Outlier Detection Method in Linear Regression Based on Sum of Arithmetic Progression

We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio ( R ) of the sum of the minimum and the maximum elements and the sum of all elements...

Full description

Saved in:
Bibliographic Details
Published in:TheScientificWorld Vol. 2014; no. 2014; pp. 1 - 12
Main Authors: Becker, T., Effenberger, M., Hussein, M. A., Adikaram, K. K. L. B.
Format: Journal Article
Language:English
Published: Cairo, Egypt Hindawi Publishing Corporation 01.01.2014
John Wiley & Sons, Inc
Wiley
Subjects:
ISSN:2356-6140, 1537-744X, 1537-744X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio ( R ) of the sum of the minimum and the maximum elements and the sum of all elements is always 2 / n : ( 0,1 ] . R ≠ 2 / n always implies the existence of outliers. Usually, R < 2 / n implies that the minimum is an outlier, and R > 2 / n implies that the maximum is an outlier. Based upon this, we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets with 6 to 1000 elements containing 50% outliers which deviated by a factor of ± 1.0 e - 2 to ± 1.0 e + 2 from the correct value.
AbstractList We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio (R) of the sum of the minimum and the maximum elements and the sum of all elements is always 2/n : (0,1]. R ≠ 2/n always implies the existence of outliers. Usually, R < 2/n implies that the minimum is an outlier, and R > 2/n implies that the maximum is an outlier. Based upon this, we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets with 6 to 1000 elements containing 50% outliers which deviated by a factor of ±1.0e − 2 to ±1.0e + 2 from the correct value.
We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio ( R ) of the sum of the minimum and the maximum elements and the sum of all elements is always 2 / n : ( 0,1 ] . R ...0; 2 / n always implies the existence of outliers. Usually, R < 2 / n implies that the minimum is an outlier, and R > 2 / n implies that the maximum is an outlier. Based upon this, we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets with 6 to 1000 elements containing 50% outliers which deviated by a factor of ± 1.0 e - 2 to ± 1.0 e + 2 from the correct value.
We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio ( R ) of the sum of the minimum and the maximum elements and the sum of all elements is always 2 / n : ( 0,1 ] . R ≠ 2 / n always implies the existence of outliers. Usually, R < 2 / n implies that the minimum is an outlier, and R > 2 / n implies that the maximum is an outlier. Based upon this, we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets with 6 to 1000 elements containing 50% outliers which deviated by a factor of ± 1.0 e - 2 to ± 1.0 e + 2 from the correct value.
We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio (R) of the sum of the minimum and the maximum elements and the sum of all elements is always 2/n : (0,1]. R [not equal to] 2/n always implies the existence of outliers. Usually, R < 2/n implies that the minimum is an outlier, and R > 2/n implies that the maximum is an outlier. Based upon this, we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets with 6 to 1000 elements containing 50% outliers which deviated by a factor of [+ or -] 1.0e - 2 to [+ or -] 1.0e + 2 from the correct value.
We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio (R) of the sum of the minimum and the maximum elements and the sum of all elements is always 2/n:(0,1]. R≠2/n always implies the existence of outliers. Usually, R<2/n implies that the minimum is an outlier, and R>2/n implies that the maximum is an outlier. Based upon this, we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets with 6 to 1000 elements containing 50% outliers which deviated by a factor of ±1.0e-2 to ±1.0e+2 from the correct value.
We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio (R) of the sum of the minimum and the maximum elements and the sum of all elements is always 2/n : (0,1]. R ≠ 2/n always implies the existence of outliers. Usually, R < 2/n implies that the minimum is an outlier, and R > 2/n implies that the maximum is an outlier. Based upon this, we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets with 6 to 1000 elements containing 50% outliers which deviated by a factor of ±1.0e - 2 to ±1.0e + 2 from the correct value.
We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio (R) of the sum of the minimum and the maximum elements and the sum of all elements is always 2/n : (0,1]. R ≠ 2/n always implies the existence of outliers. Usually, R < 2/n implies that the minimum is an outlier, and R > 2/n implies that the maximum is an outlier. Based upon this, we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets with 6 to 1000 elements containing 50% outliers which deviated by a factor of ±1.0e - 2 to ±1.0e + 2 from the correct value.We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio (R) of the sum of the minimum and the maximum elements and the sum of all elements is always 2/n : (0,1]. R ≠ 2/n always implies the existence of outliers. Usually, R < 2/n implies that the minimum is an outlier, and R > 2/n implies that the maximum is an outlier. Based upon this, we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets with 6 to 1000 elements containing 50% outliers which deviated by a factor of ±1.0e - 2 to ±1.0e + 2 from the correct value.
