Evolutionary couplings detect side-chain interactions

Patterns of amino acid covariation in large protein sequence alignments can inform the prediction of de novo protein structures, binding interfaces, and mutational effects. While algorithms that detect these so-called evolutionary couplings between residues have proven useful for practical applicati...

Full description

Saved in:
Bibliographic Details
Published in:PeerJ (San Francisco, CA) Vol. 7; p. e7280
Main Authors: Hockenberry, Adam J., Wilke, Claus O.
Format: Journal Article
Language:English
Published: United States PeerJ. Ltd 08.07.2019
PeerJ, Inc
PeerJ Inc
Subjects:
ISSN:2167-8359, 2167-8359
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Patterns of amino acid covariation in large protein sequence alignments can inform the prediction of de novo protein structures, binding interfaces, and mutational effects. While algorithms that detect these so-called evolutionary couplings between residues have proven useful for practical applications, less is known about how and why these methods perform so well, and what insights into biological processes can be gained from their application. Evolutionary coupling algorithms are commonly benchmarked by comparison to true structural contacts derived from solved protein structures. However, the methods used to determine true structural contacts are not standardized and different definitions of structural contacts may have important consequences for interpreting the results from evolutionary coupling analyses and understanding their overall utility. Here, we show that evolutionary coupling analyses are significantly more likely to identify structural contacts between side-chain atoms than between backbone atoms. We use both simulations and empirical analyses to highlight that purely backbone-based definitions of true residue–residue contacts (i.e., based on the distance between Cα atoms) may underestimate the accuracy of evolutionary coupling algorithms by as much as 40% and that a commonly used reference point (Cβ atoms) underestimates the accuracy by 10–15%. These findings show that co-evolutionary outcomes differ according to which atoms participate in residue–residue interactions and suggest that accounting for different interaction types may lead to further improvements to contact-prediction methods.
AbstractList Patterns of amino acid covariation in large protein sequence alignments can inform the prediction of de novo protein structures, binding interfaces, and mutational effects. While algorithms that detect these so-called evolutionary couplings between residues have proven useful for practical applications, less is known about how and why these methods perform so well, and what insights into biological processes can be gained from their application. Evolutionary coupling algorithms are commonly benchmarked by comparison to true structural contacts derived from solved protein structures. However, the methods used to determine true structural contacts are not standardized and different definitions of structural contacts may have important consequences for interpreting the results from evolutionary coupling analyses and understanding their overall utility. Here, we show that evolutionary coupling analyses are significantly more likely to identify structural contacts between side-chain atoms than between backbone atoms. We use both simulations and empirical analyses to highlight that purely backbone-based definitions of true residue-residue contacts (i.e., based on the distance between Cα atoms) may underestimate the accuracy of evolutionary coupling algorithms by as much as 40% and that a commonly used reference point (Cβ atoms) underestimates the accuracy by 10-15%. These findings show that co-evolutionary outcomes differ according to which atoms participate in residue-residue interactions and suggest that accounting for different interaction types may lead to further improvements to contact-prediction methods.Patterns of amino acid covariation in large protein sequence alignments can inform the prediction of de novo protein structures, binding interfaces, and mutational effects. While algorithms that detect these so-called evolutionary couplings between residues have proven useful for practical applications, less is known about how and why these methods perform so well, and what insights into biological processes can be gained from their application. Evolutionary coupling algorithms are commonly benchmarked by comparison to true structural contacts derived from solved protein structures. However, the methods used to determine true structural contacts are not standardized and different definitions of structural contacts may have important consequences for interpreting the results from evolutionary coupling analyses and understanding their overall utility. Here, we show that evolutionary coupling analyses are significantly more likely to identify structural contacts between side-chain atoms than between backbone atoms. We use both simulations and empirical analyses to highlight that purely backbone-based definitions of true residue-residue contacts (i.e., based on the distance between Cα atoms) may underestimate the accuracy of evolutionary coupling algorithms by as much as 40% and that a commonly used reference point (Cβ atoms) underestimates the accuracy by 10-15%. These findings show that co-evolutionary outcomes differ according to which atoms participate in residue-residue interactions and suggest that accounting for different interaction types may lead to further improvements to contact-prediction methods.
Patterns of amino acid covariation in large protein sequence alignments can inform the prediction of de novo protein structures, binding interfaces, and mutational effects. While algorithms that detect these so-called evolutionary couplings between residues have proven useful for practical applications, less is known about how and why these methods perform so well, and what insights into biological processes can be gained from their application. Evolutionary coupling algorithms are commonly benchmarked by comparison to true structural contacts derived from solved protein structures. However, the methods used to determine true structural contacts are not standardized and different definitions of structural contacts may have important consequences for interpreting the results from evolutionary coupling analyses and understanding their overall utility. Here, we show that evolutionary coupling analyses are significantly more likely to identify structural contacts between side-chain atoms than between backbone atoms. We use both simulations and empirical analyses to highlight that purely backbone-based definitions of true residue–residue contacts (i.e., based on the distance between Cα atoms) may underestimate the accuracy of evolutionary coupling algorithms by as much as 40% and that a commonly used reference point (Cβ atoms) underestimates the accuracy by 10–15%. These findings show that co-evolutionary outcomes differ according to which atoms participate in residue–residue interactions and suggest that accounting for different interaction types may lead to further improvements to contact-prediction methods.
