Bridging the Gap between the Direct and Hydrocarbon Pool Mechanisms of the Methanol‐to‐Hydrocarbons Process
After a prolonged effort over many years, the route for the formation of a direct carbon−carbon (C−C) bond during the methanol‐to‐hydrocarbon (MTH) process has very recently been unveiled. However, the relevance of the “direct mechanism”‐derived molecules (that is, methyl acetate) during MTH, and su...
Uloženo v:
| Vydáno v: | Angewandte Chemie International Edition Ročník 57; číslo 27; s. 8095 - 8099 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
02.07.2018
John Wiley and Sons Inc |
| Vydání: | International ed. in English |
| Témata: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | After a prolonged effort over many years, the route for the formation of a direct carbon−carbon (C−C) bond during the methanol‐to‐hydrocarbon (MTH) process has very recently been unveiled. However, the relevance of the “direct mechanism”‐derived molecules (that is, methyl acetate) during MTH, and subsequent transformation routes to the conventional hydrocarbon pool (HCP) species, are yet to be established. This important piece of the MTH chemistry puzzle is not only essential from a fundamental perspective, but is also important to maximize catalytic performance. The MTH process was probed over a commercially relevant H‐SAPO‐34 catalyst, using a combination of advanced solid‐state NMR spectroscopy and operando UV/Vis diffuse reflectance spectroscopy coupled to an on‐line mass spectrometer. Spectroscopic evidence is provided for the formation of (olefinic and aromatic) HCP species, which are indeed derived exclusively from the direct C−C bond‐containing acetyl group of methyl acetate. New mechanistic insights have been obtained from the MTH process, including the identification of hydrocarbon‐based co‐catalytic organic reaction centers.
Like a MTH to a flame: The direct mechanism of the zeolite‐catalyzed methanol‐to‐hydrocarbon (MTH) process directly generates co‐catalytic hydrocarbon reaction centers in the hydrocarbon pool. Advanced solid‐state NMR spectroscopy, mass spectrometry, and UV/Vis diffuse reflectance spectroscopy provide evidence for the formation of olefinic and aromatic species in the hydrocarbon pool. |
|---|---|
| AbstractList | After a prolonged effort over many years, the route for the formation of a direct carbon−carbon (C−C) bond during the methanol‐to‐hydrocarbon (MTH) process has very recently been unveiled. However, the relevance of the “direct mechanism”‐derived molecules (that is, methyl acetate) during MTH, and subsequent transformation routes to the conventional hydrocarbon pool (HCP) species, are yet to be established. This important piece of the MTH chemistry puzzle is not only essential from a fundamental perspective, but is also important to maximize catalytic performance. The MTH process was probed over a commercially relevant H‐SAPO‐34 catalyst, using a combination of advanced solid‐state NMR spectroscopy and operando UV/Vis diffuse reflectance spectroscopy coupled to an on‐line mass spectrometer. Spectroscopic evidence is provided for the formation of (olefinic and aromatic) HCP species, which are indeed derived exclusively from the direct C−C bond‐containing acetyl group of methyl acetate. New mechanistic insights have been obtained from the MTH process, including the identification of hydrocarbon‐based co‐catalytic organic reaction centers. After a prolonged effort over many years, the route for the formation of a direct carbon-carbon (C-C) bond during the methanol-to-hydrocarbon (MTH) process has very recently been unveiled. However, the relevance of the "direct mechanism"-derived molecules (that is, methyl acetate) during MTH, and subsequent transformation routes to the conventional hydrocarbon pool (HCP) species, are yet to be established. This important piece of the MTH chemistry puzzle is not only essential from a fundamental perspective, but is also important to maximize catalytic performance. The MTH process was probed over a commercially relevant H-SAPO-34 catalyst, using a combination of advanced solid-state NMR spectroscopy and operando UV/Vis diffuse reflectance spectroscopy coupled to an on-line mass spectrometer. Spectroscopic evidence is provided for the formation of (olefinic and aromatic) HCP species, which are indeed derived exclusively from the direct C-C bond-containing acetyl group of methyl acetate. New mechanistic insights have been obtained from the MTH process, including the identification of hydrocarbon-based co-catalytic organic reaction centers.After a prolonged effort over many years, the route for the formation of a direct carbon-carbon (C-C) bond during the methanol-to-hydrocarbon (MTH) process has very recently been unveiled. However, the relevance of the "direct mechanism"-derived molecules (that is, methyl acetate) during MTH, and subsequent transformation routes to the conventional hydrocarbon pool (HCP) species, are yet to be established. This important piece of the MTH chemistry puzzle is not only essential from a fundamental perspective, but is also important to maximize catalytic performance. The MTH process was probed over a commercially relevant H-SAPO-34 catalyst, using a combination of advanced solid-state NMR spectroscopy and operando UV/Vis diffuse reflectance spectroscopy coupled to an on-line mass spectrometer. Spectroscopic evidence is provided for the formation of (olefinic and aromatic) HCP species, which are indeed derived exclusively from the direct C-C bond-containing acetyl group of methyl acetate. New mechanistic insights have been obtained from the MTH process, including the identification of hydrocarbon-based co-catalytic organic reaction centers. After a prolonged effort over many years, the route for the formation of a direct carbon-carbon (C-C) bond during the methanol-to-hydrocarbon (MTH) process has very recently been unveiled. However, the relevance of the "direct mechanism"-derived molecules (that is, methyl acetate) during MTH, and subsequent transformation routes to the conventional hydrocarbon pool (HCP) species, are yet to be established. This important piece of the MTH chemistry puzzle is not only essential from a fundamental perspective, but is also important to maximize catalytic performance. The MTH process was probed over a commercially relevant H-SAPO-34 catalyst, using a combination of advanced solid-state NMR spectroscopy and operando UV/Vis diffuse reflectance spectroscopy coupled to an on-line mass spectrometer. Spectroscopic evidence is provided for the formation of (olefinic and aromatic) HCP species, which are indeed derived exclusively from the direct C-C bond-containing acetyl group of methyl acetate. New mechanistic insights have been obtained from the MTH process, including the identification of hydrocarbon-based co-catalytic organic reaction centers. After a prolonged effort over many years, the route for the formation of a direct carbon−carbon (C−C) bond during the methanol‐to‐hydrocarbon (MTH) process has very recently been unveiled. However, the relevance of the “direct mechanism”‐derived molecules (that is, methyl acetate) during MTH, and subsequent transformation routes to the conventional hydrocarbon pool (HCP) species, are yet to be established. This important piece of the MTH chemistry puzzle is not only essential from a fundamental perspective, but is also important to maximize catalytic performance. The MTH process was probed over a commercially relevant H‐SAPO‐34 catalyst, using a combination of advanced solid‐state NMR spectroscopy and