We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio ( R ) of the sum of the minimum and the maximum elements and the sum of all elements is always 2 / n : ( 0,1 ] . R ≠ 2 / n always implies the existence of outliers. Usually, R < 2 / n implies that the minimum is an outlier, and R > 2 / n implies that the maximum is an outlier. Based upon this, we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets with 6 to 1000 elements containing 50% outliers which deviated by a factor of ± 1.0 e - 2 to ± 1.0 e + 2 from the correct value.
Audience Academic
Author Effenberger, M.
Adikaram, K. K. L. B.
Hussein, M. A.
Becker, T.
AuthorAffiliation 1 Group Bio-Process Analysis Technology, Technische Universität München, Weihenstephaner Steig 20, 85354 Freising, Germany
2 Institut für Landtechnik und Tierhaltung, Vöttinger Straße 36, 85354 Freising, Germany
3 Computer Unit, Faculty of Agriculture, University of Ruhuna, Mapalana, 81100 Kamburupitiya, Sri Lanka
AuthorAffiliation_xml – name: 1 Group Bio-Process Analysis Technology, Technische Universität München, Weihenstephaner Steig 20, 85354 Freising, Germany
– name: 3 Computer Unit, Faculty of Agriculture, University of Ruhuna, Mapalana, 81100 Kamburupitiya, Sri Lanka
– name: 2 Institut für Landtechnik und Tierhaltung, Vöttinger Straße 36, 85354 Freising, Germany
Author_xml – sequence: 1
  fullname: Becker, T.
– sequence: 2
  fullname: Effenberger, M.
– sequence: 3
  fullname: Hussein, M. A.
– sequence: 4
  fullname: Adikaram, K. K. L. B.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25121139$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URLcLJ-4oEhcESuux43xcKi3lq9KiIigSN8uxJ7teJXGxExD_HofsorZCwj7YGj_zeux5T8hR73ok5CnQUwAhzhiF7KxkkDP-gCxA8CItsuzbEVkwLvI0h4wek5MQdpTysgDxiBwzAQyAVwtyfTUOrUWfvMEB9WBdn3zEYetMYvtkbXtUPvmMG48hTGevVUCTxM2XsUtck6y8HbYdDlYnn7w7YI_Jw0a1AZ_s1yX5-u7t9cWHdH31_vJitU61KNiQooGS53XJ66pueM14rY1mrBAAGnUhGiHAUE6VQVpTrhswvKaqFIgsM6XhS3I56xqndvLG2075X9IpK_8EnN9I5WNtLcoacjSmzpsmV5nBqjYsjqIweZlRpCJqnc9aN2PdodHYD161d0TvnvR2Kzfuh8ziVzJWRYEXewHvvo8YBtnZoLFtVY9uDDK2ihdAM8Yi-vweunOj7-NXTRQrgU_NXJLTmdqo-ADbNy7eq-M02FkdPdDYGF9lEGU5FGVMeHb7CX9rP3Q7AjAD2rsQPDZS20FNTY_KtpVA5eQoOTlKzo6KOa_u5Rxk_02_nOmt7Y36af8D7-vFiGCjbsHRAlXFfwN4-OE2
CitedBy_id crossref_primary_10_1002_cem_3143
crossref_primary_10_1016_j_schres_2019_08_013
crossref_primary_10_1007_s11356_023_27176_x
crossref_primary_10_1016_j_molliq_2017_04_109
crossref_primary_10_1016_j_epsr_2020_106885
crossref_primary_10_1080_03610918_2021_2007400
crossref_primary_10_1186_s13640_019_0416_9
Cites_doi 10.1016/0734-189X(83)90047-6
10.1155/2013/720392
10.1155/2010/513810
10.1155/2014/796279
10.1016/j.sigpro.2010.03.014
10.1080/19466315.2013.847383
10.1023/B:AIRE.0000045502.10941.a9
10.1080/00401706.1969.10490657
10.2307/1268354
10.1016/j.acha.2010.11.007
10.1080/00401706.1981.10486239
10.1007/978-3-642-23881-9_50
10.1007/11731139_66
10.1016/j.compchemeng.2004.01.009
10.1076/edre.7.4.353.8937
10.1198/jasa.2009.tm08163
10.1016/j.jsp.2009.10.001
10.1198/jbes.2009.07161
10.1037//1082-989X.7.2.147
10.1155/2014/746451
ContentType Journal Article
Copyright Copyright © 2014 K. K. L. B. Adikaram et al.