Patterns of amino acid covariation in large protein sequence alignments can inform the prediction of de novo protein structures, binding interfaces, and mutational effects. While algorithms that detect these so-called evolutionary couplings between residues have proven useful for practical applications, less is known about how and why these methods perform so well, and what insights into biological processes can be gained from their application. Evolutionary coupling algorithms are commonly benchmarked by comparison to true structural contacts derived from solved protein structures. However, the methods used to determine true structural contacts are not standardized and different definitions of structural contacts may have important consequences for interpreting the results from evolutionary coupling analyses and understanding their overall utility. Here, we show that evolutionary coupling analyses are significantly more likely to identify structural contacts between side-chain atoms than between backbone atoms. We use both simulations and empirical analyses to highlight that purely backbone-based definitions of true residue-residue contacts (i.e., based on the distance between C[alpha] atoms) may underestimate the accuracy of evolutionary coupling algorithms by as much as 40% and that a commonly used reference point (C[beta] atoms) underestimates the accuracy by 10-15%. These findings show that co-evolutionary outcomes differ according to which atoms participate in residue-residue interactions and suggest that accounting for different interaction types may lead to further improvements to contact-prediction methods.
ArticleNumber e7280
Audience Academic
Author Hockenberry, Adam J.
Wilke, Claus O.
Author_xml – sequence: 1
  givenname: Adam J.
  orcidid: 0000-0001-9476-0104
  surname: Hockenberry
  fullname: Hockenberry, Adam J.
– sequence: 2
  givenname: Claus O.
  orcidid: 0000-0002-7470-9261
  surname: Wilke
  fullname: Wilke, Claus O.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31328041$$D View this record in MEDLINE/PubMed
BookMark eNptkl1r2zAUhsXoWD_Wm_2AERiMMkimD1uSbwaldFuhsJvtWsjSUaLgSJkkF_bvJzfplpTaxjbScx7Jx-85OgkxAELvCF4IQcTnLUBaLwSV-BU6o4SLuWRtd3Lwfoouc17jekjKsWRv0CkjrBY05Ay1tw9xGIuPQac_MxPH7eDDMs8sFDBllr2FuVlpH2Y-FEjaTGh-i147PWS43D8v0K-vtz9vvs_vf3y7u7m-n5tW4DIHDNZ2rRPCcCKBECswYAECJO6dg95yQy2Bhlkueyc7YBYTgqVklElK2AW623lt1Gu1TX5Td6mi9upxIKal0ql4M4Bytuk1qRfuXGPrXRrGOdPWAad901XXl51rO_YbsAZCSXo4kh7PBL9Sy_igOKeUtJPgai9I8fcIuaiNzwaGQQeIY1aUctLJujCv6Idn6DqOKdRWVaplvJMMN_-ppa4f4IOLdV0zSdV129GWd5xMrsULVD0tbLypYXC-jh8VfDwoWIEeyirvf3I-Bt8fduRfK57SUQG8A0yKOSdwyviiJ0_dgh8UwWrKoHrMoJoyWEs-PSt5sr4A_wUXjNs9
CitedBy_id crossref_primary_10_1002_pro_4067
crossref_primary_10_1002_pro_70024
crossref_primary_10_1038_s41576_021_00441_w
crossref_primary_10_3390_e21111127
crossref_primary_10_3390_ijms251810142
crossref_primary_10_3390_ijms24076396
crossref_primary_10_1002_aic_18214
crossref_primary_10_1038_s42003_024_06291_6
crossref_primary_10_26599_TST_2021_9010064
crossref_primary_10_1016_j_cej_2021_132151
crossref_primary_10_7554_eLife_72516
Cites_doi 10.1002/prot.340180402
10.1093/molbev/mst010
10.1098/rsif.2016.0906
10.1093/bioinformatics/bty341
10.7554/eLife.03430
10.1214/lnms/1215455556
10.1002/prot.21447
10.1016/j.sbi.2009.03.008
10.7717/peerj.911
10.1126/science.aaa1394
10.1126/science.181.4096.223
10.1126/science.1249410
10.1093/nar/gku340
10.1073/pnas.0805923106
10.1103/PhysRevE.87.012707
10.1093/nar/gkw1042
10.1093/nar/gky448
10.1371/journal.pcbi.1003329
10.1093/bioinformatics/bts475
10.1093/bioinformatics/btx164
10.1186/1471-2105-8-113
10.1002/prot.22921
10.1371/journal.pone.0018910
10.1016/j.cels.2017.11.014
10.1093/bioinformatics/btx781
10.1073/pnas.1207864109
10.1073/pnas.1314045110
10.1093/molbev/msy007
10.1534/genetics.118.300699
10.1093/nar/gkw315
10.1186/1471-2105-15-S5-S1
10.1371/journal.pcbi.1000633
10.1002/prot.21983
10.1371/journal.pone.0028766
10.1371/journal.pcbi.1006526
10.1073/pnas.1111471108
10.1093/bioinformatics/bty481
10.7554/eLife.02030
10.1126/sciadv.1600292
10.1073/pnas.1702664114
10.1038/nbt.2419
10.1371/journal.pone.0205749
10.1093/bioinformatics/bty862
10.1002/prot.25377
10.1073/pnas.0504338102
10.1093/protein/7.3.349
10.1093/bioinformatics/btx332
10.1038/nsmb.3195
10.1016/B978-0-12-381270-4.00019-6
10.1093/bioinformatics/btq007
10.1016/j.cell.2012.04.012
10.1186/1471-2105-11-283
10.1093/nar/gkp305
10.1093/bioinformatics/btr638
10.1038/nbt.3769
10.1016/j.tibs.2011.01.002
10.1093/bioinformatics/bty416
10.1002/prot.24167
10.1093/bioinformatics/btu500
10.1371/journal.pcbi.1005324
10.1002/prot.25407
10.1002/prot.25034
10.1093/bioinformatics/btu791
10.1016/j.bpj.2018.01.033
10.1038/nmeth.4169
10.1093/bioinformatics/bti125
10.1186/s12859-017-1713-x
10.1186/1471-2105-13-292
10.1038/s41592-018-0138-4
10.1073/pnas.1523573113
10.1093/bioinformatics/btx296
10.1038/msb4100203
10.1126/science.aah4043
10.1371/journal.pcbi.1000584
10.1093/nar/gky381
10.1038/nature12822
ContentType Journal Article
Copyright COPYRIGHT 2019 PeerJ. Ltd.
