Evolutionary couplings detect side-chain interactions
Patterns of amino acid covariation in large protein sequence alignments can inform the prediction of de novo protein structures, binding interfaces, and mutational effects. While algorithms that detect these so-called evolutionary couplings between residues have proven useful for practical applicati...
Saved in:
| Published in: | PeerJ (San Francisco, CA) Vol. 7; p. e7280 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
PeerJ. Ltd
08.07.2019
PeerJ, Inc PeerJ Inc |
| Subjects: | |
| ISSN: | 2167-8359, 2167-8359 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Patterns of amino acid covariation in large protein sequence alignments can inform the prediction of de novo protein structures, binding interfaces, and mutational effects. While algorithms that detect these so-called evolutionary couplings between residues have proven useful for practical applications, less is known about how and why these methods perform so well, and what insights into biological processes can be gained from their application. Evolutionary coupling algorithms are commonly benchmarked by comparison to true structural contacts derived from solved protein structures. However, the methods used to determine true structural contacts are not standardized and different definitions of structural contacts may have important consequences for interpreting the results from evolutionary coupling analyses and understanding their overall utility. Here, we show that evolutionary coupling analyses are significantly more likely to identify structural contacts between side-chain atoms than between backbone atoms. We use both simulations and empirical analyses to highlight that purely backbone-based definitions of true residue–residue contacts (i.e., based on the distance between Cα atoms) may underestimate the accuracy of evolutionary coupling algorithms by as much as 40% and that a commonly used reference point (Cβ atoms) underestimates the accuracy by 10–15%. These findings show that co-evolutionary outcomes differ according to which atoms participate in residue–residue interactions and suggest that accounting for different interaction types may lead to further improvements to contact-prediction methods. |
|---|---|
| AbstractList | Patterns of amino acid covariation in large protein sequence alignments can inform the prediction of de novo protein structures, binding interfaces, and mutational effects. While algorithms that detect these so-called evolutionary couplings between residues have proven useful for practical applications, less is known about how and why these methods perform so well, and what insights into biological processes can be gained from their application. Evolutionary coupling algorithms are commonly benchmarked by comparison to true structural contacts derived from solved protein structures. However, the methods used to determine true structural contacts are not standardized and different definitions of structural contacts may have important consequences for interpreting the results from evolutionary coupling analyses and understanding their overall utility. Here, we show that evolutionary coupling analyses are significantly more likely to identify structural contacts between side-chain atoms than between backbone atoms. We use both simulations and empirical analyses to highlight that purely backbone-based definitions of true residue-residue contacts (i.e., based on the distance between Cα atoms) may underestimate the accuracy of evolutionary coupling algorithms by as much as 40% and that a commonly used reference point (Cβ atoms) underestimates the accuracy by 10-15%. These findings show that co-evolutionary outcomes differ according to which atoms participate in residue-residue interactions and suggest that accounting for different interaction types may lead to further improvements to contact-prediction methods.Patterns of amino acid covariation in large protein sequence alignments can inform the prediction of de novo protein structures, binding interfaces, and mutational effects. While algorithms that detect these so-called evolutionary couplings between residues have proven useful for practical applications, less is known about how and why these methods perform so well, and what insights into biological processes can be gained from their application. Evolutionary coupling algorithms are commonly benchmarked by comparison to true structural contacts derived from solved protein structures. However, the methods used to determine true structural contacts are not standardized and different definitions of structural contacts may have important consequences for interpreting the results from evolutionary coupling analyses and understanding their overall utility. Here, we show that evolutionary coupling analyses are significantly more likely to identify structural contacts between side-chain atoms than between backbone atoms. We use both simulations and empirical analyses to highlight that purely backbone-based definitions of true residue-residue contacts (i.e., based on the distance between Cα atoms) may underestimate the accuracy of evolutionary coupling algorithms by as much as 40% and that a commonly used reference point (Cβ atoms) underestimates the accuracy by 10-15%. These findings