COPYRIGHT 2014 John Wiley & Sons, Inc.
Copyright © 2014 K. K. L. B. Adikaram et al. K. K. L. B. Adikaram et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2014 K. K. L. B. Adikaram et al. 2014
Copyright_xml – notice: Copyright © 2014 K. K. L. B. Adikaram et al.
– notice: COPYRIGHT 2014 John Wiley & Sons, Inc.
– notice: Copyright © 2014 K. K. L. B. Adikaram et al. K. K. L. B. Adikaram et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright © 2014 K. K. L. B. Adikaram et al. 2014
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TK
7TM
7X2
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
CWDGH
DWQXO
FR3
FYUFA
GHDGH
HCIFZ
K9.
M0K
M0S
M1P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
7X8
5PM
DOA
DOI 10.1155/2014/821623
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Agricultural Science Collection
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
Middle East & Africa Database (ProQuest)
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Agricultural Science Database




MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1537-744X
Editor He, Zengyou
Editor_xml – sequence: 1
  givenname: Zengyou
  surname: He
  fullname: He, Zengyou
EndPage 12
ExternalDocumentID oai_doaj_org_article_b16eddb6ff6a4de9bd222277d6840e05
PMC4121229
3400521781
A413713178
25121139
10_1155_2014_821623
1051199
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
123
24P
4.4
53G
5VS
7X2
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAHBH
AAMMB
AAWTL
ABUWG
ACCMX
ADBBV
ADDVE
ADJCN
ADMLS
ADRAZ
AEFGJ
AEGXH
AEUYN
AFKRA
AFKWF
AFPKN
AGXDD
AHFXO
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DA7
DIK
E3Z
EBD
EBS
EJD
EMOBN
FAC
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEP
IGS
INH
INR
IPNFZ
ITC
KQ8
M0K
M1P
M48
OK1
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RIG
RPM
SV3
TUS
UKHRP
3V.
AAJEY
ACHIH
M~E
RHU
RHW
RHX
AAYXX
AFFHD
ALUQN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
7TM
7XB
8FD
8FK
AZQEC
DWQXO
FR3
K9.
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ID FETCH-LOGICAL-c572t-ed1836b83b9bf3b23bcdc227511cec75f551d030ade0b03cf1d3b0a85ee24d8d3
IEDL.DBID DOA
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343542100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2356-6140
1537-744X
IngestDate Tue Oct 14 19:03:22 EDT 2025
Tue Nov 04 02:01:21 EST 2025
Thu Oct 02 03:58:19 EDT 2025
Sat Nov 29 14:36:11 EST 2025
Tue Nov 04 18:22:45 EST 2025
Mon Jul 21 06:03:37 EDT 2025
Sat Nov 29 03:08:06 EST 2025
Tue Nov 18 20:58:04 EST 2025
Sun Jun 02 18:51:14 EDT 2024
Thu Sep 25 15:10:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2014
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c572t-ed1836b83b9bf3b23bcdc227511cec75f551d030ade0b03cf1d3b0a85ee24d8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Zengyou He
OpenAccessLink https://doaj.org/article/b16eddb6ff6a4de9bd222277d6840e05
PMID 25121139
PQID 1552813162
PQPubID 1136335
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_b16eddb6ff6a4de9bd222277d6840e05
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4121229
proquest_miscellaneous_1553710422
proquest_journals_1552813162
gale_infotracacademiconefile_A413713178
pubmed_primary_25121139
crossref_citationtrail_10_1155_2014_821623
