Bridging the Gap between the Direct and Hydrocarbon Pool Mechanisms of the Methanol‐to‐Hydrocarbons Process

After a prolonged effort over many years, the route for the formation of a direct carbon−carbon (C−C) bond during the methanol‐to‐hydrocarbon (MTH) process has very recently been unveiled. However, the relevance of the “direct mechanism”‐derived molecules (that is, methyl acetate) during MTH, and su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition Jg. 57; H. 27; S. 8095 - 8099
Hauptverfasser: Chowdhury, Abhishek Dutta, Paioni, Alessandra Lucini, Houben, Klaartje, Whiting, Gareth T., Baldus, Marc, Weckhuysen, Bert M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 02.07.2018
John Wiley and Sons Inc
Ausgabe:International ed. in English
Schlagworte:
ISSN:1433-7851, 1521-3773, 1521-3773
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract After a prolonged effort over many years, the route for the formation of a direct carbon−carbon (C−C) bond during the methanol‐to‐hydrocarbon (MTH) process has very recently been unveiled. However, the relevance of the “direct mechanism”‐derived molecules (that is, methyl acetate) during MTH, and subsequent transformation routes to the conventional hydrocarbon pool (HCP) species, are yet to be established. This important piece of the MTH chemistry puzzle is not only essential from a fundamental perspective, but is also important to maximize catalytic performance. The MTH process was probed over a commercially relevant H‐SAPO‐34 catalyst, using a combination of advanced solid‐state NMR spectroscopy and operando UV/Vis diffuse reflectance spectroscopy coupled to an on‐line mass spectrometer. Spectroscopic evidence is provided for the formation of (olefinic and aromatic) HCP species, which are indeed derived exclusively from the direct C−C bond‐containing acetyl group of methyl acetate. New mechanistic insights have been obtained from the MTH process, including the identification of hydrocarbon‐based co‐catalytic organic reaction centers. Like a MTH to a flame: The direct mechanism of the zeolite‐catalyzed methanol‐to‐hydrocarbon (MTH) process directly generates co‐catalytic hydrocarbon reaction centers in the hydrocarbon pool. Advanced solid‐state NMR spectroscopy, mass spectrometry, and UV/Vis diffuse reflectance spectroscopy provide evidence for the formation of olefinic and aromatic species in the hydrocarbon pool.
AbstractList After a prolonged effort over many years, the route for the formation of a direct carbon−carbon (C−C) bond during the methanol‐to‐hydrocarbon (MTH) process has very recently been unveiled. However, the relevance of the “direct mechanism”‐derived molecules (that is, methyl acetate) during MTH, and subsequent transformation routes to the conventional hydrocarbon pool (HCP) species, are yet to be established. This important piece of the MTH chemistry puzzle is not only essential from a fundamental perspective, but is also important to maximize catalytic performance. The MTH process was probed over a commercially relevant H‐SAPO‐34 catalyst, using a combination of advanced solid‐state NMR spectroscopy and operando UV/Vis diffuse reflectance spectroscopy coupled to an on‐line mass spectrometer. Spectroscopic evidence is provided for the formation of (olefinic and aromatic) HCP species, which are indeed derived exclusively from the direct C−C bond‐containing acetyl group of methyl acetate. New mechanistic insights have been obtained from the MTH process, including the identification of hydrocarbon‐based co‐catalytic organic reaction centers.
After a prolonged effort over many years, the route for the formation of a direct carbon−carbon (C−C) bond during the methanol‐to‐hydrocarbon (MTH) process has very recently been unveiled. However, the relevance of the “direct mechanism”‐derived molecules (that is, methyl acetate) during MTH, and subsequent transformation routes to the conventional hydrocarbon pool (HCP) species, are yet to be established. This important piece of the MTH chemistry puzzle is not only essential from a fundamental perspective, but is also important to maximize catalytic performance. The MTH process was probed over a commercially relevant H‐SAPO‐34 catalyst, using a combination of advanced solid‐state NMR spectroscopy and operando UV/Vis diffuse reflectance spectroscopy coupled to an on‐line mass spectrometer. Spectroscopic evidence is provided for the formation of (olefinic and aromatic) HCP species, which are indeed derived exclusively from the direct C−C bond‐containing acetyl group of methyl acetate. New mechanistic insights have been obtained from the MTH process, including the identification of hydrocarbon‐based co‐catalytic organic reaction centers. Like a MTH to a flame: The direct mechanism of the zeolite‐catalyzed methanol‐to‐hydrocarbon (MTH) process directly generates co‐catalytic hydrocarbon reaction centers in the hydrocarbon pool. Advanced solid‐state NMR spectroscopy, mass spectrometry, and UV/Vis diffuse reflectance spectroscopy provide evidence for the formation of olefinic and aromatic species in the hydrocarbon pool.