operando UV/Vis diffuse reflectance spectroscopy coupled to an on‐line mass spectrometer. Spectroscopic evidence is provided for the formation of (olefinic and aromatic) HCP species, which are indeed derived exclusively from the direct C−C bond‐containing acetyl group of methyl acetate. New mechanistic insights have been obtained from the MTH process, including the identification of hydrocarbon‐based co‐catalytic organic reaction centers. Like a MTH to a flame: The direct mechanism of the zeolite‐catalyzed methanol‐to‐hydrocarbon (MTH) process directly generates co‐catalytic hydrocarbon reaction centers in the hydrocarbon pool. Advanced solid‐state NMR spectroscopy, mass spectrometry, and UV/Vis diffuse reflectance spectroscopy provide evidence for the formation of olefinic and aromatic species in the hydrocarbon pool. |
| Author | Chowdhury, Abhishek Dutta Baldus, Marc Weckhuysen, Bert M. Paioni, Alessandra Lucini Houben, Klaartje Whiting, Gareth T. |
| AuthorAffiliation | 3 Current address: DSM Food Specialties DSM Biotechnology Center R&D analysis Alexander Flemminglaan 1 2613 AX Delft The Netherlands 1 Inorganic Chemistry and Catalysis Group Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands 2 NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands |
| AuthorAffiliation_xml | – name: 1 Inorganic Chemistry and Catalysis Group Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands – name: 3 Current address: DSM Food Specialties DSM Biotechnology Center R&D analysis Alexander Flemminglaan 1 2613 AX Delft The Netherlands – name: 2 NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands |
| Author_xml | – sequence: 1 givenname: Abhishek Dutta surname: Chowdhury fullname: Chowdhury, Abhishek Dutta organization: Utrecht University – sequence: 2 givenname: Alessandra Lucini surname: Paioni fullname: Paioni, Alessandra Lucini organization: Utrecht University – sequence: 3 givenname: Klaartje surname: Houben fullname: Houben, Klaartje organization: Current address: DSM Food Specialties – sequence: 4 givenname: Gareth T. surname: Whiting fullname: Whiting, Gareth T. organization: Utrecht University – sequence: 5 givenname: Marc surname: Baldus fullname: Baldus, Marc organization: Utrecht University – sequence: 6 givenname: Bert M. orcidid: 0000-0001-5245-1426 surname: Weckhuysen fullname: Weckhuysen, Bert M. email: b.m.weckhuysen@uu.nl organization: Utrecht University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29710435$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1uEzEUhS1URH9gyxJZYsNmwvVfZrxBKqW0lVroAtaWx3MncTWxgz2hyo5H4Bl5EpymLaUSYmNf298591h3n-yEGJCQlwwmDIC_tcHjhANrQPBaPyF7THFWiboWO6WWQlR1o9gu2c_5qvBNA9NnZJfrmoEUao_E98l3Mx9mdJwjPbFL2uJ4jRhuzh98QjdSGzp6uu5SdDa1MdDLGAd6gW5euudFprG_oS9wLDdx-PXj5xjL8kCS6WUpMefn5Glvh4wvbvcD8vXj8Zej0-r888nZ0eF55VTNdGUB-oYpBG6VUtCDdiUyF61osNWNdgCdULWStq2RcQnSCu5kJxrpequVOCDvtr7LVbvAzmEYkx3MMvmFTWsTrTd_vwQ_N7P43UzVVNQAxeDNrUGK31aYR7Pw2eEw2IBxlQ0HIUo3Lje9Xj9Cr-IqhfK9QinNBGjJCvXqYaL7KHezKIDcAi7FnBP2xvnRjj5uAvrBMDCbkZvNyM39yIts8kh25_xPgd4Krv2A6__Q5vDT2fEf7W_JuMCm |
| CitedBy_id | crossref_primary_10_1016_j_susmat_2023_e00729 crossref_primary_10_1016_j_cej_2023_148412 crossref_primary_10_1007_s10858_023_00415_6 crossref_primary_10_1039_D1CY02289J crossref_primary_10_1002_anie_202414724 crossref_primary_10_1021_acs_energyfuels_5c02833 crossref_primary_10_1002_ange_202112948 crossref_primary_10_1016_j_mcat_2021_111968 crossref_primary_10_1002_anie_201814268 crossref_primary_10_1038_s41467_019_09449_7 crossref_primary_10_1016_j_cattod_2025_115339 crossref_primary_10_1039_D0CY01174F crossref_primary_10_1016_j_micromeso_2023_112856 crossref_primary_10_1016_j_fuel_2020_118101 crossref_primary_10_1016_j_jcat_2024_115518 crossref_primary_10_1016_j_apcatb_2023_123477 crossref_primary_10_1002_ange_202411197 