show that co-evolutionary outcomes differ according to which atoms participate in residue-residue interactions and suggest that accounting for different interaction types may lead to further improvements to contact-prediction methods. Patterns of amino acid covariation in large protein sequence alignments can inform the prediction of de novo protein structures, binding interfaces, and mutational effects. While algorithms that detect these so-called evolutionary couplings between residues have proven useful for practical applications, less is known about how and why these methods perform so well, and what insights into biological processes can be gained from their application. Evolutionary coupling algorithms are commonly benchmarked by comparison to true structural contacts derived from solved protein structures. However, the methods used to determine true structural contacts are not standardized and different definitions of structural contacts may have important consequences for interpreting the results from evolutionary coupling analyses and understanding their overall utility. Here, we show that evolutionary coupling analyses are significantly more likely to identify structural contacts between side-chain atoms than between backbone atoms. We use both simulations and empirical analyses to highlight that purely backbone-based definitions of true residue–residue contacts (i.e., based on the distance between Cα atoms) may underestimate the accuracy of evolutionary coupling algorithms by as much as 40% and that a commonly used reference point (Cβ atoms) underestimates the accuracy by 10–15%. These findings show that co-evolutionary outcomes differ according to which atoms participate in residue–residue interactions and suggest that accounting for different interaction types may lead to further improvements to contact-prediction methods. Patterns of amino acid covariation in large protein sequence alignments can inform the prediction of de novo protein structures, binding interfaces, and mutational effects. While algorithms that detect these so-called evolutionary couplings between residues have proven useful for practical applications, less is known about how and why these methods perform so well, and what insights into biological processes can be gained from their application. Evolutionary coupling algorithms are commonly benchmarked by comparison to true structural contacts derived from solved protein structures. However, the methods used to determine true structural contacts are not standardized and different definitions of structural contacts may have important consequences for interpreting the results from evolutionary coupling analyses and understanding their overall utility. Here, we show that evolutionary coupling analyses are significantly more likely to identify structural contacts between side-chain atoms than between backbone atoms. We use both simulations and empirical analyses to highlight that purely backbone-based definitions of true residue-residue contacts (i.e., based on the distance between C[alpha] atoms) may underestimate the accuracy of evolutionary coupling algorithms by as much as 40% and that a commonly used reference point (C[beta] atoms) underestimates the accuracy by 10-15%. These findings show that co-evolutionary outcomes differ according to which atoms participate in residue-residue interactions and suggest that accounting for different interaction types may lead to further improvements to contact-prediction methods. |
| ArticleNumber | e7280 |
| Audience | Academic |
| Author | Hockenberry, Adam J. Wilke, Claus O. |
| Author_xml | – sequence: 1 givenname: Adam J. orcidid: 0000-0001-9476-0104 surname: Hockenberry fullname: Hockenberry, Adam J. – sequence: 2 givenname: Claus O. orcidid: 0000-0002-7470-9261 surname: Wilke fullname: Wilke, Claus O. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31328041$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkl1r2zAUhsXoWD_Wm_2AERiMMkimD1uSbwaldFuhsJvtWsjSUaLgSJkkF_bvJzfplpTaxjbScx7Jx-85OgkxAELvCF4IQcTnLUBaLwSV-BU6o4SLuWRtd3Lwfoouc17jekjKsWRv0CkjrBY05Ay1tw9xGIuPQac_MxPH7eDDMs8sFDBllr2FuVlpH2Y-FEjaTGh-i147PWS43D8v0K-vtz9vvs_vf3y7u7m-n5tW4DIHDNZ2rRPCcCKBECswYAECJO6dg95yQy2Bhlkueyc7YBYTgqVklElK2AW623lt1Gu1TX5Td6mi9upxIKal0ql4M4Bytuk1qRfuXGPrXRrGOdPWAad901XXl51rO_YbsAZCSXo4kh7PBL9Sy_igOKeUtJPgai9I8fcIuaiNzwaGQQeIY1aUctLJujCv6Idn6DqOKdRWVaplvJMMN_-ppa4f4IOLdV0zSdV129GWd5xMrsULVD0tbLypYXC-jh8VfDwoWIEeyirvf3I-Bt8fduRfK57SUQG8A0yKOSdwyviiJ0_dgh8UwWrKoHrMoJoyWEs-PSt5sr4A_wUXjNs9 |
| CitedBy_id | crossref_primary_10_1002_pro_4067 crossref_primary_10_1002_pro_70024 crossref_primary_10_1038_s41576_021_00441_w crossref_primary_10_3390_e21111127 crossref_primary_10_3390_ijms251810142 crossref_primary_10_3390_ijms24076396 crossref_primary_10_1002_aic_18214 crossref_primary_10_1038_s42003_024_06291_6 crossref_primary_10_26599_TST_2021_9010064 crossref_primary_10_1016_j_cej_2021_132151 crossref_primary_10_7554_eLife_72516 |