After a prolonged effort over many years, the route for the formation of a direct carbon-carbon (C-C) bond during the methanol-to-hydrocarbon (MTH) process has very recently been unveiled. However, the relevance of the "direct mechanism"-derived molecules (that is, methyl acetate) during MTH, and subsequent transformation routes to the conventional hydrocarbon pool (HCP) species, are yet to be established. This important piece of the MTH chemistry puzzle is not only essential from a fundamental perspective, but is also important to maximize catalytic performance. The MTH process was probed over a commercially relevant H-SAPO-34 catalyst, using a combination of advanced solid-state NMR spectroscopy and operando UV/Vis diffuse reflectance spectroscopy coupled to an on-line mass spectrometer. Spectroscopic evidence is provided for the formation of (olefinic and aromatic) HCP species, which are indeed derived exclusively from the direct C-C bond-containing acetyl group of methyl acetate. New mechanistic insights have been obtained from the MTH process, including the identification of hydrocarbon-based co-catalytic organic reaction centers.After a prolonged effort over many years, the route for the formation of a direct carbon-carbon (C-C) bond during the methanol-to-hydrocarbon (MTH) process has very recently been unveiled. However, the relevance of the "direct mechanism"-derived molecules (that is, methyl acetate) during MTH, and subsequent transformation routes to the conventional hydrocarbon pool (HCP) species, are yet to be established. This important piece of the MTH chemistry puzzle is not only essential from a fundamental perspective, but is also important to maximize catalytic performance. The MTH process was probed over a commercially relevant H-SAPO-34 catalyst, using a combination of advanced solid-state NMR spectroscopy and operando UV/Vis diffuse reflectance spectroscopy coupled to an on-line mass spectrometer. Spectroscopic evidence is provided for the formation of (olefinic and aromatic) HCP species, which are indeed derived exclusively from the direct C-C bond-containing acetyl group of methyl acetate. New mechanistic insights have been obtained from the MTH process, including the identification of hydrocarbon-based co-catalytic organic reaction centers.
After a prolonged effort over many years, the route for the formation of a direct carbon-carbon (C-C) bond during the methanol-to-hydrocarbon (MTH) process has very recently been unveiled. However, the relevance of the "direct mechanism"-derived molecules (that is, methyl acetate) during MTH, and subsequent transformation routes to the conventional hydrocarbon pool (HCP) species, are yet to be established. This important piece of the MTH chemistry puzzle is not only essential from a fundamental perspective, but is also important to maximize catalytic performance. The MTH process was probed over a commercially relevant H-SAPO-34 catalyst, using a combination of advanced solid-state NMR spectroscopy and operando UV/Vis diffuse reflectance spectroscopy coupled to an on-line mass spectrometer. Spectroscopic evidence is provided for the formation of (olefinic and aromatic) HCP species, which are indeed derived exclusively from the direct C-C bond-containing acetyl group of methyl acetate. New mechanistic insights have been obtained from the MTH process, including the identification of hydrocarbon-based co-catalytic organic reaction centers.
Author Chowdhury, Abhishek Dutta
Baldus, Marc
Weckhuysen, Bert M.
Paioni, Alessandra Lucini
Houben, Klaartje
Whiting, Gareth T.
AuthorAffiliation 3 Current address: DSM Food Specialties DSM Biotechnology Center R&D analysis Alexander Flemminglaan 1 2613 AX Delft The Netherlands
1 Inorganic Chemistry and Catalysis Group Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
2 NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
AuthorAffiliation_xml – name: 1 Inorganic Chemistry and Catalysis Group Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
– name: 3 Current address: DSM Food Specialties DSM Biotechnology Center R&D analysis Alexander Flemminglaan 1 2613 AX Delft The Netherlands
– name: 2 NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
Author_xml – sequence: 1
  givenname: Abhishek Dutta
  surname: Chowdhury
  fullname: Chowdhury, Abhishek Dutta
  organization: Utrecht University
– sequence: 2
  givenname: Alessandra Lucini
  surname: Paioni
  fullname: Paioni, Alessandra Lucini
  organization: Utrecht University
– sequence: 3
  givenname: Klaartje
  surname: Houben
  fullname: Houben, Klaartje
  organization: Current address: DSM Food Specialties
– sequence: 4
  givenname: Gareth T.
  surname: Whiting
  fullname: Whiting, Gareth T.
  organization: Utrecht University
– sequence: 5
  givenname: Marc
  surname: Baldus
  fullname: Baldus, Marc
  organization: Utrecht University
– sequence: 6
  givenname: Bert M.
  orcidid: 0000-0001-5245-1426
  surname: Weckhuysen
  fullname: Weckhuysen, Bert M.