crossref_primary_10_1002_cssc_202400884 crossref_primary_10_1039_D4CY01242A crossref_primary_10_1007_s10562_020_03492_6 crossref_primary_10_1016_j_mcat_2023_113633 crossref_primary_10_1016_j_cej_2024_157641 crossref_primary_10_1038_s41467_021_26090_5 crossref_primary_10_1016_j_jcat_2019_11_015 crossref_primary_10_1002_anie_202318250 crossref_primary_10_1021_jacs_2c03478 crossref_primary_10_1002_anie_202007283 crossref_primary_10_1002_anie_202303124 crossref_primary_10_1016_j_jcat_2022_07_035 crossref_primary_10_1016_j_jcat_2021_02_011 crossref_primary_10_1016_j_jaap_2024_106487 crossref_primary_10_1039_D4CY01168F crossref_primary_10_1002_cctc_201900618 crossref_primary_10_1002_anie_202112948 crossref_primary_10_1002_ange_202414724 crossref_primary_10_1016_j_cattod_2025_115274 crossref_primary_10_1002_ange_202007283 crossref_primary_10_1039_D4SC00603H crossref_primary_10_1039_D1SC01859K crossref_primary_10_1002_adma_201902181 crossref_primary_10_1038_s41929_022_00806_2 crossref_primary_10_1007_s11705_024_2505_2 crossref_primary_10_3390_catal11040432 crossref_primary_10_1016_j_jcat_2018_11_018 crossref_primary_10_1039_D1QM00299F crossref_primary_10_1016_j_cattod_2019_07_059 crossref_primary_10_1016_j_apcatb_2024_123829 crossref_primary_10_1016_j_ces_2023_119461 crossref_primary_10_1016_j_pmatsci_2023_101103 crossref_primary_10_1016_j_fmre_2021_08_002 crossref_primary_10_1038_s41467_024_52999_8 crossref_primary_10_1038_s41467_023_40351_5 crossref_primary_10_1002_ange_202303124 crossref_primary_10_1039_D1CY01807H crossref_primary_10_1002_anie_202009139 crossref_primary_10_1016_j_jcat_2021_11_004 crossref_primary_10_1039_D2CY01779B crossref_primary_10_1016_j_rser_2021_111262 crossref_primary_10_1002_cctc_201901937 crossref_primary_10_1016_j_checat_2024_101168 crossref_primary_10_1016_j_checat_2022_07_026 crossref_primary_10_1039_D2CY00303A crossref_primary_10_1039_D2CC02216H crossref_primary_10_1007_s13738_021_02291_z crossref_primary_10_1002_ange_201814268 crossref_primary_10_1039_D3QI01526B crossref_primary_10_1002_aic_17134 crossref_primary_10_1002_sstr_202200285 crossref_primary_10_3390_chemistry5010037 crossref_primary_10_1021_jacs_9b00585 crossref_primary_10_1080_01614940_2025_2522880 crossref_primary_10_1038_s41586_022_04763_5 crossref_primary_10_1002_anie_202411197 crossref_primary_10_1007_s11244_020_01258_3 crossref_primary_10_1002_cssc_202402758 crossref_primary_10_1021_acs_energyfuels_5c02778 crossref_primary_10_1038_s41467_024_55514_1 crossref_primary_10_1002_ange_202318250 crossref_primary_10_1016_j_jcat_2023_115183 crossref_primary_10_1039_D5CS00341E crossref_primary_10_1093_nsr_nwac047 crossref_primary_10_1021_acscatal_4c07790 crossref_primary_10_1002_ange_202300319 crossref_primary_10_1016_j_apcata_2023_119100 crossref_primary_10_1016_S1872_2067_22_64209_8 crossref_primary_10_1016_j_jece_2025_118822 crossref_primary_10_1039_C9SC02215E crossref_primary_10_1016_j_jphotochem_2023_114728 crossref_primary_10_1038_s41929_022_00808_0 crossref_primary_10_1002_anie_202300319 crossref_primary_10_1093_nsr_nwac155 crossref_primary_10_1039_D3CY00105A crossref_primary_10_1002_ange_202009139 crossref_primary_10_1016_j_pnmrs_2023_11_001 crossref_primary_10_1021_acs_jctc_5c01100 crossref_primary_10_1002_ejic_202300228 crossref_primary_10_1016_j_micromeso_2025_113632 |