| Cites_doi | 10.1002/prot.340180402 10.1093/molbev/mst010 10.1098/rsif.2016.0906 10.1093/bioinformatics/bty341 10.7554/eLife.03430 10.1214/lnms/1215455556 10.1002/prot.21447 10.1016/j.sbi.2009.03.008 10.7717/peerj.911 10.1126/science.aaa1394 10.1126/science.181.4096.223 10.1126/science.1249410 10.1093/nar/gku340 10.1073/pnas.0805923106 10.1103/PhysRevE.87.012707 10.1093/nar/gkw1042 10.1093/nar/gky448 10.1371/journal.pcbi.1003329 10.1093/bioinformatics/bts475 10.1093/bioinformatics/btx164 10.1186/1471-2105-8-113 10.1002/prot.22921 10.1371/journal.pone.0018910 10.1016/j.cels.2017.11.014 10.1093/bioinformatics/btx781 10.1073/pnas.1207864109 10.1073/pnas.1314045110 10.1093/molbev/msy007 10.1534/genetics.118.300699 10.1093/nar/gkw315 10.1186/1471-2105-15-S5-S1 10.1371/journal.pcbi.1000633 10.1002/prot.21983 10.1371/journal.pone.0028766 10.1371/journal.pcbi.1006526 10.1073/pnas.1111471108 10.1093/bioinformatics/bty481 10.7554/eLife.02030 10.1126/sciadv.1600292 10.1073/pnas.1702664114 10.1038/nbt.2419 10.1371/journal.pone.0205749 10.1093/bioinformatics/bty862 10.1002/prot.25377 10.1073/pnas.0504338102 10.1093/protein/7.3.349 10.1093/bioinformatics/btx332 10.1038/nsmb.3195 10.1016/B978-0-12-381270-4.00019-6 10.1093/bioinformatics/btq007 10.1016/j.cell.2012.04.012 10.1186/1471-2105-11-283 10.1093/nar/gkp305 10.1093/bioinformatics/btr638 10.1038/nbt.3769 10.1016/j.tibs.2011.01.002 10.1093/bioinformatics/bty416 10.1002/prot.24167 10.1093/bioinformatics/btu500 10.1371/journal.pcbi.1005324 10.1002/prot.25407 10.1002/prot.25034 10.1093/bioinformatics/btu791 10.1016/j.bpj.2018.01.033 10.1038/nmeth.4169 10.1093/bioinformatics/bti125 10.1186/s12859-017-1713-x 10.1186/1471-2105-13-292 10.1038/s41592-018-0138-4 10.1073/pnas.1523573113 10.1093/bioinformatics/btx296 10.1038/msb4100203 10.1126/science.aah4043 10.1371/journal.pcbi.1000584 10.1093/nar/gky381 10.1038/nature12822 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2019 PeerJ. Ltd. 2019 Hockenberry and Wilke. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 Hockenberry and Wilke 2019 Hockenberry and Wilke |
| Copyright_xml | – notice: COPYRIGHT 2019 PeerJ. Ltd. – notice: 2019 Hockenberry and Wilke. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 Hockenberry and Wilke 2019 Hockenberry and Wilke |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.7717/peerj.7280 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 2167-8359 |
| ExternalDocumentID | oai_doaj_org_article_fd4ba1ba109f4d1098c3663adfe62b49 PMC6622159 A592569616 31328041 10_7717_peerj_7280 |
| Genre | Journal Article |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GrantInformation_xml | – fundername: National Science Foundation Cooperative Agreement grantid: DBI-0939454 (BEACON Center) – fundername: The National Institutes of Health grantid: R01 GM088344 |
| GroupedDBID | 53G 5VS 88I 8FE 8FH AAFWJ AAYXX ABUWG ADBBV ADRAZ AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO ECGQY GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HYE IAO IEA IHR IHW ITC KQ8 LK8 M2P M48 M7P M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RPM W2D YAO 3V. NPM PMFND 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c570t-e0edd95f77c618e11d70e07e7e80bffebd6c2d1e43d68bf89e3d0110883238213 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474334600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2167-8359 |
| IngestDate | Fri Oct 03 12:51:44 EDT 2025 Tue Nov 04 01:41:49 EST 2025 Fri Sep 05 14:42:18 EDT 2025 Fri Jul 25 12:08:49 EDT 2025 Tue Nov 11 07:41:24 EST 2025 Tue Nov 04 17:51:19 EST 2025 Fri May 30 10:48:29 EDT 2025 Thu Jan 02 23:02:35 EST 2025 Tue Nov 18 21:24:49 EST 2025 Sat Nov 29 02:42:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Protein evolution Epistasis Evolutionary couplings Structural constraints Contact prediction |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c570t-e0edd95f77c618e11d70e07e7e80bffebd6c2d1e43d68bf89e3d0110883238213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9476-0104 0000-0002-7470-9261 |
| OpenAccessLink | https://www.proquest.com/docview/2253698304?pq-origsite=%requestingapplication% |
| PMID | 31328041 |
| PQID | 2253698304 |
| PQPubID | 2045935 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fd4ba1ba109f4d1098c3663adfe62b49 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6622159 proquest_miscellaneous_2261980986 proquest_journals_2253698304 gale_infotracmisc_A592569616 gale_infotracacademiconefile_A592569616 gale_healthsolutions_A592569616 pubmed_primary_31328041 crossref_citationtrail_10_7717_peerj_7280 crossref_primary_10_7717_peerj_7280 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-08 |
| PublicationDateYYYYMMDD | 2019-07-08 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-08 day: 08 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Diego – name: San Diego, USA |
| PublicationTitle | PeerJ (San Francisco, CA) |
| PublicationTitleAlternate | PeerJ |
| PublicationYear | 2019 |
| Publisher | PeerJ. Ltd PeerJ, Inc PeerJ Inc |
| Publisher_xml | – name: PeerJ. Ltd – name: PeerJ, Inc – name: PeerJ Inc |