  email: b.m.weckhuysen@uu.nl
  organization: Utrecht University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29710435$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URH9gyxJZYsNmwvVfZrxBKqW0lVroAtaWx3MncTWxgz2hyo5H4Bl5EpymLaUSYmNf298591h3n-yEGJCQlwwmDIC_tcHjhANrQPBaPyF7THFWiboWO6WWQlR1o9gu2c_5qvBNA9NnZJfrmoEUao_E98l3Mx9mdJwjPbFL2uJ4jRhuzh98QjdSGzp6uu5SdDa1MdDLGAd6gW5euudFprG_oS9wLDdx-PXj5xjL8kCS6WUpMefn5Glvh4wvbvcD8vXj8Zej0-r888nZ0eF55VTNdGUB-oYpBG6VUtCDdiUyF61osNWNdgCdULWStq2RcQnSCu5kJxrpequVOCDvtr7LVbvAzmEYkx3MMvmFTWsTrTd_vwQ_N7P43UzVVNQAxeDNrUGK31aYR7Pw2eEw2IBxlQ0HIUo3Lje9Xj9Cr-IqhfK9QinNBGjJCvXqYaL7KHezKIDcAi7FnBP2xvnRjj5uAvrBMDCbkZvNyM39yIts8kh25_xPgd4Krv2A6__Q5vDT2fEf7W_JuMCm
CitedBy_id crossref_primary_10_1016_j_susmat_2023_e00729
crossref_primary_10_1016_j_cej_2023_148412
crossref_primary_10_1007_s10858_023_00415_6
crossref_primary_10_1039_D1CY02289J
crossref_primary_10_1002_anie_202414724
crossref_primary_10_1021_acs_energyfuels_5c02833
crossref_primary_10_1002_ange_202112948
crossref_primary_10_1016_j_mcat_2021_111968
crossref_primary_10_1002_anie_201814268
crossref_primary_10_1038_s41467_019_09449_7
crossref_primary_10_1016_j_cattod_2025_115339
crossref_primary_10_1039_D0CY01174F
crossref_primary_10_1016_j_micromeso_2023_112856
crossref_primary_10_1016_j_fuel_2020_118101
crossref_primary_10_1016_j_jcat_2024_115518
crossref_primary_10_1016_j_apcatb_2023_123477
crossref_primary_10_1002_ange_202411197
crossref_primary_10_1002_cssc_202400884
crossref_primary_10_1039_D4CY01242A
crossref_primary_10_1007_s10562_020_03492_6
crossref_primary_10_1016_j_mcat_2023_113633
crossref_primary_10_1016_j_cej_2024_157641
crossref_primary_10_1038_s41467_021_26090_5
crossref_primary_10_1016_j_jcat_2019_11_015
crossref_primary_10_1002_anie_202318250
crossref_primary_10_1021_jacs_2c03478
crossref_primary_10_1002_anie_202007283
crossref_primary_10_1002_anie_202303124
crossref_primary_10_1016_j_jcat_2022_07_035
crossref_primary_10_1016_j_jcat_2021_02_011
crossref_primary_10_1016_j_jaap_2024_106487
crossref_primary_10_1039_D4CY01168F
crossref_primary_10_1002_cctc_201900618
crossref_primary_10_1002_anie_202112948
crossref_primary_10_1002_ange_202414724
crossref_primary_10_1016_j_cattod_2025_115274
crossref_primary_10_1002_ange_202007283
crossref_primary_10_1039_D4SC00603H
crossref_primary_10_1039_D1SC01859K
crossref_primary_10_1002_adma_201902181
crossref_primary_10_1038_s41929_022_00806_2
crossref_primary_10_1007_s11705_024_2505_2
crossref_primary_10_3390_catal11040432
crossref_primary_10_1016_j_jcat_2018_11_018
crossref_primary_10_1039_D1QM00299F
crossref_primary_10_1016_j_cattod_2019_07_059
crossref_primary_10_1016_j_apcatb_2024_123829
crossref_primary_10_1016_j_ces_2023_119461
crossref_primary_10_1016_j_pmatsci_2023_101103
crossref_primary_10_1016_j_fmre_2021_08_002
crossref_primary_10_1038_s41467_024_52999_8
crossref_primary_10_1038_s41467_023_40351_5
crossref_primary_10_1002_ange_202303124
crossref_primary_10_1039_D1CY01807H
crossref_primary_10_1002_anie_202009139
crossref_primary_10_1016_j_jcat_2021_11_004
crossref_primary_10_1039_D2CY01779B
crossref_primary_10_1016_j_rser_2021_111262
crossref_primary_10_1002_cctc_201901937
crossref_primary_10_1016_j_checat_2024_101168
crossref_primary_10_1016_j_checat_2022_07_026
crossref_primary_10_1039_D2CY00303A
crossref_primary_10_1039_D2CC02216H
crossref_primary_10_1007_s13738_021_02291_z
crossref_primary_10_1002_ange_201814268
crossref_primary_10_1039_D3QI01526B
crossref_primary_10_1002_aic_17134
crossref_primary_10_1002_sstr_202200285