2019 Hockenberry and Wilke. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 Hockenberry and Wilke 2019 Hockenberry and Wilke
Copyright_xml – notice: COPYRIGHT 2019 PeerJ. Ltd.
– notice: 2019 Hockenberry and Wilke. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 Hockenberry and Wilke 2019 Hockenberry and Wilke
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7717/peerj.7280
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database


PubMed

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 2167-8359
ExternalDocumentID oai_doaj_org_article_fd4ba1ba109f4d1098c3663adfe62b49
PMC6622159
A592569616
31328041
10_7717_peerj_7280
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: National Science Foundation Cooperative Agreement
  grantid: DBI-0939454 (BEACON Center)
– fundername: The National Institutes of Health
  grantid: R01 GM088344
GroupedDBID 53G
5VS
88I
8FE
8FH
AAFWJ
AAYXX
ABUWG
ADBBV
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
ECGQY
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
IAO
IEA
IHR
IHW
ITC
KQ8
LK8
M2P
M48
M7P
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
W2D
YAO
3V.
NPM
PMFND
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c570t-e0edd95f77c618e11d70e07e7e80bffebd6c2d1e43d68bf89e3d0110883238213
IEDL.DBID M2P
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474334600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2167-8359
IngestDate Fri Oct 03 12:51:44 EDT 2025
Tue Nov 04 01:41:49 EST 2025
Fri Sep 05 14:42:18 EDT 2025
Fri Jul 25 12:08:49 EDT 2025
Tue Nov 11 07:41:24 EST 2025
Tue Nov 04 17:51:19 EST 2025
Fri May 30 10:48:29 EDT 2025
Thu Jan 02 23:02:35 EST 2025
Tue Nov 18 21:24:49 EST 2025
Sat Nov 29 02:42:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Protein evolution
Epistasis
Evolutionary couplings
Structural constraints
Contact prediction
Language English
License http://creativecommons.org/licenses/by/4.0
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c570t-e0edd95f77c618e11d70e07e7e80bffebd6c2d1e43d68bf89e3d0110883238213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9476-0104
0000-0002-7470-9261
OpenAccessLink https://www.proquest.com/docview/2253698304?pq-origsite=%requestingapplication%
PMID 31328041
PQID 2253698304
PQPubID 2045935
ParticipantIDs doaj_primary_oai_doaj_org_article_fd4ba1ba109f4d1098c3663adfe62b49
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6622159
proquest_miscellaneous_2261980986
proquest_journals_2253698304
gale_infotracmisc_A592569616
gale_infotracacademiconefile_A592569616
gale_healthsolutions_A592569616
pubmed_primary_31328041
crossref_citationtrail_10_7717_peerj_7280
crossref_primary_10_7717_peerj_7280
PublicationCentury 2000
PublicationDate 2019-07-08
PublicationDateYYYYMMDD 2019-07-08
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ (San Francisco, CA)
PublicationTitleAlternate PeerJ
PublicationYear 2019
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Sulkowska (10.7717/peerj.7280/ref-66) 2012; 109
Piovesan (10.7717/peerj.7280/ref-50) 2016; 44
Jiang (10.7717/peerj.7280/ref-28) 2018; 208
Doshi (10.7717/peerj.7280/ref-17) 2016; 113
Kellogg (10.7717/peerj.7280/ref-34) 2011; 79
Miao (10.7717/peerj.7280/ref-45) 2015; 348
He (10.7717/peerj.7280/ref-23) 2017; 33
Wyman (10.7717/peerj.7280/ref-74) 2018; 13
Göbel (10.7717/peerj.7280/ref-21) 1994; 18
Denisov (10.7717/peerj.7280/ref-14) 2016; 23
Marks (10.7717/peerj.7280/ref-43) 2012; 30
Ovchinnikov (10.7717/peerj.7280/ref-48) 2014; 3
Xiong (10.7717/peerj.7280/ref-75) 2017; 33
Vorberg (10.7717/peerj.7280/ref-69) 2018; 14
Chen (10.7717/peerj.7280/ref-12) 2011; 6
Doncheva (10.7717/peerj.7280/ref-16) 2011; 36
Cheng (10.7717/peerj.7280/ref-13) 2007; 8
Stahl (10.7717/peerj.7280/ref-65) 2017; 18
Wozniak (10.7717/peerj.7280/ref-73) 2018; 34
Teufel (10.7717/peerj.7280/ref-68) 2017; 14
Liu (10.7717/peerj.7280/ref-40) 2005; 102
Mercadante (10.7717/peerj.7280/ref-44) 2018; 114
Kamisetty (10.7717/peerj.7280/ref-32) 2013; 110
Lapedes (10.7717/peerj.7280/ref-35) 1999; 33
Wang (10.7717/peerj.7280/ref-71) 2018; 86
Söding (10.7717/peerj.7280/ref-64) 2005; 21
Di Lena (10.7717/peerj.7280/ref-15) 2012; 28
Hanson (10.7717/peerj.7280/ref-22) 2018; 34
Hopf (10.7717/peerj.7280/ref-25) 2018; 35
Jones (10.7717/peerj.7280/ref-31) 2015; 31
Katoh (10.7717/peerj.7280/ref-33) 2013; 30
Jones (10.7717/peerj.7280/ref-30) 2018; 34
Leaver-Fay (10.7717/peerj.7280/ref-36) 2011; 487
Figliuzzi (10.7717/peerj.7280/ref-20) 2018; 35
Duarte (10.7717/peerj.7280/ref-18) 2010; 11
Potter (10.7717/peerj.7280/ref-51) 2018; 46
Lin (10.7717/peerj.7280/ref-38) 2008; 72
Burger (10.7717/peerj.7280/ref-10) 2010; 6
Abdel-Azeim (10.7717/peerj.7280/ref-1) 2014; 15
Weigt (10.7717/peerj.7280/ref-72) 2009; 106
Hopf (10.7717/peerj.7280/ref-27) 2014; 3
Tegge (10.7717/peerj.7280/ref-67) 2009; 37
Hopf (10.7717/peerj.7280/ref-24) 2012; 149
Hopf (10.7717/peerj.7280/ref-26) 2017; 35
Sadowski (10.7717/peerj.7280/ref-55) 2009; 19
Liu (10.7717/peerj.7280/ref-39) 2018; 6