| References | Sulkowska (10.7717/peerj.7280/ref-66) 2012; 109 Piovesan (10.7717/peerj.7280/ref-50) 2016; 44 Jiang (10.7717/peerj.7280/ref-28) 2018; 208 Doshi (10.7717/peerj.7280/ref-17) 2016; 113 Kellogg (10.7717/peerj.7280/ref-34) 2011; 79 Miao (10.7717/peerj.7280/ref-45) 2015; 348 He (10.7717/peerj.7280/ref-23) 2017; 33 Wyman (10.7717/peerj.7280/ref-74) 2018; 13 Göbel (10.7717/peerj.7280/ref-21) 1994; 18 Denisov (10.7717/peerj.7280/ref-14) 2016; 23 Marks (10.7717/peerj.7280/ref-43) 2012; 30 Ovchinnikov (10.7717/peerj.7280/ref-48) 2014; 3 Xiong (10.7717/peerj.7280/ref-75) 2017; 33 Vorberg (10.7717/peerj.7280/ref-69) 2018; 14 Chen (10.7717/peerj.7280/ref-12) 2011; 6 Doncheva (10.7717/peerj.7280/ref-16) 2011; 36 Cheng (10.7717/peerj.7280/ref-13) 2007; 8 Stahl (10.7717/peerj.7280/ref-65) 2017; 18 Wozniak (10.7717/peerj.7280/ref-73) 2018; 34 Teufel (10.7717/peerj.7280/ref-68) 2017; 14 Liu (10.7717/peerj.7280/ref-40) 2005; 102 Mercadante (10.7717/peerj.7280/ref-44) 2018; 114 Kamisetty (10.7717/peerj.7280/ref-32) 2013; 110 Lapedes (10.7717/peerj.7280/ref-35) 1999; 33 Wang (10.7717/peerj.7280/ref-71) 2018; 86 Söding (10.7717/peerj.7280/ref-64) 2005; 21 Di Lena (10.7717/peerj.7280/ref-15) 2012; 28 Hanson (10.7717/peerj.7280/ref-22) 2018; 34 Hopf (10.7717/peerj.7280/ref-25) 2018; 35 Jones (10.7717/peerj.7280/ref-31) 2015; 31 Katoh (10.7717/peerj.7280/ref-33) 2013; 30 Jones (10.7717/peerj.7280/ref-30) 2018; 34 Leaver-Fay (10.7717/peerj.7280/ref-36) 2011; 487 Figliuzzi (10.7717/peerj.7280/ref-20) 2018; 35 Duarte (10.7717/peerj.7280/ref-18) 2010; 11 Potter (10.7717/peerj.7280/ref-51) 2018; 46 Lin (10.7717/peerj.7280/ref-38) 2008; 72 Burger (10.7717/peerj.7280/ref-10) 2010; 6 Abdel-Azeim (10.7717/peerj.7280/ref-1) 2014; 15 Weigt (10.7717/peerj.7280/ref-72) 2009; 106 Hopf (10.7717/peerj.7280/ref-27) 2014; 3 Tegge (10.7717/peerj.7280/ref-67) 2009; 37 Hopf (10.7717/peerj.7280/ref-24) 2012; 149 Hopf (10.7717/peerj.7280/ref-26) 2017; 35 Sadowski (10.7717/peerj.7280/ref-55) 2009; 19 Liu (10.7717/peerj.7280/ref-39) 2018; 6 Serçinoğlu (10.7717/peerj.7280/ref-61) 2018; 46 Anfinsen (10.7717/peerj.7280/ref-4) 1973; 181 Punjani (10.7717/peerj.7280/ref-52) 2017; 14 Schaarschmidt (10.7717/peerj.7280/ref-58) 2018; 86 Wang (10.7717/peerj.7280/ref-70) 2017; 13 Biasini (10.7717/peerj.7280/ref-8) 2014; 42 Liao (10.7717/peerj.7280/ref-37) 2013; 504 Seeliger (10.7717/peerj.7280/ref-59) 2007; 68 Seemayer (10.7717/peerj.7280/ref-60) 2014; 30 Shindyalov (10.7717/peerj.7280/ref-63) 1994; 7 Adhikari (10.7717/peerj.7280/ref-2) 2018; 34 Michel (10.7717/peerj.7280/ref-46) 2017; 33 Anishchenko (10.7717/peerj.7280/ref-5) 2017; 114 Ovchinnikov (10.7717/peerj.7280/ref-49) 2017; 355 Jones (10.7717/peerj.7280/ref-29) 2012; 28 Marcos (10.7717/peerj.7280/ref-41) 2015; 3 Batyuk (10.7717/peerj.7280/ref-6) 2016; 2 Bhattacharya (10.7717/peerj.7280/ref-7) 2013; 81 Sathyapriya (10.7717/peerj.7280/ref-56) 2009; 5 Ekeberg (10.7717/peerj.7280/ref-19) 2013; 87 Riesselman (10.7717/peerj.7280/ref-53) 2018; 15 Scarabelli (10.7717/peerj.7280/ref-57) 2013; 9 Morcos (10.7717/peerj.7280/ref-47) 2011; 108 Shahmoradi (10.7717/peerj.7280/ref-62) 2016; 84 Burger (10.7717/peerj.7280/ref-9) 2008; 4 Marks (10.7717/peerj.7280/ref-42) 2011; 6 Amunts (10.7717/peerj.7280/ref-3) 2014; 343 Yuan (10.7717/peerj.7280/ref-76) 2012; 13 Chaudhury (10.7717/peerj.7280/ref-11) 2010; 26 Rose (10.7717/peerj.7280/ref-54) 2017; 45 |
| References_xml | – volume: 18 start-page: 309 issue: 4 year: 1994 ident: 10.7717/peerj.7280/ref-21 article-title: Correlated mutations and residue contacts in proteins publication-title: Proteins: Structure, Function, and Genetics doi: 10.1002/prot.340180402 – volume: 30 start-page: 772 issue: 4 year: 2013 ident: 10.7717/peerj.7280/ref-33 article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/mst010 – volume: 14 start-page: pii: 20160906 issue: 127 year: 2017 ident: 10.7717/peerj.7280/ref-68 article-title: Accelerated simulation of evolutionary trajectories in origin-fixation models publication-title: Journal of the Royal Society Interface doi: 10.1098/rsif.2016.0906 – volume: 34 start-page: 3308 issue: 19 year: 2018 ident: 10.7717/peerj.7280/ref-30 article-title: High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty341 – volume: 3 start-page: 1 year: 2014 ident: 10.7717/peerj.7280/ref-27 article-title: Sequence co-evolution gives 3D contacts and structures of protein complexes publication-title: eLife doi: 10.7554/eLife.03430 – volume: 33 start-page: 236 year: 1999 ident: 10.7717/peerj.7280/ref-35 article-title: Correlated mutations in models of protein sequences: phylogenetic and structural effects publication-title: Statistics in Molecular Biology and Genetics doi: 10.1214/lnms/1215455556 – volume: 68 start-page: 595 issue: 3 year: 2007 ident: 10.7717/peerj.7280/ref-59 article-title: Atomic contacts in protein structures. A detailed analysis of atomic radii, packing, and overlaps publication-title: Proteins: Structure, Function, and Bioinformatics doi: 10.1002/prot.21447 – volume: 19 start-page: 357 issue: 3 year: 2009 ident: 10.7717/peerj.7280/ref-55 article-title: The sequence-structure relationship and protein function prediction publication-title: Current Opinion in Structural Biology doi: 10.1016/j.sbi.2009.03.008 – volume: 3 start-page: e911 issue: 2 year: 2015 ident: 10.7717/peerj.7280/ref-41 article-title: Too packed to change: side-chain packing and site-specific substitution rates in protein evolution publication-title: PeerJ doi: 10.7717/peerj.911 – volume: 348 start-page: 530 issue: 6234 year: 2015 ident: 10.7717/peerj.7280/ref-45 article-title: Beyond crystallography: diffractive imaging using coherent x-ray light sources publication-title: Science doi: 10.1126/science.aaa1394 – volume: 181 start-page: 223 issue: 4096 year: 1973 ident: 10.7717/peerj.7280/ref-4 article-title: Principles that govern the