crossref_primary_10_3390_chemistry5010037
crossref_primary_10_1021_jacs_9b00585
crossref_primary_10_1080_01614940_2025_2522880
crossref_primary_10_1038_s41586_022_04763_5
crossref_primary_10_1002_anie_202411197
crossref_primary_10_1007_s11244_020_01258_3
crossref_primary_10_1002_cssc_202402758
crossref_primary_10_1021_acs_energyfuels_5c02778
crossref_primary_10_1038_s41467_024_55514_1
crossref_primary_10_1002_ange_202318250
crossref_primary_10_1016_j_jcat_2023_115183
crossref_primary_10_1039_D5CS00341E
crossref_primary_10_1093_nsr_nwac047
crossref_primary_10_1021_acscatal_4c07790
crossref_primary_10_1002_ange_202300319
crossref_primary_10_1016_j_apcata_2023_119100
crossref_primary_10_1016_S1872_2067_22_64209_8
crossref_primary_10_1016_j_jece_2025_118822
crossref_primary_10_1039_C9SC02215E
crossref_primary_10_1016_j_jphotochem_2023_114728
crossref_primary_10_1038_s41929_022_00808_0
crossref_primary_10_1002_anie_202300319
crossref_primary_10_1093_nsr_nwac155
crossref_primary_10_1039_D3CY00105A
crossref_primary_10_1002_ange_202009139
crossref_primary_10_1016_j_pnmrs_2023_11_001
crossref_primary_10_1021_acs_jctc_5c01100
crossref_primary_10_1002_ejic_202300228
crossref_primary_10_1016_j_micromeso_2025_113632
Cites_doi 10.1002/ange.201511678
10.1002/ange.201608643
10.1016/j.jcat.2005.11.029
10.1002/ange.201703902
10.1021/ja0530164
10.1021/ja065810a
10.1002/14356007.a15_063
10.1021/ja805607m
10.1007/s10562-018-2330-7
10.1002/anie.201410974
10.1039/C5CY02271A
10.1016/j.jcat.2014.05.015
10.1021/ja00181a008
10.1002/anie.201511678
10.1007/BF00769305
10.1038/s41929-017-0002-4
10.1002/anie.201703902
10.1021/acscatal.7b01643
10.1002/ange.201103657
10.1016/S1387-1811(98)00319-9
10.1002/anie.201007178
10.1006/jcat.1993.1234
10.1039/C5CS00304K
10.1021/cs500722m
10.1021/acscentsci.5b00226
10.1021/ie0613974
10.1006/jmra.1996.0137
10.1002/anie.201103657
10.1002/anie.200503898
10.1002/ange.201007178
10.1021/acscatal.7b03114
10.1063/1.1680061
10.1021/cr3005263
10.1021/cs5015749
10.1016/j.jcat.2007.04.006
10.1002/anie.201608643
10.1002/ange.200503898
10.1021/ja9741483
10.1016/j.cplett.2008.12.084
10.1021/ja00497a058
10.1021/ar700210f
10.1038/ncomms14856
10.1038/s41929-017-0012-2
10.1016/j.jcat.2014.06.017
10.1021/acscatal.5b00007
10.1021/ja016499u
10.1021/jacs.6b09605
10.1002/ange.201410974
10.1126/science.aaf1835
10.1021/cs3006583
ContentType Journal Article
Copyright 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 24P
AAYXX
CITATION
NPM
7TM
K9.
7X8
5PM
DOI 10.1002/anie.201803279
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 8099
ExternalDocumentID PMC6563700
29710435
10_1002_anie_201803279
ANIE201803279
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: H2020 Excellent Science
  funderid: Marie Skłodowska-Curie grant agreement (no. 704544); Advanced ERC Grant (no. 321140 )
– fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  funderid: VENI grant no. 722.015.003; Middelgroot program no. 700.58.102; uNMR-NL, an NWO-funded National Roadmap Large-Scale Facility for the Netherlands (no. 184.032.207)
– fundername: H2020 Excellent Science
  grantid: Marie Skłodowska-Curie grant agreement (no. 704544); Advanced ERC Grant (no. 321140 )
– fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  grantid: VENI grant no. 722.015.003; Middelgroot program no. 700.58.102; uNMR-NL, an NWO-funded National Roadmap Large-Scale Facility for the Netherlands (no. 184.032.207)
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
ABUFD
AEYWJ
AGHNM
AGYGG
CITATION
O8X
NPM
7TM
K9.