crossref_primary_10_1155_2014_821623
hindawi_primary_10_1155_2014_821623
emarefa_primary_1051199
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: United States
– name: Cairo
PublicationTitle TheScientificWorld
PublicationTitleAlternate ScientificWorldJournal
PublicationYear 2014
Publisher Hindawi Publishing Corporation
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi Publishing Corporation
– name: John Wiley & Sons, Inc
– name: Wiley
References Kriegel H.-P. Schubert M. S. Zimek A. Angle-based outlier detection in high-dimensional data Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’08) August 2008 Las Vegas, Nev, USA ACM 444 452 2-s2.0-65449145220 10.1145/1401890.1401946
(20) 2010; 48
(2) 2010; 28
(22) 2010; 2010
(28) 1981; 23
(24) 2013; 5
(15) 2004; 28
Ben-Gal I. Maimon O. Rokach L. Outlier detection Data Mining and Knowledge Discovery Handbook 2005 New York, NY, USA Springer 131 146
(23) 2011; 31
Acuña E. Rodriguez C. Banks D. House L. McMorris F. R. Arabie P. Gaul W. The treatment of missing values and its effect on classifier accuracy Classification, Clustering, and Data Mining Applications 2004 Berlin, Germany Springer 639 647
(14) 2014; 2014
Jin W. Tung A. K. H. Han J. Mining top-n local outliers in large databases Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’01) August 2001 San Francisco, Calif, USA ACM 293 298 2-s2.0-0035788909
Williams G. Baxter R. He H. Hawkins S. Gu L. A comparative study of RNN for outlier detection in data mining Proceedings of the IEEE International Conference on Data Mining (ICDM '02) December 2002 709 712 2-s2.0-27144452309
(1) 1983; 25
(4) 2004; 22
(21) 2013; 2013
(26) 1969; 11
(27) 1975; 17
(11) 1983; 24
(29) 2014; 2014
Fan H. Zaïane O. R. Foss A. Wu J. Ng W.-K. Kitsuregawa M. Li J. Chang K. A nonparametric outlier detection for effectively discovering top-N outliers from engineering data Advances in Knowledge Discovery and Data Mining 2006 3918 Berlin, Germany Springer 557 566 Lecture Notes in Computer Science 2-s2.0-33745800069
(16) 2001; 7
Gelb A. Applied Optimal Estimation 1974 MIT Press
(13) 2011; 91
(3) 2009; 104
(17) 2011; 5
Aryabhata The Aryabhatiya of Aryabhata: An Ancient Indian Work on Mathematics and Astronomy 2006 1 Kessinger Publishing
(18) 2002; 7
Niu Z. X. Shi S. Sun J. He X. A survey of outlier detection methodologies and their applications Artificial Intelligence and Computational Intelligence 2011 7002 380 387 Lecture Notes in Computer Science 2-s2.0-80054705446 10.1007/978-3-642-23881-9_50
22
23
24
26
29
(25) 2006; 1
(10) 2006; 3918
13
14
15
18
2
3
4
5
(12) 1974
(19) 2004
(8) 2005
20
21
References_xml – volume: 2010
  year: 2010
  end-page: 14
  ident: 22
  article-title: Incomplete time series prediction using max-margin classification of data with absent features
– reference: Aryabhata The Aryabhatiya of Aryabhata: An Ancient Indian Work on Mathematics and Astronomy 2006 1 Kessinger Publishing
– volume: 28
  start-page: 1635
  issue: 9
  year: 2004
  end-page: 1647
  ident: 15
  article-title: On-line outlier detection and data cleaning
– volume: 48
  start-page: 5
  issue: 1
  year: 2010
  end-page: 37
  ident: 20
  article-title: An introduction to modern missing data analyses
– volume: 7
  start-page: 147