folding of protein chains publication-title: Science doi: 10.1126/science.181.4096.223 – volume: 343 start-page: 1485 issue: 6178 year: 2014 ident: 10.7717/peerj.7280/ref-3 article-title: Structure of the yeast mitochondrial large ribosomal subunit publication-title: Science doi: 10.1126/science.1249410 – volume: 42 start-page: W252 issue: W1 year: 2014 ident: 10.7717/peerj.7280/ref-8 article-title: SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information publication-title: Nucleic Acids Research doi: 10.1093/nar/gku340 – volume: 106 start-page: 67 issue: 1 year: 2009 ident: 10.7717/peerj.7280/ref-72 article-title: Identification of direct residue contacts in protein-protein interaction by message passing publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0805923106 – volume: 87 start-page: 1 issue: 1 year: 2013 ident: 10.7717/peerj.7280/ref-19 article-title: Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models publication-title: Physical Review E doi: 10.1103/PhysRevE.87.012707 – volume: 45 start-page: D271 issue: 1 year: 2017 ident: 10.7717/peerj.7280/ref-54 article-title: The RCSB protein data bank: integrative view of protein, gene and 3D structural information publication-title: Nucleic Acids Research doi: 10.1093/nar/gkw1042 – volume: 46 start-page: W200 issue: W1 year: 2018 ident: 10.7717/peerj.7280/ref-51 article-title: HMMER web server: 2018 update publication-title: Nucleic Acids Research doi: 10.1093/nar/gky448 – volume: 9 start-page: e1003329 issue: 11 year: 2013 ident: 10.7717/peerj.7280/ref-57 article-title: Mapping the structural and dynamical features of kinesin motor domains publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1003329 – volume: 28 start-page: 2449 issue: 19 year: 2012 ident: 10.7717/peerj.7280/ref-15 article-title: Deep architectures for protein contact map prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts475 – volume: 33 start-page: 2296 issue: 15 year: 2017 ident: 10.7717/peerj.7280/ref-23 article-title: NeBcon: protein contact map prediction using neural network training coupled with naïve Bayes classifiers publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx164 – volume: 8 start-page: 113 issue: 1 year: 2007 ident: 10.7717/peerj.7280/ref-13 article-title: Improved residue contact prediction using support vector machines and a large feature set publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-113 – volume: 79 start-page: 830 issue: 3 year: 2011 ident: 10.7717/peerj.7280/ref-34 article-title: Role of conformational sampling in computing mutation-induced changes in protein structure and stability publication-title: Proteins: Structure, Function, and Bioinformatics doi: 10.1002/prot.22921 – volume: 6 start-page: e18910 issue: 4 year: 2011 ident: 10.7717/peerj.7280/ref-12 article-title: Representative proteomes: a stable, scalable and unbiased proteome set for sequence analysis and functional annotation publication-title: PLOS ONE doi: 10.1371/journal.pone.0018910 – volume: 6 start-page: 65 issue: 1 year: 2018 ident: 10.7717/peerj.7280/ref-39 article-title: Enhancing evolutionary couplings with deep convolutional neural networks publication-title: Cell Systems doi: 10.1016/j.cels.2017.11.014 – volume: 34 start-page: 1466 issue: 9 year: 2018 ident: 10.7717/peerj.7280/ref-2 article-title: DNCON2: improved protein contact prediction using two-level deep convolutional neural networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx781 – volume: 109 start-page: 10340 issue: 26 year: 2012 ident: 10.7717/peerj.7280/ref-66 article-title: Genomics-aided structure prediction publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1207864109 – volume: 110 start-page: 15674 issue: 39 year: 2013 ident: 10.7717/peerj.7280/ref-32 article-title: Assessing the utility of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1314045110 – volume: 35 start-page: 1018 issue: 4 year: 2018 ident: 10.7717/peerj.7280/ref-20 article-title: How pairwise coevolutionary models capture the collective residue variability in proteins? publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msy007 – volume: 208 start-page: 1387 issue: 4 year: 2018 ident: 10.7717/peerj.7280/ref-28 article-title: Beyond thermodynamic constraints: evolutionary sampling generates realistic protein sequence variation publication-title: Genetics doi: 10.1534/genetics.118.300699 – volume: 44 start-page: W367 issue: W1 year: 2016 ident: 10.7717/peerj.7280/ref-50 article-title: The RING 2.0 web server for high quality residue interaction networks publication-title: Nucleic Acids Research doi: 10.1093/nar/gkw315 – volume: 15 start-page: 1 issue: Suppl 5 year: 2014 ident: 10.7717/peerj.7280/ref-1 article-title: MDcons: intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-S5-S1 – volume: 6 start-page: e1000633 issue: 1 year: 2010 ident: 10.7717/peerj.7280/ref-10 article-title: Disentangling direct from indirect co-evolution of residues in protein alignments publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1000633 – volume: 72 start-page: 929 issue: 3 year: 2008 ident: 10.7717/peerj.7280/ref-38 article-title: Deriving protein dynamical properties from weighted protein contact number publication-title: Proteins: Structure, Function, and Bioinformatics doi: 10.1002/prot.21983 – volume: 6 