Serçinoğlu (10.7717/peerj.7280/ref-61) 2018; 46
Anfinsen (10.7717/peerj.7280/ref-4) 1973; 181
Punjani (10.7717/peerj.7280/ref-52) 2017; 14
Schaarschmidt (10.7717/peerj.7280/ref-58) 2018; 86
Wang (10.7717/peerj.7280/ref-70) 2017; 13
Biasini (10.7717/peerj.7280/ref-8) 2014; 42
Liao (10.7717/peerj.7280/ref-37) 2013; 504
Seeliger (10.7717/peerj.7280/ref-59) 2007; 68
Seemayer (10.7717/peerj.7280/ref-60) 2014; 30
Shindyalov (10.7717/peerj.7280/ref-63) 1994; 7
Adhikari (10.7717/peerj.7280/ref-2) 2018; 34
Michel (10.7717/peerj.7280/ref-46) 2017; 33
Anishchenko (10.7717/peerj.7280/ref-5) 2017; 114
Ovchinnikov (10.7717/peerj.7280/ref-49) 2017; 355
Jones (10.7717/peerj.7280/ref-29) 2012; 28
Marcos (10.7717/peerj.7280/ref-41) 2015; 3
Batyuk (10.7717/peerj.7280/ref-6) 2016; 2
Bhattacharya (10.7717/peerj.7280/ref-7) 2013; 81
Sathyapriya (10.7717/peerj.7280/ref-56) 2009; 5
Ekeberg (10.7717/peerj.7280/ref-19) 2013; 87
Riesselman (10.7717/peerj.7280/ref-53) 2018; 15
Scarabelli (10.7717/peerj.7280/ref-57) 2013; 9
Morcos (10.7717/peerj.7280/ref-47) 2011; 108
Shahmoradi (10.7717/peerj.7280/ref-62) 2016; 84
Burger (10.7717/peerj.7280/ref-9) 2008; 4
Marks (10.7717/peerj.7280/ref-42) 2011; 6
Amunts (10.7717/peerj.7280/ref-3) 2014; 343
Yuan (10.7717/peerj.7280/ref-76) 2012; 13
Chaudhury (10.7717/peerj.7280/ref-11) 2010; 26
Rose (10.7717/peerj.7280/ref-54) 2017; 45
References_xml – volume: 18
  start-page: 309
  issue: 4
  year: 1994
  ident: 10.7717/peerj.7280/ref-21
  article-title: Correlated mutations and residue contacts in proteins
  publication-title: Proteins: Structure, Function, and Genetics
  doi: 10.1002/prot.340180402
– volume: 30
  start-page: 772
  issue: 4
  year: 2013
  ident: 10.7717/peerj.7280/ref-33
  article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/mst010
– volume: 14
  start-page: pii: 20160906
  issue: 127
  year: 2017
  ident: 10.7717/peerj.7280/ref-68
  article-title: Accelerated simulation of evolutionary trajectories in origin-fixation models
  publication-title: Journal of the Royal Society Interface
  doi: 10.1098/rsif.2016.0906
– volume: 34
  start-page: 3308
  issue: 19
  year: 2018
  ident: 10.7717/peerj.7280/ref-30
  article-title: High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty341
– volume: 3
  start-page: 1
  year: 2014
  ident: 10.7717/peerj.7280/ref-27
  article-title: Sequence co-evolution gives 3D contacts and structures of protein complexes
  publication-title: eLife
  doi: 10.7554/eLife.03430
– volume: 33
  start-page: 236
  year: 1999
  ident: 10.7717/peerj.7280/ref-35
  article-title: Correlated mutations in models of protein sequences: phylogenetic and structural effects
  publication-title: Statistics in Molecular Biology and Genetics
  doi: 10.1214/lnms/1215455556
– volume: 68
  start-page: 595
  issue: 3
  year: 2007
  ident: 10.7717/peerj.7280/ref-59
  article-title: Atomic contacts in protein structures. A detailed analysis of atomic radii, packing, and overlaps
  publication-title: Proteins: Structure, Function, and Bioinformatics
  doi: 10.1002/prot.21447
– volume: 19
  start-page: 357
  issue: 3
  year: 2009
  ident: 10.7717/peerj.7280/ref-55
  article-title: The sequence-structure relationship and protein function prediction
  publication-title: Current Opinion in Structural Biology
  doi: 10.1016/j.sbi.2009.03.008
– volume: 3
  start-page: e911
  issue: 2
  year: 2015
  ident: 10.7717/peerj.7280/ref-41
  article-title: Too packed to change: side-chain packing and site-specific substitution rates in protein evolution
  publication-title: PeerJ
  doi: 10.7717/peerj.911
– volume: 348
  start-page: 530
  issue: 6234
  year: 2015
  ident: 10.7717/peerj.7280/ref-45
  article-title: Beyond crystallography: diffractive imaging using coherent x-ray light sources
  publication-title: Science
  doi: 10.1126/science.aaa1394
– volume: 181
  start-page: 223
  issue: 4096
  year: 1973
  ident: 10.7717/peerj.7280/ref-4
  article-title: Principles that govern the folding of protein chains
  publication-title: Science
  doi: 10.1126/science.181.4096.223
– volume: 343
  start-page: 1485
  issue: 6178
  year: 2014
  ident: 10.7717/peerj.7280/ref-3
  article-title: Structure of the yeast mitochondrial large ribosomal subunit
  publication-title: Science
  doi: 10.1126/science.1249410
– volume: 42
  start-page: W252
  issue: W1
  year: 2014
  ident: 10.7717/peerj.7280/ref-8
  article-title: SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gku340
– volume: 106
  start-page: 67
  issue: 1
  year: 2009
  ident: 10.7717/peerj.7280/ref-72
  article-title: Identification of direct residue contacts in protein-protein interaction by message passing
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0805923106
– volume: 87
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.7717/peerj.7280/ref-19
  article-title: Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.87.012707
– volume: 45
  start-page: D271
  issue: 1
  year: 2017
  ident: 10.7717/peerj.7280/ref-54