| Cites_doi | 10.1002/ange.201511678 10.1002/ange.201608643 10.1016/j.jcat.2005.11.029 10.1002/ange.201703902 10.1021/ja0530164 10.1021/ja065810a 10.1002/14356007.a15_063 10.1021/ja805607m 10.1007/s10562-018-2330-7 10.1002/anie.201410974 10.1039/C5CY02271A 10.1016/j.jcat.2014.05.015 10.1021/ja00181a008 10.1002/anie.201511678 10.1007/BF00769305 10.1038/s41929-017-0002-4 10.1002/anie.201703902 10.1021/acscatal.7b01643 10.1002/ange.201103657 10.1016/S1387-1811(98)00319-9 10.1002/anie.201007178 10.1006/jcat.1993.1234 10.1039/C5CS00304K 10.1021/cs500722m 10.1021/acscentsci.5b00226 10.1021/ie0613974 10.1006/jmra.1996.0137 10.1002/anie.201103657 10.1002/anie.200503898 10.1002/ange.201007178 10.1021/acscatal.7b03114 10.1063/1.1680061 10.1021/cr3005263 10.1021/cs5015749 10.1016/j.jcat.2007.04.006 10.1002/anie.201608643 10.1002/ange.200503898 10.1021/ja9741483 10.1016/j.cplett.2008.12.084 10.1021/ja00497a058 10.1021/ar700210f 10.1038/ncomms14856 10.1038/s41929-017-0012-2 10.1016/j.jcat.2014.06.017 10.1021/acscatal.5b00007 10.1021/ja016499u 10.1021/jacs.6b09605 10.1002/ange.201410974 10.1126/science.aaf1835 10.1021/cs3006583 |
| ContentType | Journal Article |
| Copyright | 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | 24P AAYXX CITATION NPM 7TM K9. 7X8 5PM |
| DOI | 10.1002/anie.201803279 |
| DatabaseName | Open Access: Wiley-Blackwell Open Access Journals CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | 8099 |
| ExternalDocumentID | PMC6563700 29710435 10_1002_anie_201803279 ANIE201803279 |
| Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: H2020 Excellent Science funderid: Marie Skłodowska-Curie grant agreement (no. 704544); Advanced ERC Grant (no. 321140 ) – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek funderid: VENI grant no. 722.015.003; Middelgroot program no. 700.58.102; uNMR-NL, an NWO-funded National Roadmap Large-Scale Facility for the Netherlands (no. 184.032.207) – fundername: H2020 Excellent Science grantid: Marie Skłodowska-Curie grant agreement (no. 704544); Advanced ERC Grant (no. 321140 ) – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek grantid: VENI grant no. 722.015.003; Middelgroot program no. 700.58.102; uNMR-NL, an NWO-funded National Roadmap Large-Scale Facility for the Netherlands (no. 184.032.207) |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI ABUFD AEYWJ AGHNM AGYGG CITATION O8X NPM 7TM K9. 7X8 5PM |
| ID | FETCH-LOGICAL-c5719-a00f815e02a5550f09c97123b38eb989c00d35754ab7e12404a32c4d384cfa953 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 128 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436402100027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Tue Nov 04 02:00:29 EST 2025 Thu Oct 02 05:24:20 EDT 2025 Sat Nov 29 14:51:05 EST 2025 Thu Apr 03 07:02:29 EDT 2025 Tue Nov 18 21:04:22 EST 2025 Sat Nov 29 03:44:23 EST 2025 Wed Jan 22 16:36:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 27 |
| Keywords | reaction mechanisms solid-state NMR zeolites heterogeneous catalysis hydrocarbon pool |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5719-a00f815e02a5550f09c97123b38eb989c00d35754ab7e12404a32c4d384cfa953 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5245-1426 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201803279 |
| PMID | 29710435 |
| PQID | 2059130941 |
| PQPubID | 946352 |
| PageCount | 5 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6563700 proquest_miscellaneous_2033384245 proquest_journals_2059130941 pubmed_primary_29710435 crossref_citationtrail_10_1002_anie_201803279 crossref_primary_10_1002_anie_201803279 wiley_primary_10_1002_anie_201803279_ANIE201803279 |
| PublicationCentury | 2000 |
| PublicationDate | July 2, 2018 |
| PublicationDateYYYYMMDD | 2018-07-02 |
| PublicationDate_xml | – month: 07 year: 2018 text: July 2, 2018 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | Angewandte Chemie International Edition |