start-page: e28766 issue: 12 year: 2011 ident: 10.7717/peerj.7280/ref-42 article-title: Protein 3D structure computed from evolutionary sequence variation publication-title: PLOS ONE doi: 10.1371/journal.pone.0028766 – volume: 14 start-page: e1006526 issue: 11 year: 2018 ident: 10.7717/peerj.7280/ref-69 article-title: Synthetic protein alignments by CCMgen quantify noise in residue-residue contact prediction publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1006526 – volume: 108 start-page: E1293 issue: 49 year: 2011 ident: 10.7717/peerj.7280/ref-47 article-title: Direct-coupling analysis of residue coevolution captures native contacts across many protein families publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1111471108 – volume: 34 start-page: 4039 issue: 23 year: 2018 ident: 10.7717/peerj.7280/ref-22 article-title: Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty481 – volume: 3 start-page: e02030 year: 2014 ident: 10.7717/peerj.7280/ref-48 article-title: Robust and accurate prediction of residue-residue interactions across protein interfaces using evolutionary information publication-title: eLife doi: 10.7554/eLife.02030 – volume: 2 start-page: e1600292 issue: 9 year: 2016 ident: 10.7717/peerj.7280/ref-6 article-title: Native phasing of x-ray free-electron laser data for a G protein-coupled receptor publication-title: Science Advances doi: 10.1126/sciadv.1600292 – volume: 114 start-page: 9122 issue: 34 year: 2017 ident: 10.7717/peerj.7280/ref-5 article-title: Origins of coevolution between residues distant in protein 3D structures publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1702664114 – volume: 30 start-page: 1072 issue: 11 year: 2012 ident: 10.7717/peerj.7280/ref-43 article-title: Protein structure prediction from sequence variation publication-title: Nature Biotechnology doi: 10.1038/nbt.2419 – volume: 13 start-page: e0205749 issue: 10 year: 2018 ident: 10.7717/peerj.7280/ref-74 article-title: A most wanted list of conserved microbial protein families with no known domains publication-title: PLOS ONE doi: 10.1371/journal.pone.0205749 – volume: 35 start-page: 1582 issue: 9 year: 2018 ident: 10.7717/peerj.7280/ref-25 article-title: The EVcouplings Python framework for coevolutionary sequence analysis Thomas publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty862 – volume: 86 start-page: 67 issue: Suppl 2 year: 2018 ident: 10.7717/peerj.7280/ref-71 article-title: Analysis of deep learning methods for blind protein contact prediction in CASP12 publication-title: Proteins: Structure, Function, and Bioinformatics doi: 10.1002/prot.25377 – volume: 102 start-page: 10487 issue: 30 year: 2005 ident: 10.7717/peerj.7280/ref-40 article-title: NMR data collection and analysis protocol for high-throughput protein structure determination publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0504338102 – volume: 7 start-page: 349 issue: 3 year: 1994 ident: 10.7717/peerj.7280/ref-63 article-title: Can three-dimensional contacts in protein structures be predicted by analysis of correlated mutations? publication-title: Protein Engineering, Design and Selection doi: 10.1093/protein/7.3.349 – volume: 33 start-page: 2859 issue: 18 year: 2017 ident: 10.7717/peerj.7280/ref-46 article-title: Predicting accurate contacts in thousands of Pfam domain families using PconsC3 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx332 – volume: 23 start-page: 481 issue: 6 year: 2016 ident: 10.7717/peerj.7280/ref-14 article-title: Nanodiscs for structural and functional studies of membrane proteins publication-title: Nature Structural & Molecular Biology doi: 10.1038/nsmb.3195 – volume: 487 start-page: 545 year: 2011 ident: 10.7717/peerj.7280/ref-36 article-title: Rosetta3: an object-oriented software suite for the simulation and design of macromolecules publication-title: Methods in Enzymology doi: 10.1016/B978-0-12-381270-4.00019-6 – volume: 26 start-page: 689 issue: 5 year: 2010 ident: 10.7717/peerj.7280/ref-11 article-title: PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq007 – volume: 149 start-page: 1607 issue: 7 year: 2012 ident: 10.7717/peerj.7280/ref-24 article-title: Three-dimensional structures of membrane proteins from genomic sequencing publication-title: Cell doi: 10.1016/j.cell.2012.04.012 – volume: 11 start-page: 11 issue: 1 year: 2010 ident: 10.7717/peerj.7280/ref-18 article-title: Optimal contact definition for reconstruction of contact maps publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-283 – volume: 37 start-page: W515 issue: Web Server year: 2009 ident: 10.7717/peerj.7280/ref-67 article-title: NNcon: improved protein contact map prediction using 2D-recursive neural networks publication-title: Nucleic Acids Research doi: 10.1093/nar/gkp305 – volume: 28 start-page: 184 issue: 2 year: 2012 ident: 10.7717/peerj.7280/ref-29 article-title: PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr638 – volume: 35 start-page: 128 issue: 2 year: 2017 ident: 10.7717/peerj.7280/ref-26 article-title: Mutation effects predicted from sequence co-variation publication-title: Nature Biotechnology doi: 10.1038/nbt.3769 – volume: 36 start-page: 179 issue: 4 year: 2011 ident: 10.7717/peerj.7280/ref-16 article-title: Analyzing and visualizing residue networks of protein structures