  article-title: The RCSB protein data bank: integrative view of protein, gene and 3D structural information
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkw1042
– volume: 46
  start-page: W200
  issue: W1
  year: 2018
  ident: 10.7717/peerj.7280/ref-51
  article-title: HMMER web server: 2018 update
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gky448
– volume: 9
  start-page: e1003329
  issue: 11
  year: 2013
  ident: 10.7717/peerj.7280/ref-57
  article-title: Mapping the structural and dynamical features of kinesin motor domains
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1003329
– volume: 28
  start-page: 2449
  issue: 19
  year: 2012
  ident: 10.7717/peerj.7280/ref-15
  article-title: Deep architectures for protein contact map prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts475
– volume: 33
  start-page: 2296
  issue: 15
  year: 2017
  ident: 10.7717/peerj.7280/ref-23
  article-title: NeBcon: protein contact map prediction using neural network training coupled with naïve Bayes classifiers
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx164
– volume: 8
  start-page: 113
  issue: 1
  year: 2007
  ident: 10.7717/peerj.7280/ref-13
  article-title: Improved residue contact prediction using support vector machines and a large feature set
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-113
– volume: 79
  start-page: 830
  issue: 3
  year: 2011
  ident: 10.7717/peerj.7280/ref-34
  article-title: Role of conformational sampling in computing mutation-induced changes in protein structure and stability
  publication-title: Proteins: Structure, Function, and Bioinformatics
  doi: 10.1002/prot.22921
– volume: 6
  start-page: e18910
  issue: 4
  year: 2011
  ident: 10.7717/peerj.7280/ref-12
  article-title: Representative proteomes: a stable, scalable and unbiased proteome set for sequence analysis and functional annotation
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0018910
– volume: 6
  start-page: 65
  issue: 1
  year: 2018
  ident: 10.7717/peerj.7280/ref-39
  article-title: Enhancing evolutionary couplings with deep convolutional neural networks
  publication-title: Cell Systems
  doi: 10.1016/j.cels.2017.11.014
– volume: 34
  start-page: 1466
  issue: 9
  year: 2018
  ident: 10.7717/peerj.7280/ref-2
  article-title: DNCON2: improved protein contact prediction using two-level deep convolutional neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx781
– volume: 109
  start-page: 10340
  issue: 26
  year: 2012
  ident: 10.7717/peerj.7280/ref-66
  article-title: Genomics-aided structure prediction
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1207864109
– volume: 110
  start-page: 15674
  issue: 39
  year: 2013
  ident: 10.7717/peerj.7280/ref-32
  article-title: Assessing the utility of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1314045110
– volume: 35
  start-page: 1018
  issue: 4
  year: 2018
  ident: 10.7717/peerj.7280/ref-20
  article-title: How pairwise coevolutionary models capture the collective residue variability in proteins?
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msy007
– volume: 208
  start-page: 1387
  issue: 4
  year: 2018
  ident: 10.7717/peerj.7280/ref-28
  article-title: Beyond thermodynamic constraints: evolutionary sampling generates realistic protein sequence variation
  publication-title: Genetics
  doi: 10.1534/genetics.118.300699
– volume: 44
  start-page: W367
  issue: W1
  year: 2016
  ident: 10.7717/peerj.7280/ref-50
  article-title: The RING 2.0 web server for high quality residue interaction networks
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkw315
– volume: 15
  start-page: 1
  issue: Suppl 5
  year: 2014
  ident: 10.7717/peerj.7280/ref-1
  article-title: MDcons: intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-15-S5-S1
– volume: 6
  start-page: e1000633
  issue: 1
  year: 2010
  ident: 10.7717/peerj.7280/ref-10
  article-title: Disentangling direct from indirect co-evolution of residues in protein alignments
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1000633
– volume: 72
  start-page: 929
  issue: 3
  year: 2008
  ident: 10.7717/peerj.7280/ref-38
  article-title: Deriving protein dynamical properties from weighted protein contact number
  publication-title: Proteins: Structure, Function, and Bioinformatics
  doi: 10.1002/prot.21983
– volume: 6
  start-page: e28766
  issue: 12
  year: 2011
  ident: 10.7717/peerj.7280/ref-42
  article-title: Protein 3D structure computed from evolutionary sequence variation
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0028766
– volume: 14
  start-page: e1006526
  issue: 11
  year: 2018
  ident: 10.7717/peerj.7280/ref-69
  article-title: Synthetic protein alignments by CCMgen quantify noise in residue-residue contact prediction
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1006526
– volume: 108
  start-page: E1293
  issue: 49
  year: 2011
  ident: 10.7717/peerj.7280/ref-47