  issue: 2
  year: 2002
  end-page: 177
  ident: 18
  article-title: Missing data: our view of the state of the art
– volume: 2013
  year: 2013
  end-page: 10
  ident: 21
  article-title: Clustering-based multiple imputation via gray relational analysis for missing data and its application to aerospace field
– volume: 104
  start-page: 1492
  issue: 488
  year: 2009
  end-page: 1503
  ident: 3
  article-title: Empirical likelihood in missing data problems
– volume: 11
  start-page: 1
  issue: 1
  year: 1969
  end-page: 21
  ident: 26
  article-title: Procedures for detecting outlying observations in samples
– volume: 2014
  year: 2014
  end-page: 9
  ident: 14
  article-title: Using Kalman filters to reduce noise from RFID location system
– volume: 2014
  year: 2014
  end-page: 27
  ident: 29
  article-title: Comparative performance of four single extreme outlier discordancy tests from Monte Carlo simulations
– volume: 28
  start-page: 82
  issue: 1
  year: 2010
  end-page: 95
  ident: 2
  article-title: Missing treatments
– volume: 24
  start-page: 255
  issue: 2
  year: 1983
  end-page: 269
  ident: 11
  article-title: Digital image smoothing and the sigma filter
– volume: 5
  start-page: 383
  issue: 4
  year: 2013
  end-page: 393
  ident: 24
  article-title: Missing data in noninferiority trials
– reference: Fan H. Zaïane O. R. Foss A. Wu J. Ng W.-K. Kitsuregawa M. Li J. Chang K. A nonparametric outlier detection for effectively discovering top-N outliers from engineering data Advances in Knowledge Discovery and Data Mining 2006 3918 Berlin, Germany Springer 557 566 Lecture Notes in Computer Science 2-s2.0-33745800069
– volume: 5
  start-page: 1
  issue: 1–4
  year: 2011
  end-page: 13
  ident: 17
  article-title: Review of the methods for handling missing data in longitudinal data analysis
– volume: 17
  start-page: 221
  issue: 2
  year: 1975
  end-page: 227
  ident: 27
  article-title: On the detection of many outliers
– reference: Williams G. Baxter R. He H. Hawkins S. Gu L. A comparative study of RNN for outlier detection in data mining Proceedings of the IEEE International Conference on Data Mining (ICDM '02) December 2002 709 712 2-s2.0-27144452309
– reference: Jin W. Tung A. K. H. Han J. Mining top-n local outliers in large databases Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’01) August 2001 San Francisco, Calif, USA ACM 293 298 2-s2.0-0035788909
– volume: 22
  start-page: 85
  issue: 2
  year: 2004
  end-page: 126
  ident: 4
  article-title: A survey of outlier detection methodologies
– volume: 91
  start-page: 542
  issue: 3
  year: 2011
  end-page: 552
  ident: 13
  article-title: Improved fractional Kalman filter and its application to estimation over lossy networks
– reference: Niu Z. X. Shi S. Sun J. He X. A survey of outlier detection methodologies and their applications Artificial Intelligence and Computational Intelligence 2011 7002 380 387 Lecture Notes in Computer Science 2-s2.0-80054705446 10.1007/978-3-642-23881-9_50
– volume: 7
  start-page: 353
  issue: 4
  year: 2001
  end-page: 383
  ident: 16
  article-title: A review of methods for missing data
