TheScientificWorld&rft.au=Adikaram%2C+K.+K.+L.+B.&rft.au=Hussein%2C+M.+A.&rft.au=Effenberger%2C+M.&rft.au=Becker%2C+T.&rft.date=2014-01-01&rft.issn=2356-6140&rft.eissn=1537-744X&rft.volume=2014&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1155%2F2014%2F821623&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2014_821623 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2356-6140&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2356-6140&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2356-6140&client=summon |