  article-title: Direct-coupling analysis of residue coevolution captures native contacts across many protein families
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1111471108
– volume: 34
  start-page: 4039
  issue: 23
  year: 2018
  ident: 10.7717/peerj.7280/ref-22
  article-title: Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty481
– volume: 3
  start-page: e02030
  year: 2014
  ident: 10.7717/peerj.7280/ref-48
  article-title: Robust and accurate prediction of residue-residue interactions across protein interfaces using evolutionary information
  publication-title: eLife
  doi: 10.7554/eLife.02030
– volume: 2
  start-page: e1600292
  issue: 9
  year: 2016
  ident: 10.7717/peerj.7280/ref-6
  article-title: Native phasing of x-ray free-electron laser data for a G protein-coupled receptor
  publication-title: Science Advances
  doi: 10.1126/sciadv.1600292
– volume: 114
  start-page: 9122
  issue: 34
  year: 2017
  ident: 10.7717/peerj.7280/ref-5
  article-title: Origins of coevolution between residues distant in protein 3D structures
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1702664114
– volume: 30
  start-page: 1072
  issue: 11
  year: 2012
  ident: 10.7717/peerj.7280/ref-43
  article-title: Protein structure prediction from sequence variation
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.2419
– volume: 13
  start-page: e0205749
  issue: 10
  year: 2018
  ident: 10.7717/peerj.7280/ref-74
  article-title: A most wanted list of conserved microbial protein families with no known domains
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0205749
– volume: 35
  start-page: 1582
  issue: 9
  year: 2018
  ident: 10.7717/peerj.7280/ref-25
  article-title: The EVcouplings Python framework for coevolutionary sequence analysis Thomas
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty862
– volume: 86
  start-page: 67
  issue: Suppl 2
  year: 2018
  ident: 10.7717/peerj.7280/ref-71
  article-title: Analysis of deep learning methods for blind protein contact prediction in CASP12
  publication-title: Proteins: Structure, Function, and Bioinformatics
  doi: 10.1002/prot.25377
– volume: 102
  start-page: 10487
  issue: 30
  year: 2005
  ident: 10.7717/peerj.7280/ref-40
  article-title: NMR data collection and analysis protocol for high-throughput protein structure determination
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0504338102
– volume: 7
  start-page: 349
  issue: 3
  year: 1994
  ident: 10.7717/peerj.7280/ref-63
  article-title: Can three-dimensional contacts in protein structures be predicted by analysis of correlated mutations?
  publication-title: Protein Engineering, Design and Selection
  doi: 10.1093/protein/7.3.349
– volume: 33
  start-page: 2859
  issue: 18
  year: 2017
  ident: 10.7717/peerj.7280/ref-46
  article-title: Predicting accurate contacts in thousands of Pfam domain families using PconsC3
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx332
– volume: 23
  start-page: 481
  issue: 6
  year: 2016
  ident: 10.7717/peerj.7280/ref-14
  article-title: Nanodiscs for structural and functional studies of membrane proteins
  publication-title: Nature Structural & Molecular Biology
  doi: 10.1038/nsmb.3195
– volume: 487
  start-page: 545
  year: 2011
  ident: 10.7717/peerj.7280/ref-36
  article-title: Rosetta3: an object-oriented software suite for the simulation and design of macromolecules
  publication-title: Methods in Enzymology
  doi: 10.1016/B978-0-12-381270-4.00019-6
– volume: 26
  start-page: 689
  issue: 5
  year: 2010
  ident: 10.7717/peerj.7280/ref-11
  article-title: PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq007
– volume: 149
  start-page: 1607
  issue: 7
  year: 2012
  ident: 10.7717/peerj.7280/ref-24
  article-title: Three-dimensional structures of membrane proteins from genomic sequencing
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.012
– volume: 11
  start-page: 11
  issue: 1
  year: 2010
  ident: 10.7717/peerj.7280/ref-18
  article-title: Optimal contact definition for reconstruction of contact maps
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-283
– volume: 37
  start-page: W515
  issue: Web Server
  year: 2009
  ident: 10.7717/peerj.7280/ref-67
  article-title: NNcon: improved protein contact map prediction using 2D-recursive neural networks
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkp305
– volume: 28
  start-page: 184
  issue: 2
  year: 2012
  ident: 10.7717/peerj.7280/ref-29
  article-title: PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr638
– volume: 35
  start-page: 128
  issue: 2
  year: 2017
  ident: 10.7717/peerj.7280/ref-26
  article-title: Mutation effects predicted from sequence co-variation
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.3769
– volume: 36
  start-page: 179
  issue: 4
  year: 2011
  ident: 10.7717/peerj.7280/ref-16
  article-title: Analyzing and visualizing residue networks of protein structures
  publication-title: Trends in Biochemical Sciences
  doi: 10.1016/j.tibs.2011.01.002
– volume: 34