| PublicationTitleAlternate | Angew Chem Int Ed Engl |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2015; 1 2014; 317 2017; 7 2017; 8 2013; 3 2015; 5 1979; 101 2007; 249 1999; 29 1973; 59 2018; 148 1993; 20 1996; 121 2017 2017; 56 129 2006; 238 1993; 142 2006 2006; 45 118 2016; 6 2016 2016; 55 128 2014; 4 2001 2018; 1 2012 2012; 51 124 2002; 124 2015; 44 2005; 127 2015 2015; 54 127 2013; 113 2011 2011; 50 123 2016; 138 2008; 41 2014 1990; 112 2006; 128 2007; 46 2008; 130 2016; 351 1998; 120 2009; 469 e_1_2_2_4_1 e_1_2_2_24_2 Le Berre C. (e_1_2_2_23_1) 2014 e_1_2_2_24_1 e_1_2_2_6_1 e_1_2_2_22_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_41_1 e_1_2_2_43_1 e_1_2_2_8_2 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_26_1 e_1_2_2_13_1 e_1_2_2_38_1 e_1_2_2_11_2 e_1_2_2_11_1 e_1_2_2_30_1 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_17_1 e_1_2_2_34_1 e_1_2_2_15_1 e_1_2_2_36_1 e_1_2_2_25_1 e_1_2_2_5_1 e_1_2_2_5_2 e_1_2_2_7_1 e_1_2_2_21_2 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_3_1 e_1_2_2_40_1 e_1_2_2_42_1 e_1_2_2_7_2 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_44_1 e_1_2_2_27_1 e_1_2_2_14_1 e_1_2_2_37_1 e_1_2_2_12_1 e_1_2_2_39_1 e_1_2_2_10_2 e_1_2_2_10_1 e_1_2_2_31_1 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_16_1 e_1_2_2_35_1 |
| References_xml | – volume: 124 start-page: 3844 year: 2002 end-page: 3845 publication-title: J. Am. Chem. Soc. – volume: 130 start-page: 16316 year: 2008 end-page: 16323 publication-title: J. Am. Chem. Soc. – volume: 55 128 start-page: 15840 16072 year: 2016 2016 end-page: 15845 16077 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 317 year: 2015 end-page: 326 publication-title: ACS Catal. – volume: 7 start-page: 7987 year: 2017 end-page: 7994 publication-title: ACS Catal. – volume: 1 start-page: 313 year: 2015 end-page: 319 publication-title: ACS Cent. Sci. – volume: 5 start-page: 1922 year: 2015 end-page: 1938 publication-title: ACS Catal. – volume: 50 123 start-page: 1853 1893 year: 2011 2011 end-page: 1856 1896 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 18 year: 2013 end-page: 31 publication-title: ACS Catal. – year: 2001 – volume: 45 118 start-page: 1617 1647 year: 2006 2006 end-page: 1620 1650 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 142 start-page: 602 year: 1993 end-page: 616 publication-title: J. Catal. – volume: 238 start-page: 21 year: 2006 end-page: 27 publication-title: J. Catal. – volume: 113 start-page: 7287 year: 2013 end-page: 7342 publication-title: Chem. Rev. – volume: 46 start-page: 8832 year: 2007 end-page: 8838 publication-title: Ind. Eng. Chem. Res. – volume: 138 start-page: 15994 year: 2016 end-page: 16003 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 7155 year: 2015 end-page: 7176 publication-title: Chem. Soc. Rev. – volume: 101 start-page: 760 year: 1979 end-page: 762 publication-title: J. Am. Chem. Soc. – volume: 469 start-page: 342 year: 2009 end-page: 348 publication-title: Chem. Phys. Lett. – volume: 128 start-page: 14770 year: 2006 end-page: 14771 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 9039 9167 year: 2017 2017 end-page: 9043 9171 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 7261 7369 year: 2015 2015 end-page: 7264 7372 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 1 year: 2014 end-page: 34 – volume: 1 start-page: 8 year: 2018 end-page: 9 publication-title: Nat. Catal. – volume: 351 start-page: 1065 year: 2016 end-page: 1068 publication-title: Science – volume: 127 start-page: 12965 year: 2005 end-page: 12974 publication-title: J. Am. Chem. Soc. – volume: 121 start-page: 65 year: 1996 end-page: 69 publication-title: J. Magn. Reson. Ser. A – volume: 41 start-page: 895 year: 2008 end-page: 904 publication-title: Acc. Chem. Res. – volume: 8 start-page: 14856 year: 2017 publication-title: Nat. Commun. – volume: 7 start-page: 5773 year: 2017 end-page: 5780 publication-title: ACS Catal. – volume: 317 start-page: 277 year: 2014 end-page: 283 publication-title: J. Catal. – volume: 59 start-page: 569 year: 1973 end-page: 590 publication-title: J. Chem. Phys. – volume: 6 start-page: 2543 year: 2016 end-page: 2559 publication-title: Catal. Sci. Technol. – volume: 55 128 start-page: 5723 5817 year: 2016 2016 end-page: 5726 5820 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 112 start-page: 9085 year: 1990 end-page: 9092 publication-title: J. Am. Chem. Soc. – volume: 249 start-page: 195 year: 2007 end-page: 207 publication-title: J. Catal. – volume: 120 start-page: 8222 year: 1998 end-page: 8229 publication-title: J. Am. Chem. Soc. – volume: 148 start-page: 1246 year: 2018 end-page: 1253 publication-title: Catal. Lett. – volume: 1 start-page: 23 year: 2018 end-page: 31 publication-title: Nat. Catal. – volume: 51 124 start-page: 5810 5910 year: 2012 2012 end-page: 5831 5933 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 317 start-page: 185 year: 2014 end-page: 197 publication-title: J. Catal. – volume: 29 start-page: 3 year: 1999 end-page: 48 publication-title: Microporous Mesoporous Mater. – volume: 20 start-page: 329 year: 1993 end-page: 336 publication-title: Catal. Lett. – volume: 4 start-page: 3521 year: 2014 end-page: 3532 publication-title: ACS Catal. – ident: e_1_2_2_10_2 doi: 10.1002/ange.201511678 – ident: e_1_2_2_7_2 doi: 10.1002/ange.201608643 – ident: e_1_2_2_13_1 doi: 10.1016/j.jcat.2005.11.029 – ident: e_1_2_2_11_2 doi: 10.1002/ange.201703902 – ident: e_1_2_2_28_1 doi: 10.1021/ja0530164 – ident: e_1_2_2_42_1 doi: 10.1021/ja065810a – ident: e_1_2_2_35_1 doi: 10.1002/14356007.a15_063 – ident: e_1_2_2_22_1 doi: 10.1021/ja805607m – ident: e_1_2_2_17_1 doi: 10.1007/s10562-018-2330-7 – ident: e_1_2_2_24_1 doi: 10.1002/anie.201410974 – ident: e_1_2_2_36_1 doi: 10.1039/C5CY02271A – ident: e_1_2_2_15_1 doi: 10.1016/j.jcat.2014.05.015 – ident: e_1_2_2_33_1 doi: 10.1021/ja00181a008 – ident: e_1_2_2_10_1 doi: 10.1002/anie.201511678 – ident: e_1_2_2_18_1 doi: 10.1007/BF00769305 – ident: e_1_2_2_29_1 doi: 10.1038/s41929-017-0002-4 – ident: e_1_2_2_11_1 doi: 10.1002/anie.201703902 – ident: e_1_2_2_44_1 doi: 10.1021/acscatal.7b01643 – ident: e_1_2_2_5_2 doi: 10.1002/ange.201103657 – ident: e_1_2_2_6_1 doi: 10.1016/S1387-1811(98)00319-9 – ident: e_1_2_2_8_1 doi: 10.1002/anie.201007178 – ident: e_1_2_2_37_1 doi: 10.1006/jcat.1993.1234 – ident: e_1_2_2_2_1 doi: 10.1039/C5CS00304K – ident: e_1_2_2_25_1 doi: 10.1021/cs500722m – ident: e_1_2_2_9_1 doi: 10.1021/acscentsci.5b00226 – ident: e_1_2_2_20_1 doi: 10.1021/ie0613974 – ident: e_1_2_2_32_1 doi: 10.1006/jmra.1996.0137 – ident: e_1_2_2_5_1 doi: 10.1002/anie.201103657 – ident: e_1_2_2_21_1 doi: 10.1002/anie.200503898 – ident: e_1_2_2_8_2 doi: 10.1002/ange.201007178 – ident: e_1_2_2_16_1 doi: 10.1021/acscatal.7b03114 – ident: e_1_2_2_26_1 doi: 10.1063/1.1680061 – ident: e_1_2_2_39_1 doi: 10.1021/cr3005263 – ident: e_1_2_2_14_1 doi: 10.1021/cs5015749 – ident: e_1_2_2_41_1 doi: 10.1016/j.jcat.2007.04.006 – ident: e_1_2_2_7_1 doi: 10.1002/anie.201608643 – ident: e_1_2_2_21_2 doi: 10.1002/ange.200503898 – ident: e_1_2_2_34_1 doi: 10.1021/ja9741483 – ident: e_1_2_2_31_1 doi: 10.1016/j.cplett.2008.12.084 – ident: e_1_2_2_27_1 doi: 10.1021/ja00497a058 – ident: e_1_2_2_12_1 doi: 10.1021/ar700210f – ident: e_1_2_2_1_1 doi: 10.1038/ncomms14856 – ident: e_1_2_2_30_1 doi: 10.1038/s41929-017-0012-2 – ident: e_1_2_2_40_1 doi: 10.1016/j.jcat.2014.06.017 – ident: e_1_2_2_3_1 doi: 10.1021/acscatal.5b00007 – ident: e_1_2_2_19_1 doi: 10.1021/ja016499u – start-page: 1 volume-title: Ullmann's Encyclopedia of Industrial Chemistry year: 2014 ident: e_1_2_2_23_1 – ident: e_1_2_2_43_1 doi: 10.1021/jacs.6b09605 – ident: e_1_2_2_24_2 doi: 10.1002/ange.201410974 – ident: e_1_2_2_38_1 doi: 10.1126/science.aaf1835 – ident: e_1_2_2_4_1 doi: 10.1021/cs3006583 |
| SSID | ssj0028806 |
| Score | 2.59558 |