7X8
5PM
ID FETCH-LOGICAL-c5719-a00f815e02a5550f09c97123b38eb989c00d35754ab7e12404a32c4d384cfa953
IEDL.DBID 24P
ISICitedReferencesCount 128
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436402100027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Tue Nov 04 02:00:29 EST 2025
Thu Oct 02 05:24:20 EDT 2025
Sat Nov 29 14:51:05 EST 2025
Thu Apr 03 07:02:29 EDT 2025
Tue Nov 18 21:04:22 EST 2025
Sat Nov 29 03:44:23 EST 2025
Wed Jan 22 16:36:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords reaction mechanisms
solid-state NMR
zeolites
heterogeneous catalysis
hydrocarbon pool
Language English
License Attribution-NonCommercial-NoDerivs
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5719-a00f815e02a5550f09c97123b38eb989c00d35754ab7e12404a32c4d384cfa953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5245-1426
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201803279
PMID 29710435
PQID 2059130941
PQPubID 946352
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6563700
proquest_miscellaneous_2033384245
proquest_journals_2059130941
pubmed_primary_29710435
crossref_citationtrail_10_1002_anie_201803279
crossref_primary_10_1002_anie_201803279
wiley_primary_10_1002_anie_201803279_ANIE201803279
PublicationCentury 2000
PublicationDate July 2, 2018
PublicationDateYYYYMMDD 2018-07-02
PublicationDate_xml – month: 07
  year: 2018
  text: July 2, 2018
  day: 02
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2015; 1
2014; 317
2017; 7
2017; 8
2013; 3
2015; 5
1979; 101
2007; 249
1999; 29
1973; 59
2018; 148
1993; 20
1996; 121
2017 2017; 56 129
2006; 238
1993; 142
2006 2006; 45 118
2016; 6
2016 2016; 55 128
2014; 4
2001
2018; 1
2012 2012; 51 124
2002; 124
2015; 44
2005; 127
2015 2015; 54 127
2013; 113
2011 2011; 50 123
2016; 138
2008; 41
2014
1990; 112
2006; 128
2007; 46
2008; 130
2016; 351
1998; 120
2009; 469
e_1_2_2_4_1
e_1_2_2_24_2
Le Berre C. (e_1_2_2_23_1) 2014
e_1_2_2_24_1
e_1_2_2_6_1
e_1_2_2_22_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_41_1
e_1_2_2_43_1
e_1_2_2_8_2
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_26_1
e_1_2_2_13_1
e_1_2_2_38_1
e_1_2_2_11_2
e_1_2_2_11_1
e_1_2_2_30_1
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_17_1
e_1_2_2_34_1
e_1_2_2_15_1
e_1_2_2_36_1
e_1_2_2_25_1
e_1_2_2_5_1
e_1_2_2_5_2
e_1_2_2_7_1
e_1_2_2_21_2
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_3_1
e_1_2_2_40_1
e_1_2_2_42_1
e_1_2_2_7_2
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_44_1
e_1_2_2_27_1
e_1_2_2_14_1
e_1_2_2_37_1
e_1_2_2_12_1
e_1_2_2_39_1
e_1_2_2_10_2
e_1_2_2_10_1
e_1_2_2_31_1
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_16_1
e_1_2_2_35_1
References_xml – volume: 124
  start-page: 3844
  year: 2002
  end-page: 3845
  publication-title: J. Am. Chem. Soc.
– volume: 130
  start-page: 16316
  year: 2008
  end-page: 16323
  publication-title: J. Am. Chem. Soc.
– volume: 55 128
  start-page: 15840 16072
  year: 2016 2016
  end-page: 15845 16077
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 317
  year: 2015
  end-page: 326
  publication-title: ACS Catal.
– volume: 7
  start-page: 7987
  year: 2017
  end-page: 7994
  publication-title: ACS Catal.
– volume: 1
  start-page: 313
  year: 2015
  end-page: 319
  publication-title: ACS Cent. Sci.
– volume: 5
  start-page: 1922
  year: 2015
  end-page: 1938
  publication-title: ACS Catal.
– volume: 50 123
  start-page: 1853 1893
  year: 2011 2011
  end-page: 1856 1896
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 18
  year: 2013
  end-page: 31
  publication-title: ACS Catal.
– year: 2001
– volume: 45 118
  start-page: 1617 1647
  year: 2006 2006
  end-page: 1620 1650
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 142
  start-page: 602
  year: 1993
  end-page: 616
  publication-title: J. Catal.
– volume: 238
  start-page: 21
  year: 2006
  end-page: 27
  publication-title: J. Catal.
– volume: 113
  start-page: 7287
  year: 2013
  end-page: 7342
  publication-title: Chem. Rev.
– volume: 46
  start-page: 8832
  year: 2007
  end-page: 8838
  publication-title: Ind. Eng. Chem. Res.