publication-title: Trends in Biochemical Sciences doi: 10.1016/j.tibs.2011.01.002 – volume: 34 start-page: 3675 issue: 21 year: 2018 ident: 10.7717/peerj.7280/ref-73 article-title: Bio-knowledge based filters improve residue-residue contact prediction accuracy publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty416 – volume: 81 start-page: 119 issue: 1 year: 2013 ident: 10.7717/peerj.7280/ref-7 article-title: 3Drefine: consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization publication-title: Proteins: Structure, Function, and Bioinformatics doi: 10.1002/prot.24167 – volume: 30 start-page: 3128 issue: 21 year: 2014 ident: 10.7717/peerj.7280/ref-60 article-title: CCMpred—fast and precise prediction of protein residue-residue contacts from correlated mutations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu500 – volume: 13 start-page: e1005324 issue: 1 year: 2017 ident: 10.7717/peerj.7280/ref-70 article-title: Accurate de novo prediction of protein contact map by ultra-deep learning model publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1005324 – volume: 86 start-page: 51 issue: suppl 5 year: 2018 ident: 10.7717/peerj.7280/ref-58 article-title: Assessment of contact predictions in CASP12: co-evolution and deep learning coming of age publication-title: Proteins: Structure, Function, and Bioinformatics doi: 10.1002/prot.25407 – volume: 84 start-page: 841 issue: 6 year: 2016 ident: 10.7717/peerj.7280/ref-62 article-title: Dissecting the roles of local packing density and longer-range effects in protein sequence evolution publication-title: Proteins: Structure, Function, and Bioinformatics doi: 10.1002/prot.25034 – volume: 31 start-page: 999 issue: 7 year: 2015 ident: 10.7717/peerj.7280/ref-31 article-title: MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu791 – volume: 114 start-page: 1267 issue: 6 year: 2018 ident: 10.7717/peerj.7280/ref-44 article-title: CONAN: a tool to decode dynamical information from molecular interaction maps publication-title: Biophysical Journal doi: 10.1016/j.bpj.2018.01.033 – volume: 14 start-page: 290 issue: 3 year: 2017 ident: 10.7717/peerj.7280/ref-52 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nature Methods doi: 10.1038/nmeth.4169 – volume: 21 start-page: 951 issue: 7 year: 2005 ident: 10.7717/peerj.7280/ref-64 article-title: Protein homology detection by HMM-HMM comparison publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti125 – volume: 18 start-page: 1 issue: 1 year: 2017 ident: 10.7717/peerj.7280/ref-65 article-title: EPSILON-CP: using deep learning to combine information from multiple sources for protein contact prediction publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1713-x – volume: 13 start-page: 292 year: 2012 ident: 10.7717/peerj.7280/ref-76 article-title: Effective inter-residue contact definitions for accurate protein fold recognition publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-292 – volume: 15 start-page: 816 year: 2018 ident: 10.7717/peerj.7280/ref-53 article-title: Deep generative models of genetic variation capture mutation effects publication-title: Nature Methods doi: 10.1038/s41592-018-0138-4 – volume: 113 start-page: 4735 issue: 17 year: 2016 ident: 10.7717/peerj.7280/ref-17 article-title: Dynamical network of residue-residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1523573113 – volume: 33 start-page: 2675 issue: 17 year: 2017 ident: 10.7717/peerj.7280/ref-75 article-title: A deep learning framework for improving long-range residue-residue contact prediction using a hierarchical strategy publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx296 – volume: 4 start-page: 165 year: 2008 ident: 10.7717/peerj.7280/ref-9 article-title: Accurate prediction of protein-protein interactions from sequence alignments using a Bayesian method publication-title: Molecular Systems Biology doi: 10.1038/msb4100203 – volume: 355 start-page: 294 issue: 6322 year: 2017 ident: 10.7717/peerj.7280/ref-49 article-title: Protein structure determination using metagenome sequence data publication-title: Science doi: 10.1126/science.aah4043 – volume: 5 start-page: e1000584 issue: 12 year: 2009 ident: 10.7717/peerj.7280/ref-56 article-title: Defining an essence of structure determining residue contacts in proteins publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1000584 – volume: 46 start-page: W554 issue: W1 year: 2018 ident: 10.7717/peerj.7280/ref-61 article-title: gRINN: a tool for calculation of residue interaction energies and protein energy network analysis of molecular dynamics simulations publication-title: Nucleic Acids Research doi: 10.1093/nar/gky381 – volume: 504 start-page: 107 issue: 7478 year: 2013 ident: 10.7717/peerj.7280/ref-37 article-title: Structure of the TRPV1 ion channel determined by electron cryo-microscopy publication-title: Nature doi: 10.1038/nature12822 |
| SSID | ssj0000826083 |
| Score | 2.2375028 |
| Snippet | Patterns of amino acid covariation in large protein sequence alignments can inform the prediction of de novo protein structures, binding interfaces, and... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e7280 |