  start-page: 3675
  issue: 21
  year: 2018
  ident: 10.7717/peerj.7280/ref-73
  article-title: Bio-knowledge based filters improve residue-residue contact prediction accuracy
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty416
– volume: 81
  start-page: 119
  issue: 1
  year: 2013
  ident: 10.7717/peerj.7280/ref-7
  article-title: 3Drefine: consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization
  publication-title: Proteins: Structure, Function, and Bioinformatics
  doi: 10.1002/prot.24167
– volume: 30
  start-page: 3128
  issue: 21
  year: 2014
  ident: 10.7717/peerj.7280/ref-60
  article-title: CCMpred—fast and precise prediction of protein residue-residue contacts from correlated mutations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu500
– volume: 13
  start-page: e1005324
  issue: 1
  year: 2017
  ident: 10.7717/peerj.7280/ref-70
  article-title: Accurate de novo prediction of protein contact map by ultra-deep learning model
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1005324
– volume: 86
  start-page: 51
  issue: suppl 5
  year: 2018
  ident: 10.7717/peerj.7280/ref-58
  article-title: Assessment of contact predictions in CASP12: co-evolution and deep learning coming of age
  publication-title: Proteins: Structure, Function, and Bioinformatics
  doi: 10.1002/prot.25407
– volume: 84
  start-page: 841
  issue: 6
  year: 2016
  ident: 10.7717/peerj.7280/ref-62
  article-title: Dissecting the roles of local packing density and longer-range effects in protein sequence evolution
  publication-title: Proteins: Structure, Function, and Bioinformatics
  doi: 10.1002/prot.25034
– volume: 31
  start-page: 999
  issue: 7
  year: 2015
  ident: 10.7717/peerj.7280/ref-31
  article-title: MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu791
– volume: 114
  start-page: 1267
  issue: 6
  year: 2018
  ident: 10.7717/peerj.7280/ref-44
  article-title: CONAN: a tool to decode dynamical information from molecular interaction maps
  publication-title: Biophysical Journal
  doi: 10.1016/j.bpj.2018.01.033
– volume: 14
  start-page: 290
  issue: 3
  year: 2017
  ident: 10.7717/peerj.7280/ref-52
  article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
  publication-title: Nature Methods
  doi: 10.1038/nmeth.4169
– volume: 21
  start-page: 951
  issue: 7
  year: 2005
  ident: 10.7717/peerj.7280/ref-64
  article-title: Protein homology detection by HMM-HMM comparison
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti125
– volume: 18
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.7717/peerj.7280/ref-65
  article-title: EPSILON-CP: using deep learning to combine information from multiple sources for protein contact prediction
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1713-x
– volume: 13
  start-page: 292
  year: 2012
  ident: 10.7717/peerj.7280/ref-76
  article-title: Effective inter-residue contact definitions for accurate protein fold recognition
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-292
– volume: 15
  start-page: 816
  year: 2018
  ident: 10.7717/peerj.7280/ref-53
  article-title: Deep generative models of genetic variation capture mutation effects
  publication-title: Nature Methods
  doi: 10.1038/s41592-018-0138-4
– volume: 113
  start-page: 4735
  issue: 17
  year: 2016
  ident: 10.7717/peerj.7280/ref-17
  article-title: Dynamical network of residue-residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1523573113
– volume: 33
  start-page: 2675
  issue: 17
  year: 2017
  ident: 10.7717/peerj.7280/ref-75
  article-title: A deep learning framework for improving long-range residue-residue contact prediction using a hierarchical strategy
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx296
– volume: 4
  start-page: 165
  year: 2008
  ident: 10.7717/peerj.7280/ref-9
  article-title: Accurate prediction of protein-protein interactions from sequence alignments using a Bayesian method
  publication-title: Molecular Systems Biology
  doi: 10.1038/msb4100203
– volume: 355
  start-page: 294
  issue: 6322
  year: 2017
  ident: 10.7717/peerj.7280/ref-49
  article-title: Protein structure determination using metagenome sequence data
  publication-title: Science
  doi: 10.1126/science.aah4043
– volume: 5
  start-page: e1000584
  issue: 12
  year: 2009
  ident: 10.7717/peerj.7280/ref-56
  article-title: Defining an essence of structure determining residue contacts in proteins
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1000584
– volume: 46
  start-page: W554
  issue: W1
  year: 2018
  ident: 10.7717/peerj.7280/ref-61
  article-title: gRINN: a tool for calculation of residue interaction energies and protein energy network analysis of molecular dynamics simulations
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gky381
– volume: 504
  start-page: 107
  issue: 7478
  year: 2013
  ident: 10.7717/peerj.7280/ref-37
  article-title: Structure of the TRPV1 ion channel determined by electron cryo-microscopy
  publication-title: Nature
  doi: 10.1038/nature12822
SSID ssj0000826083
Score 2.2375028
Snippet Patterns of amino acid covariation in large protein sequence alignments can inform the prediction of de novo protein structures, binding interfaces, and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e7280
SubjectTerms Accuracy
Algorithms
Amino acid sequence
Amino acids
Bioinformatics
Biology
Biophysics
Computational Biology
Contact prediction
Datasets
Deep learning
Epistasis
Evolution
Evolutionary couplings
Evolutionary Studies
Interfaces
Mutation
Neural networks
Protein binding
Protein evolution
Proteins
Structural constraints
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEB9kEfEifltdtaIgHuqmTZuP4yq7eHHxoLC30CYT94n0LX3vLfjfO5N2yysKXoTSQzMt6XxkZkjmNwBvovbkhFQotCANrpUMRRc8FpUX0nTaG1GF1GxCn52Z83P7Za_VF58JG-GBR8YdxVB3bUmXsLEOdDdekpdsQ0RVdXUq3RPa7iVTaQ2mqJmCixGPVFPKcnSJOPx4z82YFh4oAfX_uRzv-aPlWck953N6F-5MUWN-PM72HtzA_j7c-jztiz-A5uRqUqF2-JX79Y7rbL9v8oC8R5BzS87CX7SrPmd4iGEsZtg8hG-nJ18_fiqmhgiFb7TYFigwBNtErb0qDZZl0AKFRo1GdDFiF5SvQom1DMp00ViUgf27IbOVpirlIzjo1z0-gTyQXy8RqxApJvFGdljVGINo0NtG1zaDd9dMcn5CC-emFT8dZQ3MUJcY6pihGbyeaS9HjIy_Un1gXs8UjGudHpC03SRt9y9pZ_CSJeXGItHZOt1xYyl2s6pUGbxNFGyfNGHfTmUG9NuMdLWgPFxQkl355fC1NrjJrjeOVj-prJGizuDVPMxv8lm1Htc7pqGk1NDU6ROPR-WZf5qBMhnxKQO9UKsFV5Yj_eoioX4rVVF4Zp_-DzY-g9sU-Nl07NgcwsF22OFzuOmvtqvN8CKZ0m-D9SZc
  priority: 102
  providerName: Directory of Open Access Journals
Title Evolutionary couplings detect side-chain interactions
URI https://www.ncbi.nlm.nih.gov/pubmed/31328041
https://www.proquest.com/docview/2253698304
https://www.proquest.com/docview/2261980986
https://pubmed.ncbi.nlm.nih.gov/PMC6622159
https://doaj.org/article/fd4ba1ba109f4d1098c3663adfe62b49
Volume 7
WOSCitedRecordID wos000474334600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: M7P
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: BENPR
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: PIMPY
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: M2P
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RBhAXHuUVKMEIJNSDqZ_7OKEWpYJDogiBFE5WvDtug5AdnKRS_z0z9sbUAnFBivaQnURjz3N3Z78BeFNIQ0FIWF8GpMGJiK2fW4N-ZIJY5dKoILJNswk5nar5XM_chtvalVXufGLjqG1leI_8mPQuFlrR6vv96qfPXaP4dNW10NiDAWU2IZd0TaJZt8dC4U1QitGikkpauByvEOvv77glUy8ONXD9fzrla1GpXzF5LQSd3ftf5u_DXZd8eiettjyAG1gewK22HeXVAdyeuIP2h5COL51OLuorz1Rbvrh7vvYs8qGDxz0-fXOxWJYe403U7e2I9SP4ejb-8uGj7zos-CaVwcbHAK3VaSGlEaHCMLQywECiRBXkRYG5FSayISaxFSovlMbYcsKgyA_EKgrjx7BfViU-Bc9SohAiRragJMeoOMcowcIGKRqdykQP4Wj3vjPj4Me5C8aPjJYhLJuskU3GshnC64521YJu_JXqlMXWUTBQdvNFVZ9nzu6ywib5IqRPoIvE0qhMTEnWwhYoopzZeslCz9pbp525ZyeppmRQi1AM4W1DwQZPDJuFu7dAj83QWT3Kwx4lGarpT--UI3OOYp391owhvOqm-Zdc_FZitWUaWuUqYp3-4kmrh91DM_ImQ0gNQfY0tPdW-jPl8qKBERcionxPP_s3W8_hDuWIuqlQVoewv6m3-AJumsvNcl2PYE_O1QgGp-Pp7POo2dAYNTbIo6RxMPs0mX37BWm7PKo
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V8rzwKAUChRoBQj2Y2mt7HweECrRq1TbqoZV6M_HuuA1CTnCSovwpfiMztmNqgbj1gBTlkJ1YY_ubx9oz3wC8zpWlICSdrwJCcCwj52fOoi9sEOlMWR0IVw2bUP2-Pj01R0vwc9ELw2WVC59YOWo3svyMfJNwF0mjaff9Yfzd56lR_HZ1MUKjhsU-zn_Qlm3yfu8z3d83QuxsH3_a9ZupAr5NVDD1MUDnTJIrZWWoMQydCjBQqFAHWZ5j5qQVLsQ4clJnuTYYOQ6SmrAfaRFGdNxrcD1mZjEuFRRH7TMdCqeSUpqaBVXRRmlzjFh-fccjoDpxrxoP8GcQuBQFuxWal0Lezr3_7WLdh7tNcu1t1dbwAJawWIGb9bjN-QrcOmwKCR5Csn3R2NygnHt2NOPG5LOJ55Bfqng8w9S354Nh4TGfRll3f0xW4eRK1H8Ey8WowCfgOUqEQkThckrirI4yFDHmLkjQmkTFpgcbi_ub2oZenad8fEtpm8VYSCsspIyFHrxqZcc1qchfpT4yTFoJJgKvfhiVZ2njV9LcxdkgpE9g8tjRt7YRJZEDl6MUGau1ziBL667a1p2lW4mhZNfIUPbgbSXBDo0UtoOmL4NOm6nBOpJrHUlyRLa7vABj2jjCSfobiT142S7zP7m4r8DRjGVoF69JdTrE4xr37UkzsyhTZPVAdSyic1W6K8XwvKJJl1JQPmue_lutdbi9e3x4kB7s9fefwR3Kh01Vja3XYHlazvA53LAX0-GkfFHZugdfrtpefgFpsJPR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCouPMorUKgRIMTBxM_d9QGhQhsRlUY5gNSelnh33AYhJzhJUf4av44Z2zG1QNx6QLJ88I6tsf3Ny54HwPNMGjJCwrrSIwRHIrRuag26gfFClUqjvMCWwybkcKiOj5PRBvxc18JwWuVaJ5aK2k4NfyPvEe5CkSiKvntZnRYx2u-_nX13eYIU_2ldj9OoIHKIqx8Uvs3fDPbpXb8Igv7Bp_cf3HrCgGti6S1c9NDaJM6kNMJX6PtWeuhJlKi8NMswtcIE1scotEKlmUowtGwwFclBqAI_pOtegU1yyaOgA5ujwdHopPnCQ8ZVkINT9USVFDb1ZojF19c8EKplBcthAX-ahAs2sZ2vecEA9m_-z4_uFtyo3W5nr5KT27CB-TZcqwZxrrZh66hOMbgD8cF5LY3jYuWY6ZJLlk_njkX-3eLwdFPXnI0nucOdNoqqLmR-Fz5fCvv3oJNPc3wAjiUXyUcMbEbunVFhikGEmfViNEkso6QLr9bvWpu68TrP__imKQBjXOgSF5px0YVnDe2sajfyV6p3DJmGgluElwemxamuNY7ObJSOfdq8JIss7ZUJyb0c2wxFkDJbuww4XdXbNopO78UJucGJ8EUXXpYUrOqIYTOuKzbotrlpWItyp0VJKsq0l9fA1LWKnOvfqOzC02aZz-S0vxynS6ah-F4R63SJ-5UMNDfNPUe5eVYXZEs6Wk-lvZJPzsoG6kIE5OkmD__N1i5skZjoj4Ph4SO4To5yUqZpqx3oLIolPoar5nwxmRdPasF34MtlC8wvHJeeGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+couplings+detect+side-chain+interactions&rft.jtitle=PeerJ+%28San+Francisco%2C+CA%29&rft.au=Hockenberry%2C+Adam+J&rft.au=Wilke%2C+Claus+O&rft.date=2019-07-08&rft.issn=2167-8359&rft.eissn=2167-8359&rft.volume=7&rft.spage=e7280&rft_id=info:doi/10.7717%2Fpeerj.7280&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2167-8359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2167-8359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2167-8359&client=summon