– reference: Kriegel H.-P. Schubert M. S. Zimek A. Angle-based outlier detection in high-dimensional data Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’08) August 2008 Las Vegas, Nev, USA ACM 444 452 2-s2.0-65449145220 10.1145/1401890.1401946
– volume: 23
  start-page: 71
  issue: 1
  year: 1981
  end-page: 75
  ident: 28
  article-title: Percentage points of many-outlier detection procedures
– volume: 31
  start-page: 185
  issue: 2
  year: 2011
  end-page: 204
  ident: 23
  article-title: Approximation of frame based missing data recovery
– reference: Ben-Gal I. Maimon O. Rokach L. Outlier detection Data Mining and Knowledge Discovery Handbook 2005 New York, NY, USA Springer 131 146
– volume: 25
  start-page: 119
  issue: 2
  year: 1983
  end-page: 149
  ident: 1
  article-title: Outlier. . . . . . . . . . s
– reference: Acuña E. Rodriguez C. Banks D. House L. McMorris F. R. Arabie P. Gaul W. The treatment of missing values and its effect on classifier accuracy Classification, Clustering, and Data Mining Applications 2004 Berlin, Germany Springer 639 647
– reference: Gelb A. Applied Optimal Estimation 1974 MIT Press
– volume: 1
  year: 2006
  ident: 25
– volume: 24
  start-page: 255
  issue: 2
  year: 1983
  ident: 11
  publication-title: Computer Vision, Graphics and Image Processing
  doi: 10.1016/0734-189X(83)90047-6
– ident: 21
  doi: 10.1155/2013/720392
– ident: 22
  doi: 10.1155/2010/513810
– ident: 14
  doi: 10.1155/2014/796279
– ident: 13
  doi: 10.1016/j.sigpro.2010.03.014
– ident: 24
  doi: 10.1080/19466315.2013.847383
– ident: 4
  doi: 10.1023/B:AIRE.0000045502.10941.a9
– volume: 25
  start-page: 119
  issue: 2
  year: 1983
  ident: 1
  publication-title: Technometrics
– start-page: 131
  volume-title: Outlier detection
  year: 2005
  ident: 8
– ident: 26
  doi: 10.1080/00401706.1969.10490657
– volume: 17
  start-page: 221
  issue: 2
  year: 1975
  ident: 27
  publication-title: Technometrics
  doi: 10.2307/1268354
– ident: 23
  doi: 10.1016/j.acha.2010.11.007
– volume: 23
  start-page: 71
  issue: 1
  year: 1981
  ident: 28
  publication-title: Technometrics
  doi: 10.1080/00401706.1981.10486239
– start-page: 639
  volume-title: The treatment of missing values and its effect on classifier accuracy
  year: 2004
  ident: 19
– ident: 5
  doi: 10.1007/978-3-642-23881-9_50
– volume: 3918
  start-page: 557
  volume-title: A nonparametric outlier detection for effectively discovering top-N outliers from engineering data
  year: 2006
  ident: 10
  doi: 10.1007/11731139_66
– year: 1974
  ident: 12
– ident: 15
  doi: 10.1016/j.compchemeng.2004.01.009
– volume: 7
  start-page: 353
  issue: 4
  year: 2001
  ident: 16
  publication-title: Educational Research and Evaluation
  doi: 10.1076/edre.7.4.353.8937
– ident: 3
  doi: 10.1198/jasa.2009.tm08163
– volume: 5
  start-page: 1
  issue: 1–4
  year: 2011
  ident: 17
  publication-title: International Journal of Mathematical Analysis
– ident: 20
  doi: 10.1016/j.jsp.2009.10.001
– ident: 2
  doi: 10.1198/jbes.2009.07161
– ident: 18
  doi: 10.1037//1082-989X.7.2.147
– ident: 29
  doi: 10.1155/2014/746451
SSID ssj0038715
ssib053847956
Score 2.088423
Snippet We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
hindawi
emarefa
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Biogas
Colleges & universities
Data Interpretation, Statistical