| Snippet | After a prolonged effort over many years, the route for the formation of a direct carbon−carbon (C−C) bond during the methanol‐to‐hydrocarbon (MTH) process has... After a prolonged effort over many years, the route for the formation of a direct carbon-carbon (C-C) bond during the methanol-to-hydrocarbon (MTH) process has... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 8095 |
| SubjectTerms | Acetic acid Carbon Catalysis Communication Communications Diffuse reflectance spectroscopy heterogeneous catalysis hydrocarbon pool Hydrocarbons Magnetic resonance spectroscopy Methanol Methyl acetate Molecular chains NMR spectroscopy Organic chemistry Reaction centers reaction mechanisms solid-state NMR Spectroscopy zeolites |
| Title | Bridging the Gap between the Direct and Hydrocarbon Pool Mechanisms of the Methanol‐to‐Hydrocarbons Process |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201803279 https://www.ncbi.nlm.nih.gov/pubmed/29710435 https://www.proquest.com/docview/2059130941 https://www.proquest.com/docview/2033384245 https://pubmed.ncbi.nlm.nih.gov/PMC6563700 |
| Volume | 57 |
| WOSCitedRecordID | wos000436402100027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BiwQX_qGBUhkJiVNU_2VjH0vpUiS6WiEq7S2yHUddaYmrzbYSNx6BZ-RJGCfZsKsKIcHFiuVxnDjjzOdk5huAN5xT65SQKUJrkcpMjFJbcZcKbXME7KNI4tYmm8gnEzWb6elGFH_HDzF8cIsro31fxwVubHP4mzQ0RmBH1yxFBc_1bdhlTKiYvIHL6bDlQu3s4ouESGMa-jVtI-WH2_23zdINrHnTZXITyra2aPzg_-_iIdzvcSg56hTnEdzy9WO4e7xO__YEwrsYyoWGjSBEJB_MJeldutp696Ykpi7J6bcSjaBZ2lCTaQgLcuZjNPG8-dqQULXSZz5-oA-Ln99_rAIWG10a0ocqPIXz8cmX49O0z86QuixnOjWUVoplnnKT4TanotrpHO2gFcpbrbSjtBQIBqWxuUcUQaUR3MlSKOkqozPxDHbqUPs9IBH3jfAcrLRUyjJTzJlsJBmzyjNZsgTS9cMpXE9dHjNoLIqOdJkXcRqLYRoTeDvIX3akHX-U3F8_66JfvA22ZhpNu5Y48OuhGac__ksxtQ9XUUbg5j7-Nk7geacaw1Ac54EiDE0g31KaQSBSem-31POLltob0bXIKU2At0rzl6svjiYfT4bai3_p9BLuxePWAZnvw85qeeVfwR13vZo3y4N2MWGZz9QB7L7_PD7_9AtPYSHP |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BQSqX8g-BAkZC4mTVsZ1NfCxVy1Z0V3soUm-R4zhipSWpNlskbn2EPmOfhBknG7qqEBLiEsnxOD_2OPPZmfkG4IOUonCZ0hyhteI6USNeVNJxZYoUAfuISNxCsol0Os3Ozsys9yakWJiOH2LYcKOZEb7XNMFpQ3rvN2sohWCTb1YmlEzNXbin0dSQqks9G9ZcqJ5dgJFSnPLQr3kbhdzbbL9pl26Bzds-kzexbDBGRw__w2s8gp0eibL9TnUewx1fP4Htg3UCuKfQfKJgLjRtDEEi-2zPWe_UFcrdt5LZumTjnyWaQbssmprNmmbBJp7iieft95Y1VZCeeNqibxbXl1erBg83mrSsD1Z4Bl-PDk8PxrzPz8BdksaGWyGqLE68kDbBhU4ljDMpWsJCZb4wmXFClArhoLZF6hFHCG2VdLpUmXaVNYl6Dlt1U_uXwAj5jfAacVkIrcski51NRjqOi8zHuowj4OvRyV1PXk45NBZ5R7ssc-rGfOjGCD4O8ucdbccfJXfXg53307fF2sSgcTcab_x-qMbup78ptvbNBckoXN7Tj-MIXnS6MdxKYj8IBKIRpBtaMwgQqfdmTT3_Fsi9EV-rVIgIZNCavzx9vj89PhxKr_6l0TvYHp9OTvKT4-mX1_CAzgd3ZLkLW6vlhX8D992P1bxdvg0z6xeolCMy |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB7BFtFe-G8JFDASEqeoju1s4mNpu7SiXa0QlXqLbMcRK22T1WaL1BuPwDPyJMwk2dBVhZAQl0iJJ3bijD2fnZlvAN4Jwa1LpQoRWstQxXIY2kK4UGqbIGAfEolbk2wiGY_Tiws96bwJKRam5YfoN9xoZDTzNQ1wP8-Lvd-soRSCTb5ZKZci0XdhQ1EmmQFsHH4enZ_2qy5U0DbESMqQMtGvmBu52FuvYd0y3YKbt70mb6LZxhyNHv6HF3kEDzosyvZb5XkMd3z5BDYPVingnkL1gcK50LgxhInso5mzzq2rOW9nS2bKnB1f52gIzcJWJZtU1YydeYoontaXNauKRvrM0yZ9Nfv5_ceywsONW2rWhSs8g_PR0ZeD47DL0BC6OIl0aDgv0ij2XJgYlzoF104naAutTL3VqXac5xIBoTI28YgkuDJSOJXLVLnC6Fhuw6CsSv8cGGG_IdYR5ZYrlcdp5Ew8VFFkUx-pPAogXH2dzHX05ZRFY5a1xMsio27M-m4M4H0vP2-JO_4oubv62Fk3gGssjTWad62w4bd9MXY__U8xpa-uSEbiAp9-HQew0-pG35TAfuAIRQNI1rSmFyBa7_WScvq1ofdGhC0TzgMQjdb85emz_fHJUX_24l9uegP3J4ej7PRk_OklbNHlxh9Z7MJgubjyr-Ce-7ac1ovX3dD6BU6jJEg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bridging+the+Gap+between+the+Direct+and+Hydrocarbon+Pool+Mechanisms+of+the+Methanol%E2%80%90to%E2%80%90Hydrocarbons+Process&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Abhishek+Dutta+Chowdhury&rft.au=Alessandra+Lucini+Paioni&rft.au=Houben%2C+Klaartje&rft.au=Whiting%2C+Gareth+T&rft.date=2018-07-02&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=57&rft.issue=27&rft.spage=8095&rft.epage=8099&rft_id=info:doi/10.1002%2Fanie.201803279&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |