MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines
The vagus nerve can control inflammatory response through a 'cholinergic anti-inflammatory pathway', which is mediated by the α7-nicotinic acetylcholine receptor (α7nAChR) on macrophages. However, the intracellular mechanisms that link a7nAChR activation and pro-inflammatory cytokine production rema...
Uloženo v:
| Vydáno v: | Cell research Ročník 23; číslo 11; s. 1270 - 1283 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
01.11.2013
Nature Publishing Group |
| Témata: | |
| ISSN: | 1001-0602, 1748-7838, 1748-7838 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The vagus nerve can control inflammatory response through a 'cholinergic anti-inflammatory pathway', which is mediated by the α7-nicotinic acetylcholine receptor (α7nAChR) on macrophages. However, the intracellular mechanisms that link a7nAChR activation and pro-inflammatory cytokine production remain not well understood. In this study, we found that miR-124 is upregulated by cholinergic agonists in LPS-exposed cells and mice. Utilizing miR-124 mimic and siRNA knockdown, we demonstrated that miR-124 is a critical mediator for the cholinergic anti-inflammatory action. Furthermore, our data indicated that miR-124 modulates LPS-induced cytokine production by targeting signal transducer and activator of transcription 3 (STAT3) to decrease IL-6 production and TNF-o converting enzyme (TACE) to reduce TNF-α release. These results also indicate that miR-124 is a potential therapeutic target for the treatment of inflammatory diseases. |
|---|---|
| Bibliografie: | The vagus nerve can control inflammatory response through a 'cholinergic anti-inflammatory pathway', which is mediated by the α7-nicotinic acetylcholine receptor (α7nAChR) on macrophages. However, the intracellular mechanisms that link a7nAChR activation and pro-inflammatory cytokine production remain not well understood. In this study, we found that miR-124 is upregulated by cholinergic agonists in LPS-exposed cells and mice. Utilizing miR-124 mimic and siRNA knockdown, we demonstrated that miR-124 is a critical mediator for the cholinergic anti-inflammatory action. Furthermore, our data indicated that miR-124 modulates LPS-induced cytokine production by targeting signal transducer and activator of transcription 3 (STAT3) to decrease IL-6 production and TNF-o converting enzyme (TACE) to reduce TNF-α release. These results also indicate that miR-124 is a potential therapeutic target for the treatment of inflammatory diseases. 31-1568/Q microRNA-124; cholinergic anti-inflammatory action; ct7nAChR; macrophages; septic shock; STAT3; TACE ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 These two authors contributed equally to this work. |
| ISSN: | 1001-0602 1748-7838 1748-7838 |
| DOI: | 10.1038/cr.2013.116 |