| SubjectTerms | Accuracy Algorithms Amino acid sequence Amino acids Bioinformatics Biology Biophysics Computational Biology Contact prediction Datasets Deep learning Epistasis Evolution Evolutionary couplings Evolutionary Studies Interfaces Mutation Neural networks Protein binding Protein evolution Proteins Structural constraints |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEB9kEfEifltdtaIgHuqmTZuP4yq7eHHxoLC30CYT94n0LX3vLfjfO5N2yysKXoTSQzMt6XxkZkjmNwBvovbkhFQotCANrpUMRRc8FpUX0nTaG1GF1GxCn52Z83P7Za_VF58JG-GBR8YdxVB3bUmXsLEOdDdekpdsQ0RVdXUq3RPa7iVTaQ2mqJmCixGPVFPKcnSJOPx4z82YFh4oAfX_uRzv-aPlWck953N6F-5MUWN-PM72HtzA_j7c-jztiz-A5uRqUqF2-JX79Y7rbL9v8oC8R5BzS87CX7SrPmd4iGEsZtg8hG-nJ18_fiqmhgiFb7TYFigwBNtErb0qDZZl0AKFRo1GdDFiF5SvQom1DMp00ViUgf27IbOVpirlIzjo1z0-gTyQXy8RqxApJvFGdljVGINo0NtG1zaDd9dMcn5CC-emFT8dZQ3MUJcY6pihGbyeaS9HjIy_Un1gXs8UjGudHpC03SRt9y9pZ_CSJeXGItHZOt1xYyl2s6pUGbxNFGyfNGHfTmUG9NuMdLWgPFxQkl355fC1NrjJrjeOVj-prJGizuDVPMxv8lm1Htc7pqGk1NDU6ROPR-WZf5qBMhnxKQO9UKsFV5Yj_eoioX4rVVF4Zp_-DzY-g9sU-Nl07NgcwsF22OFzuOmvtqvN8CKZ0m-D9SZc priority: 102 providerName: Directory of Open Access Journals |
| Title | Evolutionary couplings detect side-chain interactions |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31328041 https://www.proquest.com/docview/2253698304 https://www.proquest.com/docview/2261980986 https://pubmed.ncbi.nlm.nih.gov/PMC6622159 https://doaj.org/article/fd4ba1ba109f4d1098c3663adfe62b49 |
| Volume | 7 |
| WOSCitedRecordID | wos000474334600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2167-8359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826083 issn: 2167-8359 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2167-8359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826083 issn: 2167-8359 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2167-8359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826083 issn: 2167-8359 databaseCode: M7P dateStart: 20130212 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2167-8359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826083 issn: 2167-8359 databaseCode: BENPR dateStart: 20130212 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2167-8359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826083 issn: 2167-8359 databaseCode: PIMPY dateStart: 20130212 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2167-8359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826083 issn: 2167-8359 databaseCode: M2P dateStart: 20130212 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RBhAXHuUVKMEIJNSDqZ_7OKEWpYJDogiBFE5WvDtug5AdnKRS_z0z9sbUAnFBivaQnURjz3N3Z78BeFNIQ0FIWF8GpMGJiK2fW4N-ZIJY5dKoILJNswk5nar5XM_chtvalVXufGLjqG1leI_8mPQuFlrR6vv96qfPXaP4dNW10NiDAWU2IZd0TaJZt8dC4U1QitGikkpauByvEOvv77glUy8ONXD9fzrla1GpXzF5LQSd3ftf5u_DXZd8eiettjyAG1gewK22HeXVAdyeuIP2h5COL51OLuorz1Rbvrh7vvYs8qGDxz0-fXOxWJYe403U7e2I9SP4ejb-8uGj7zos-CaVwcbHAK3VaSGlEaHCMLQywECiRBXkRYG5FSayISaxFSovlMbYcsKgyA_EKgrjx7BfViU-Bc9SohAiRragJMeoOMcowcIGKRqdykQP4Wj3vjPj4Me5C8aPjJYhLJuskU3GshnC64521YJu_JXqlMXWUTBQdvNFVZ9nzu6ywib5IqRPoIvE0qhMTEnWwhYoopzZeslCz9pbp525ZyeppmRQi1AM4W1DwQZPDJuFu7dAj83QWT3Kwx4lGarpT--UI3OOYp391owhvOqm-Zdc_FZitWUaWuUqYp3-4kmrh91DM_ImQ0gNQfY0tPdW-jPl8qKBERcionxPP_s3W8_hDuWIuqlQVoewv6m3-AJumsvNcl2PYE_O1QgGp-Pp7POo2dAYNTbIo6RxMPs0mX37BWm7PKo |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V8rzwKAUChRoBQj2Y2mt7HweECrRq1TbqoZV6M_HuuA1CTnCSovwpfiMztmNqgbj1gBTlkJ1YY_ubx9oz3wC8zpWlICSdrwJCcCwj52fOoi9sEOlMWR0IVw2bUP2-Pj01R0vwc9ELw2WVC59YOWo3svyMfJNwF0mjaff9Yfzd56lR_HZ1MUKjhsU-zn_Qlm3yfu8z3d83QuxsH3_a9ZupAr5NVDD1MUDnTJIrZWWoMQydCjBQqFAHWZ5j5qQVLsQ4clJnuTYYOQ6SmrAfaRFGdNxrcD1mZjEuFRRH7TMdCqeSUpqaBVXRRmlzjFh-fccjoDpxrxoP8GcQuBQFuxWal0Lezr3_7WLdh7tNcu1t1dbwAJawWIGb9bjN-QrcOmwKCR5Csn3R2NygnHt2NOPG5LOJ55Bfqng8w9S354Nh4TGfRll3f0xW4eRK1H8Ey8WowCfgOUqEQkThckrirI4yFDHmLkjQmkTFpgcbi_ub2oZenad8fEtpm8VYSCsspIyFHrxqZcc1qchfpT4yTFoJJgKvfhiVZ2njV9LcxdkgpE9g8tjRt7YRJZEDl6MUGau1ziBL667a1p2lW4mhZNfIUPbgbSXBDo0UtoOmL4NOm6nBOpJrHUlyRLa7vABj2jjCSfobiT142S7zP7m4r8DRjGVoF69JdTrE4xr37UkzsyhTZPVAdSyic1W6K8XwvKJJl1JQPmue_lutdbi9e3x4kB7s9fefwR3Kh01Vja3XYHlazvA53LAX0-GkfFHZugdfrtpefgFpsJPR |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCouPMorUKgRIMTBxM_d9QGhQhsRlUY5gNSelnh33AYhJzhJUf4av44Z2zG1QNx6QLJ88I6tsf3Ny54HwPNMGjJCwrrSIwRHIrRuag26gfFClUqjvMCWwybkcKiOj5PRBvxc18JwWuVaJ5aK2k4NfyPvEe5CkSiKvntZnRYx2u-_nX13eYIU_2ldj9OoIHKIqx8Uvs3fDPbpXb8Igv7Bp_cf3HrCgGti6S1c9NDaJM6kNMJX6PtWeuhJlKi8NMswtcIE1scotEKlmUowtGwwFclBqAI_pOtegU1yyaOgA5ujwdHopPnCQ8ZVkINT9USVFDb1ZojF19c8EKplBcthAX-ahAs2sZ2vecEA9m_-z4_uFtyo3W5nr5KT27CB-TZcqwZxrrZh66hOMbgD8cF5LY3jYuWY6ZJLlk_njkX-3eLwdFPXnI0nucOdNoqqLmR-Fz5fCvv3oJNPc3wAjiUXyUcMbEbunVFhikGEmfViNEkso6QLr9bvWpu68TrP__imKQBjXOgSF5px0YVnDe2sajfyV6p3DJmGgluElwemxamuNY7ObJSOfdq8JIss7ZUJyb0c2wxFkDJbuww4XdXbNopO78UJucGJ8EUXXpYUrOqIYTOuKzbotrlpWItyp0VJKsq0l9fA1LWKnOvfqOzC02aZz-S0vxynS6ah-F4R63SJ-5UMNDfNPUe5eVYXZEs6Wk-lvZJPzsoG6kIE5OkmD__N1i5skZjoj4Ph4SO4To5yUqZpqx3oLIolPoar5nwxmRdPasF34MtlC8wvHJeeGg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+couplings+detect+side-chain+interactions&rft.jtitle=PeerJ+%28San+Francisco%2C+CA%29&rft.au=Hockenberry%2C+Adam+J&rft.au=Wilke%2C+Claus+O&rft.date=2019-07-08&rft.issn=2167-8359&rft.eissn=2167-8359&rft.volume=7&rft.spage=e7280&rft_id=info:doi/10.7717%2Fpeerj.7280&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2167-8359&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2167-8359&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2167-8359&client=summon |