Electronic data processing
Genetic algorithms
Linear Models
Linear models (Statistics)
Linear regression models
Mathematical Concepts
Methods
Numerical Analysis, Computer-Assisted
Regression analysis
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYBBIviPGZMZARk_iQosVOHDuPGzDthTGNIfXN8ldoJJZObQr_PneOW61jQrw1zdV2cne-u_rud4Ts-9bWppUil05UeWWLMreGAUNasCYqMKUqG5tNyNNTNZk0ZylBdvH3ET5YOwjPWXWgOANDvUW2lMDErfOTyUpqQGMr2SAizLj_lhACiNhSTtQQGFVFqsq7MdSGHYpw_bEm18C1WW_P96YYGP_ubnM_b2ZRXjNLxw_Jg-RP0sNRAHbIndA_IjtJYxf0XYKVfv-YXHxdDuBwzumnMMT8q55-ie2jaddTCElB5Ol5-DHmxfb0CMybp_Dh2_KSzlqYoRuml1jySM8wp2ske0K-H3---HiSp54KuROSD3nwoMO1VaVtbFtaXlrnHecS_C4XnBQteFAeFN_4UADjXMt8aQujRAi88sqXT8l2P-vDc0JLiDV4g8em3FcBRjSiLZgpatjLTcFURj6s3rB2CXAc-1781DHwEEIjO_TIjozsr4mvRpyN28mOkFVrEgTHjl-AwOika9qyOngsL2xrU_nQWM-x4ld6BLYJhcjIs8Toa1PheWqTkbfIeI3KDUt1JtUowAMjTJY-BJMPUT2T8HBvkmz8e7l7K7nRaW9YaAS9UzBIzTPyen0btBqPakwfZstIAxMhPhssdhSz9TzokTJw3DMiNwRw46Vs3um7aUQOr-CXnDe7_7X4F-Q-Xo3_N-2R7WG-DC_JXfdr6BbzV1EH_wDDKSYw
  priority: 102
  providerName: Hindawi Publishing
– databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdggMQLMD4DAxkxCZgUNbHjOHlCGzDxwphgSH2z_JW1EktGm8K_z53jhhVNe-GtbVx_5M73Yd_9jpBd15hSN1Kk0ooiLUzGU6NzIEgD2qTyeVUVJhSbkEdH1XRaH8cDt2UMq1zLxCCoXWfxjHyCUGFVzvOSvTv_mWLVKLxdjSU0rpMbWDYb-VxOR3UKe7mQNWLFDJKZg3MgQrE5UYLLVGQxXw-6noAeLCYVg-75hoYKQP4hW1fDdz0K7lszdJl_zy8zTP-Nr7ygsA7v_u9S75E70VSl-wNvbZNrvr1PtqMwWNI3EbH67QNy8mXVgy27oB98H0K7Wvo5VKam85aCtwu7iX71p0PIbUsPQHM6Ch--rc5o18AI8352htmU9BjDxYZmD8n3w48n7z-lsVxDaoVkfeodiIfSVNzUpuGGcWOdZUyCSWe9laIB48yBTNHOZ8ATtskdN5muhPescJXjj8hW27X-CaEc3BhW440sc4WHHrVoslxnJagJneVVQvbWJFI2YpljSY0fKvg0QiikpxromZDdsfH5AOFxebMDpPXYBHG3ww_d4lTFbaxMXnqHmYtNqQvna-MYJhNLh5g5PhMJeRw55cJQeFVbJ-Q1co5CuQFTtTqmP8CCEYFL7YM1IYHoEhb3KjLX1dPdWTOPimJnqf5yTkJejo9BYOAtkG59twptYCCEfoPJDnw6joPGbg4-QULkBgdvvJTNJ-18FkDJC_gnY_XTq6f1jNzGNQxnWDtkq1-s_HNy0_7q58vFi7B7_wAiIEdM
  priority: 102
  providerName: ProQuest
Title Outlier Detection Method in Linear Regression Based on Sum of Arithmetic Progression
URI https://search.emarefa.net/detail/BIM-1051199
https://dx.doi.org/10.1155/2014/821623
https://www.ncbi.nlm.nih.gov/pubmed/25121139
https://www.proquest.com/docview/1552813162
https://www.proquest.com/docview/1553710422
https://pubmed.ncbi.nlm.nih.gov/PMC4121229
https://doaj.org/article/b16eddb6ff6a4de9bd222277d6840e05
Volume 2014
WOSCitedRecordID wos000343542100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038715
  issn: 2356-6140
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038715
  issn: 2356-6140
  databaseCode: M0K
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038715
  issn: 2356-6140
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database (ProQuest)
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038715
  issn: 2356-6140
  databaseCode: CWDGH
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038715
  issn: 2356-6140
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038715
  issn: 2356-6140
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038715
  issn: 2356-6140
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038715
  issn: 2356-6140
  databaseCode: 24P
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdggMQLYnwGRmXEJD6kaIkTx87jCpuGUEtUhlR4iezYoZVYitoU_n3ubK9q0QQvvFhN7cYf9-G72vc7Qg5NqwvVCh6LhudxrpMs1ioFgrSwm0ibSplrl2xCjMdyOi2rrVRfeCfMwwP7hTvSaWENxoq1hcqNLbVhGL4pDKKUWI9emohyy5kCTgIpzkWJKDFeJ2fgFnCXZo4X4CzlSYjUg80UvP80P5IsLVi2szc5CH8Xp6vgWW1U9q0ZOsu_5leZpH_erNzaqk7vkjvBxqTHfm775Jrt7pH9IMUr-ipATb--T84_rnswQpf0ne3dnayOjlxKaTrvKLipIAZ0Yr_5u7IdHcKWZyh8-LS-oIsWepj3swsMg6QV3vPyzR6Qz6cn52_P4pBnIW64YH1sDch1oWWmS91mmmW6MQ2sMdhijW0Eb8GqMqAMlLEJELNpU5PpREluLcuNNNlDstctOvuY0Az8D1biUSozuYU3Kt4mqUoK0O8qSWVE3lyucN0EEHLMhfG9ds4I5zWSo_bkiMjhpvEPj71xdbMhkmrTBAGz3RfARnVgo_pfbBSRR4HQW13hGWsZkZdI-BoFHobaqBC3ABNG6Kz6GMwA8PRTAZN7EXjj78M9uOSbOuiLVY1AeBJeUrCIPN9Ug6Tj8Y3q7GLt2kBHiNkGg_VstukHrdQUjPmIiB0G3FmU3ZpuPnNo4jn8krHyyf9YxafkNs7U_0V1QPb65do-Izebn_18tRyQ62IqXCkH5MbwZFxNBk5soRwlH6Cs-Feoqd6Pqi_wNDmb_gY79EJY
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAQXoDwNBRZRxEOyYq_fB4RaStWoTYhKkMrJ7HrXjSXqlMSh4k_xG5mx16FBVW89cIvjtXfG_nYe3nkAbKhchiKPAjvKAt_2pePZUrj4QnLUJrF249iXdbOJaDCIDw-T4Qr8bnNhKKyylYm1oFaTjL6Rd6lUWOx6bsjfn_ywqWsU7a62LTQaWOzpX6foss3e9bbx_b7kfOfj6MOubboK2FkQ8crWClEcytiTicw9yT2ZqYzzCC2PTGdRkKMNoRD6QmkHSc9yV3nSEXGgNfdVrDy87xVY9QnsHVgd9vrDry2CUXr4UULVaRpd4KE7EtTt7YIQnTTfMRmCyEwXNa_fjTky5C3pxLp1QJ0fLPBYLFTFtTE56afFeabwvxGdZ1Tkzq3_7eHehpvGGGebzepZgxVd3oE1I-5m7LWpyf3mLow-zSu01qdsW1d18FrJ-nXvbVaUDP15pJ0d6KMmqLhkW2gbKIY_Ps-P2STHGYpqfEz5omxIAXHNsHvw5VK4uw-dclLqh8A8dNR4QnvOXPka7yiC3HGFE6IiFI4bW_C2hUSamWrt1DTke1p7bUGQEn7SBj8WbCwGnzRFSs4ftkXYWgyhyuL1H5PpUWoEVSrdUCvKzcxD4SudSMUpXTpSVBVIO4EFDwwyz0xFm9GJBa8IqSlJRiQ1EybBAxmmGmPpJtpLEYIsQuZeGDBfTO56C9bUCNZZ-hepFjxfnEaRSPtcotSTeT0GJ6Lidkhssy4W85A576LXY0G0tGKWHsrymbIY12XXfbyS8-TRxWQ9g-u7o_5-ut8b7D2GG8RP88VuHTrVdK6fwNXsZ1XMpk-N7GDw7bJX1B9PF6fq
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGuIgXYFwDA4wY4iJFTZw4Th4Q2igV06BUY0gTL8GOnTUSS0ebMvHX-HWc4zhlRdPe9sBb0zixT_KdW3wuhGzoUiWyFNwXBY_9WAWRr2QIL6QEbZKaME1jZZtNiOEw3d_PRivkd5cLg2GVnUy0glpPCvxG3sNSYWkYhQnrlS4sYtQfvDn64WMHKdxp7dpptBDZMb-OwX2bvd7uw7t-xtjg3d7b977rMOAXXLDGNxoQnag0UpkqI8UiVeiCMQFWSGEKwUuwJzSwgdQmADKKMtSRCmTKjWGxTnUE971ALgrwMTGccMS_dlgGORKLDOvUtFohAseE20Z3PAF3LQ5criCQ1QMdHPdSBqRFS9rRNhGwmcISjuVCaVweo7t-XJ1mFP8b23lCWQ6u_8-P-Qa55kx0utny1BpZMfVNsuaE4Iy-cJW6X94ie5_mDdjwU9o3jQ1pq-lH25GbVjUFLx_WTnfNQRtqXNMtsBg0hR-f54d0UsIMVTM-xCxSOsIwuXbYbfLlXKi7Q1brSW3uERqB-8Yy3IlmOjZwR8nLIJRBAupRBmHqkVcdPPLC1XDHViLfc-vLcZ4jlvIWSx7ZWAw-akuXnD5sC3G2GIL1xu0fk-lB7sRXrsLEaMzYLBMZa5MpzTCJWmisFWQC7pG7DqUnpsIt6swjzxG1OcpLWGohXdoHEIyVx_JNsKIEAE4AcU8dsM9e7noH3NyJ21n-F7UeebI4DYISd79kbSZzOwYmwpJ3sNiWRxbzoJEfgi_kEbHEPUsPZflMXY1tMfYYrmQsu3_2sh6TK8BG-Yft4c4DchXJaT_jrZPVZjo3D8ml4mdTzaaPrBCh5Nt5s9MfFxyvTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Outlier+Detection+Method+in+Linear+Regression+Based+on+Sum+of+Arithmetic+Progression&rft.jtitle=TheScientificWorld&rft.au=Adikaram%2C+K.+K.+L.+B.&rft.au=Hussein%2C+M.+A.&rft.au=Effenberger%2C+M.&rft.au=Becker%2C+T.&rft.date=2014-01-01&rft.issn=2356-6140&rft.eissn=1537-744X&rft.volume=2014&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1155%2F2014%2F821623&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2014_821623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2356-6140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2356-6140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2356-6140&client=summon