– volume: 138
  start-page: 15994
  year: 2016
  end-page: 16003
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 7155
  year: 2015
  end-page: 7176
  publication-title: Chem. Soc. Rev.
– volume: 101
  start-page: 760
  year: 1979
  end-page: 762
  publication-title: J. Am. Chem. Soc.
– volume: 469
  start-page: 342
  year: 2009
  end-page: 348
  publication-title: Chem. Phys. Lett.
– volume: 128
  start-page: 14770
  year: 2006
  end-page: 14771
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 9039 9167
  year: 2017 2017
  end-page: 9043 9171
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 7261 7369
  year: 2015 2015
  end-page: 7264 7372
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 1
  year: 2014
  end-page: 34
– volume: 1
  start-page: 8
  year: 2018
  end-page: 9
  publication-title: Nat. Catal.
– volume: 351
  start-page: 1065
  year: 2016
  end-page: 1068
  publication-title: Science
– volume: 127
  start-page: 12965
  year: 2005
  end-page: 12974
  publication-title: J. Am. Chem. Soc.
– volume: 121
  start-page: 65
  year: 1996
  end-page: 69
  publication-title: J. Magn. Reson. Ser. A
– volume: 41
  start-page: 895
  year: 2008
  end-page: 904
  publication-title: Acc. Chem. Res.
– volume: 8
  start-page: 14856
  year: 2017
  publication-title: Nat. Commun.
– volume: 7
  start-page: 5773
  year: 2017
  end-page: 5780
  publication-title: ACS Catal.
– volume: 317
  start-page: 277
  year: 2014
  end-page: 283
  publication-title: J. Catal.
– volume: 59
  start-page: 569
  year: 1973
  end-page: 590
  publication-title: J. Chem. Phys.
– volume: 6
  start-page: 2543
  year: 2016
  end-page: 2559
  publication-title: Catal. Sci. Technol.
– volume: 55 128
  start-page: 5723 5817
  year: 2016 2016
  end-page: 5726 5820
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 112
  start-page: 9085
  year: 1990
  end-page: 9092
  publication-title: J. Am. Chem. Soc.
– volume: 249
  start-page: 195
  year: 2007
  end-page: 207
  publication-title: J. Catal.
– volume: 120
  start-page: 8222
  year: 1998
  end-page: 8229
  publication-title: J. Am. Chem. Soc.
– volume: 148
  start-page: 1246
  year: 2018
  end-page: 1253
  publication-title: Catal. Lett.
– volume: 1
  start-page: 23
  year: 2018
  end-page: 31
  publication-title: Nat. Catal.
– volume: 51 124
  start-page: 5810 5910
  year: 2012 2012
  end-page: 5831 5933
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 317
  start-page: 185
  year: 2014
  end-page: 197
  publication-title: J. Catal.
– volume: 29
  start-page: 3
  year: 1999
  end-page: 48
  publication-title: Microporous Mesoporous Mater.
– volume: 20
  start-page: 329
  year: 1993
  end-page: 336
  publication-title: Catal. Lett.
– volume: 4
  start-page: 3521
  year: 2014
  end-page: 3532
  publication-title: ACS Catal.
– ident: e_1_2_2_10_2
  doi: 10.1002/ange.201511678
– ident: e_1_2_2_7_2
  doi: 10.1002/ange.201608643
– ident: e_1_2_2_13_1
  doi: 10.1016/j.jcat.2005.11.029
– ident: e_1_2_2_11_2
  doi: 10.1002/ange.201703902
– ident: e_1_2_2_28_1
  doi: 10.1021/ja0530164
– ident: e_1_2_2_42_1
  doi: 10.1021/ja065810a
– ident: e_1_2_2_35_1
  doi: 10.1002/14356007.a15_063
– ident: e_1_2_2_22_1
  doi: 10.1021/ja805607m
– ident: e_1_2_2_17_1
  doi: 10.1007/s10562-018-2330-7
– ident: e_1_2_2_24_1
  doi: 10.1002/anie.201410974
– ident: e_1_2_2_36_1
  doi: 10.1039/C5CY02271A
– ident: e_1_2_2_15_1
  doi: 10.1016/j.jcat.2014.05.015
– ident: e_1_2_2_33_1
  doi: 10.1021/ja00181a008
– ident: e_1_2_2_10_1
  doi: 10.1002/anie.201511678
– ident: e_1_2_2_18_1
  doi: 10.1007/BF00769305
– ident: e_1_2_2_29_1
  doi: 10.1038/s41929-017-0002-4
– ident: e_1_2_2_11_1
  doi: 10.1002/anie.201703902
– ident: e_1_2_2_44_1
  doi: 10.1021/acscatal.7b01643
– ident: e_1_2_2_5_2
  doi: 10.1002/ange.201103657
– ident: e_1_2_2_6_1
  doi: 10.1016/S1387-1811(98)00319-9
– ident: e_1_2_2_8_1
  doi: 10.1002/anie.201007178
– ident: e_1_2_2_37_1
  doi: 10.1006/jcat.1993.1234
– ident: e_1_2_2_2_1
  doi: 10.1039/C5CS00304K
– ident: e_1_2_2_25_1
  doi: 10.1021/cs500722m
– ident: e_1_2_2_9_1
  doi: 10.1021/acscentsci.5b00226
– ident: e_1_2_2_20_1
  doi: 10.1021/ie0613974
– ident: e_1_2_2_32_1
  doi: 10.1006/jmra.1996.0137
– ident: e_1_2_2_5_1
  doi: 10.1002/anie.201103657
– ident: e_1_2_2_21_1
  doi: 10.1002/anie.200503898
– ident: e_1_2_2_8_2
  doi: 10.1002/ange.201007178
– ident: e_1_2_2_16_1
  doi: 10.1021/acscatal.7b03114
– ident: e_1_2_2_26_1
  doi: 10.1063/1.1680061
– ident: e_1_2_2_39_1
  doi: 10.1021/cr3005263
– ident: e_1_2_2_14_1
  doi: 10.1021/cs5015749
– ident: e_1_2_2_41_1
  doi: 10.1016/j.jcat.2007.04.006
– ident: e_1_2_2_7_1
  doi: 10.1002/anie.201608643
– ident: e_1_2_2_21_2
  doi: 10.1002/ange.200503898
– ident: e_1_2_2_34_1
  doi: 10.1021/ja9741483
– ident: e_1_2_2_31_1
  doi: 10.1016/j.cplett.2008.12.084
– ident: e_1_2_2_27_1
  doi: 10.1021/ja00497a058
– ident: e_1_2_2_12_1
  doi: 10.1021/ar700210f
– ident: e_1_2_2_1_1
  doi: 10.1038/ncomms14856
– ident: e_1_2_2_30_1
  doi: 10.1038/s41929-017-0012-2
– ident: e_1_2_2_40_1
  doi: 10.1016/j.jcat.2014.06.017
– ident: e_1_2_2_3_1
  doi: 10.1021/acscatal.5b00007
– ident: e_1_2_2_19_1
  doi: 10.1021/ja016499u
– start-page: 1
  volume-title: Ullmann's Encyclopedia of Industrial Chemistry
  year: 2014
  ident: e_1_2_2_23_1
– ident: e_1_2_2_43_1
  doi: 10.1021/jacs.6b09605
– ident: e_1_2_2_24_2
  doi: 10.1002/ange.201410974
– ident: e_1_2_2_38_1
  doi: 10.1126/science.aaf1835
– ident: e_1_2_2_4_1
  doi: 10.1021/cs3006583
SSID ssj0028806
Score 2.59558
Snippet After a prolonged effort over many years, the route for the formation of a direct carbon−carbon (C−C) bond during the methanol‐to‐hydrocarbon (MTH) process has...
After a prolonged effort over many years, the route for the formation of a direct carbon-carbon (C-C) bond during the methanol-to-hydrocarbon (MTH) process has...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8095
SubjectTerms Acetic acid
Carbon
Catalysis
Communication
Communications
Diffuse reflectance spectroscopy
heterogeneous catalysis
hydrocarbon pool
Hydrocarbons
Magnetic resonance spectroscopy
Methanol
Methyl acetate
Molecular chains
NMR spectroscopy
Organic chemistry
Reaction centers
reaction mechanisms
solid-state NMR
Spectroscopy
zeolites
Title Bridging the Gap between the Direct and Hydrocarbon Pool Mechanisms of the Methanol‐to‐Hydrocarbons Process
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201803279
https://www.ncbi.nlm.nih.gov/pubmed/29710435
https://www.proquest.com/docview/2059130941
https://www.proquest.com/docview/2033384245
https://pubmed.ncbi.nlm.nih.gov/PMC6563700
Volume 57
WOSCitedRecordID wos000436402100027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BiwQX3o9AqYyExCmq48faPpbSpUjtaoUo2lvkJI660hJXmy0SN34Cv5FfwtjJhl1VCAkuViyPlWQyznxOZr4BeO0kVzUTVUorQVNRU5fqyoxSVXMxsk5wHrn0Pp-qyUTPZma6kcXf8UMMH9zCyojv67DAbdEe_CYNDRnYITRLU86UuQm7WcZ1KN7AxHTYcqF1dvlFnKehDP2atpGyg-35227pGta8HjK5CWWjLxrf-_-7uA93exxKDjvDeQA3XPMQbh-ty789Av82pHKhYyMIEcl7e0n6kK7Y796UxDYVOflWoRO0y8I3ZOr9gpy5kE08b7-0xNdR-syFD_R-8fP7j5XHZmNKS_pUhcdwPj7-dHSS9tUZ0lKqzKSW0lpn0lFmJW5zampKo9APFly7wmhTUlpxBIPCFsohiqDCclaKimtR1tZI_gR2Gt-4Z0BEJUoVuPSEpAJ1rO2IK1koxhBtZCOZQLp-OHnZU5eHChqLvCNdZnlQYz6oMYE3g_xlR9rxR8m99bPO-8Xb4qg06NqNyBJ4NQyj-sO_FNs4fxVkOG7uw2_jBJ52pjGciqEeKMLQBNSW0QwCgdJ7e6SZX0Rqb0TXXFGaAItG85erzw8nH46H3vN_mfQC7oTjGIDM9mBntbxyL-FW-XU1b5f7cTFhq2Z6H3bffRyfn_4CV-QiiA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BQSoXyj-hBYyExCmq13bW8bFULVuxu9pDQb1FTuKoKy1xtdkiceMReMY-SWecbOiqQkiISyTHYyUZjzOf7ZnPAO9dInUlVBnzUvFYVdzFaWmGsa6kGlqnpAxcel_HejpNz87MrIsmpFyYlh-iX3CjkRH-1zTAaUF6_zdrKKVgU2xWyqXQ5i7cU-hqyNSFmvVzLjTPNsFIypjOoV_zNnKxv9l-0y_dApu3YyZvYtngjI53_sNnPIKHHRJlB63pPIY7rn4C24frA-Cegv9IyVzo2hiCRPbJXrAuqCuU238ls3XJRj9KdIN2mfuazbxfsImjfOJ5861hvgrSE0dL9H5x9fPXyuPlRpOGdckKz-DL8dHp4SjuzmeIi0QPTGw5r9JB4riwCU50Km4Ko9ET5jJ1uUlNwXkpEQ4qm2uHOIIrK0WhSpmqorImkc9hq_a1ewlMlarQxKanEq5QyakdSp3kWgjEG4NhEkG87p2s6MjL6QyNRdbSLouM1Jj1aozgQy9_0dJ2_FFyb93ZWTd8G6xNDDp3owYRvOurUf20m2Jr5y9JRuL0njaOI3jR2kb_KIF64AhEI9AbVtMLEKn3Zk09Pw_k3oivpeY8AhGs5i9vnx1MT4760qt_afQWtkenk3E2Ppl-3oUHdD-EI4s92FotL91ruF98X82b5Zswsq4BsVEj6w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED9Bh9he-DsgY4CRkHiy5tpOHT-ObWUTXVUhhvYWObEjKnVx1XSTeOMj8Bn5JDsnaVg1ISTES6TEl3-Xc-5n--53AO9cLFTBpaXMSkZlwRxNrB5QVQg5ME4KUXPpfR2p8Tg5P9eTNpow5MI0_BDdhFvoGfX_OnRwN7fF3m_W0JCCHWKzEia40ndhQ4ZKMj3YOPw8PBt1oy400CbFSAgaKtGvmBsZ31u_wrpnugU3b0dN3kSztTsaPvwPL_IIHrRYlOw3xvMY7rjyCWwerErAPQX_IaRzoXMjCBPJRzMnbVhXvd_8LYkpLTn-btERmkXmSzLxfkZOXcgonlYXFfFFLX3qwiS9n_368XPpcXPjlIq06QrbcDY8-nJwTNsKDTSPVV9Tw1iR9GPHuIlxqFMwnWuFvjATict0onPGrEBAKE2mHCIJJo3gubQikXlhdCyeQa_0pXsBRFqZq8CnJ2MmUcmJGQgVZ4pzRBz9QRwBXX2dNG_py0MVjVnaEC_zNKgx7dQYwftOft4Qd_xRcnf1sdO2A1fYGmt071r2I3jbNaP6w3qKKZ2_DDICB_hh6TiC541tdLfiqAeGUDQCtWY1nUCg9V5vKaffanpvRNhCMRYBr63mL0-f7o9Pjrq9nX856Q3cnxwO09HJ-NNL2AqH63hkvgu95eLSvYJ7-dVyWi1et13rGlnFJQE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bridging+the+Gap+between+the+Direct+and+Hydrocarbon+Pool+Mechanisms+of+the+Methanol%E2%80%90to%E2%80%90Hydrocarbons+Process&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Abhishek+Dutta+Chowdhury&rft.au=Alessandra+Lucini+Paioni&rft.au=Houben%2C+Klaartje&rft.au=Whiting%2C+Gareth+T&rft.date=2018-07-02&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=57&rft.issue=27&rft.spage=8095&rft.epage=8099&rft_id=info:doi/10.1002%2Fanie.201803279&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon