Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm
Purpose Oral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and classification are made possible. Medical imaging technique, computer-aided diagnosis and detection can make potential changes in cancer treatment....
Saved in:
| Published in: | Journal of cancer research and clinical oncology Vol. 145; no. 4; pp. 829 - 837 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2019
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0171-5216, 1432-1335, 1432-1335 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Purpose
Oral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and classification are made possible. Medical imaging technique, computer-aided diagnosis and detection can make potential changes in cancer treatment. In this research work, we have developed a deep learning algorithm for automated, computer-aided oral cancer detecting system by investigating patient hyperspectral images.
Methods
To validate the proposed regression-based partitioned deep learning algorithm, we compare the performance with other techniques by its classification accuracy, specificity, and sensitivity. For the accurate medical image classification objective, we demonstrate a new structure of partitioned deep Convolution Neural Network (CNN) with two partitioned layers for labeling and classify by labeling region of interest in multidimensional hyperspectral image.
Results
The performance of the partitioned deep CNN was verified by classification accuracy. We have obtained classification accuracy of 91.4% with sensitivity 0.94 and a specificity of 0.91 for 100 image data sets training for task classification of cancerous tumor with benign and for task classification of cancerous tumor with normal tissue accuracy of 94.5% for 500 training patterns was obtained.
Conclusions
We compared the obtained results from another traditional medical image classification algorithm. From the obtained result, we identify that the quality of diagnosis is increased by proposed regression-based partitioned CNN learning algorithm for a complex medical image of oral cancer diagnosis. |
|---|---|
| AbstractList | PurposeOral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and classification are made possible. Medical imaging technique, computer-aided diagnosis and detection can make potential changes in cancer treatment. In this research work, we have developed a deep learning algorithm for automated, computer-aided oral cancer detecting system by investigating patient hyperspectral images.MethodsTo validate the proposed regression-based partitioned deep learning algorithm, we compare the performance with other techniques by its classification accuracy, specificity, and sensitivity. For the accurate medical image classification objective, we demonstrate a new structure of partitioned deep Convolution Neural Network (CNN) with two partitioned layers for labeling and classify by labeling region of interest in multidimensional hyperspectral image.ResultsThe performance of the partitioned deep CNN was verified by classification accuracy. We have obtained classification accuracy of 91.4% with sensitivity 0.94 and a specificity of 0.91 for 100 image data sets training for task classification of cancerous tumor with benign and for task classification of cancerous tumor with normal tissue accuracy of 94.5% for 500 training patterns was obtained.ConclusionsWe compared the obtained results from another traditional medical image classification algorithm. From the obtained result, we identify that the quality of diagnosis is increased by proposed regression-based partitioned CNN learning algorithm for a complex medical image of oral cancer diagnosis. Oral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and classification are made possible. Medical imaging technique, computer-aided diagnosis and detection can make potential changes in cancer treatment. In this research work, we have developed a deep learning algorithm for automated, computer-aided oral cancer detecting system by investigating patient hyperspectral images.PURPOSEOral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and classification are made possible. Medical imaging technique, computer-aided diagnosis and detection can make potential changes in cancer treatment. In this research work, we have developed a deep learning algorithm for automated, computer-aided oral cancer detecting system by investigating patient hyperspectral images.To validate the proposed regression-based partitioned deep learning algorithm, we compare the performance with other techniques by its classification accuracy, specificity, and sensitivity. For the accurate medical image classification objective, we demonstrate a new structure of partitioned deep Convolution Neural Network (CNN) with two partitioned layers for labeling and classify by labeling region of interest in multidimensional hyperspectral image.METHODSTo validate the proposed regression-based partitioned deep learning algorithm, we compare the performance with other techniques by its classification accuracy, specificity, and sensitivity. For the accurate medical image classification objective, we demonstrate a new structure of partitioned deep Convolution Neural Network (CNN) with two partitioned layers for labeling and classify by labeling region of interest in multidimensional hyperspectral image.The performance of the partitioned deep CNN was verified by classification accuracy. We have obtained classification accuracy of 91.4% with sensitivity 0.94 and a specificity of 0.91 for 100 image data sets training for task classification of cancerous tumor with benign and for task classification of cancerous tumor with normal tissue accuracy of 94.5% for 500 training patterns was obtained.RESULTSThe performance of the partitioned deep CNN was verified by classification accuracy. We have obtained classification accuracy of 91.4% with sensitivity 0.94 and a specificity of 0.91 for 100 image data sets training for task classification of cancerous tumor with benign and for task classification of cancerous tumor with normal tissue accuracy of 94.5% for 500 training patterns was obtained.We compared the obtained results from another traditional medical image classification algorithm. From the obtained result, we identify that the quality of diagnosis is increased by proposed regression-based partitioned CNN learning algorithm for a complex medical image of oral cancer diagnosis.CONCLUSIONSWe compared the obtained results from another traditional medical image classification algorithm. From the obtained result, we identify that the quality of diagnosis is increased by proposed regression-based partitioned CNN learning algorithm for a complex medical image of oral cancer diagnosis. Purpose Oral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and classification are made possible. Medical imaging technique, computer-aided diagnosis and detection can make potential changes in cancer treatment. In this research work, we have developed a deep learning algorithm for automated, computer-aided oral cancer detecting system by investigating patient hyperspectral images. Methods To validate the proposed regression-based partitioned deep learning algorithm, we compare the performance with other techniques by its classification accuracy, specificity, and sensitivity. For the accurate medical image classification objective, we demonstrate a new structure of partitioned deep Convolution Neural Network (CNN) with two partitioned layers for labeling and classify by labeling region of interest in multidimensional hyperspectral image. Results The performance of the partitioned deep CNN was verified by classification accuracy. We have obtained classification accuracy of 91.4% with sensitivity 0.94 and a specificity of 0.91 for 100 image data sets training for task classification of cancerous tumor with benign and for task classification of cancerous tumor with normal tissue accuracy of 94.5% for 500 training patterns was obtained. Conclusions We compared the obtained results from another traditional medical image classification algorithm. From the obtained result, we identify that the quality of diagnosis is increased by proposed regression-based partitioned CNN learning algorithm for a complex medical image of oral cancer diagnosis. Oral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and classification are made possible. Medical imaging technique, computer-aided diagnosis and detection can make potential changes in cancer treatment. In this research work, we have developed a deep learning algorithm for automated, computer-aided oral cancer detecting system by investigating patient hyperspectral images. To validate the proposed regression-based partitioned deep learning algorithm, we compare the performance with other techniques by its classification accuracy, specificity, and sensitivity. For the accurate medical image classification objective, we demonstrate a new structure of partitioned deep Convolution Neural Network (CNN) with two partitioned layers for labeling and classify by labeling region of interest in multidimensional hyperspectral image. The performance of the partitioned deep CNN was verified by classification accuracy. We have obtained classification accuracy of 91.4% with sensitivity 0.94 and a specificity of 0.91 for 100 image data sets training for task classification of cancerous tumor with benign and for task classification of cancerous tumor with normal tissue accuracy of 94.5% for 500 training patterns was obtained. We compared the obtained results from another traditional medical image classification algorithm. From the obtained result, we identify that the quality of diagnosis is increased by proposed regression-based partitioned CNN learning algorithm for a complex medical image of oral cancer diagnosis. |
| Author | Samuel Nadar, Edward Rajan Jeyaraj, Pandia Rajan |
| Author_xml | – sequence: 1 givenname: Pandia Rajan orcidid: 0000-0001-7086-6596 surname: Jeyaraj fullname: Jeyaraj, Pandia Rajan email: pandiarajan@mepcoeng.ac.in organization: Department of Electrical and Electronics Engineering, Mepco Schlenk Engineering College (Autonomous) – sequence: 2 givenname: Edward Rajan surname: Samuel Nadar fullname: Samuel Nadar, Edward Rajan organization: Department of Electrical and Electronics Engineering, Mepco Schlenk Engineering College (Autonomous) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30603908$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Ustu1TAUtFARvS38AAsUiQ2bgJ9xvELoipdUiQ2sLdc5Tl05drATpPv3OL0tjy7uyjo-M-M5PnOBzmKKgNBLgt8SjOW7gjFntMWkbzHtGW_lE7Qj2xVhTJyhHSaStIKS7hxdlHKLay0kfYbOGe4wU7jfobJP07wukFtTii8LDM0Eg7cmNH4yIzQ2bA1XbxafYuNSbsDkcGgGb8aYKqdJrkm5EqyJFmp7mkM6-Dg2A8DchAqPW2XCmLJfbqbn6KkzocCL-_MS_fj08fv-S3v17fPX_Yer1opOLa3lHceMMAGCykGw3g2cMaMIV8SZ3rhry7mjUhppFRjRq447aagYlBNggV2i90fdeb2uQ1mIS7Wp51wnywedjNf_d6K_0WP6pQnpCSaKVIU39wo5_VyhLHryxUIIJkJai65fyzBWQqkKff0IepvWHOt8mhElOt5LSk-hqhbtJMN8e_bVv8b_OH5YWwX0R4DNqZQMTlu_3C2ozuGDJlhvCdHHhOiaEH2XEC0rlT6iPqifJLEjqVRwHCH_tX2C9RuTZM7W |
| CitedBy_id | crossref_primary_10_3390_app13053370 crossref_primary_10_3390_cancers13194751 crossref_primary_10_2186_jpr_JPOR_2019_354 crossref_primary_10_1016_j_identj_2022_03_001 crossref_primary_10_1007_s11277_024_11587_1 crossref_primary_10_1016_j_oooo_2023_10_003 crossref_primary_10_7759_cureus_88407 crossref_primary_10_1049_iet_ipr_2019_0900 crossref_primary_10_1007_s11042_023_17568_z crossref_primary_10_1016_j_smhl_2024_100538 crossref_primary_10_1109_ACCESS_2020_3009412 crossref_primary_10_3390_bioengineering11111107 crossref_primary_10_1016_j_compbiomed_2025_109913 crossref_primary_10_1038_s41598_025_11861_7 crossref_primary_10_1088_1361_6560_adc8f5 crossref_primary_10_1016_j_compbiomed_2025_109918 crossref_primary_10_1016_j_bspc_2023_104704 crossref_primary_10_1109_ACCESS_2020_3019332 crossref_primary_10_3389_froh_2021_686863 crossref_primary_10_1088_2516_1091_ac1f6c crossref_primary_10_3390_diagnostics13213360 crossref_primary_10_3390_jpm12020166 crossref_primary_10_1016_j_artmed_2021_102060 crossref_primary_10_3389_fnagi_2021_764872 crossref_primary_10_2174_012212697X315512240821045542 crossref_primary_10_1007_s40009_022_01157_z crossref_primary_10_1109_ACCESS_2022_3187507 crossref_primary_10_1002_cpe_7451 crossref_primary_10_1016_j_bspc_2020_102258 crossref_primary_10_1016_j_tice_2019_101322 crossref_primary_10_1007_s41060_023_00502_9 crossref_primary_10_1136_bmjopen_2025_101169 crossref_primary_10_1016_j_jormas_2019_06_002 crossref_primary_10_1016_j_jacr_2019_05_047 crossref_primary_10_4103_jomfp_JOMFP_215_19 crossref_primary_10_1038_s41598_025_03268_1 crossref_primary_10_3389_fpls_2022_860656 crossref_primary_10_1007_s11042_020_09384_6 crossref_primary_10_1007_s11265_022_01757_4 crossref_primary_10_3390_diagnostics11061004 crossref_primary_10_1109_ACCESS_2024_3450444 crossref_primary_10_3389_froh_2021_794248 crossref_primary_10_32604_cmc_2022_028560 crossref_primary_10_1088_1361_6560_acd2a0 crossref_primary_10_1093_rpd_ncac062 crossref_primary_10_1080_00223131_2020_1856733 crossref_primary_10_1111_odi_13825 crossref_primary_10_1007_s11042_022_14088_0 crossref_primary_10_1097_MS9_0000000000003127 crossref_primary_10_3390_foods13020251 crossref_primary_10_3390_cancers16010207 crossref_primary_10_1093_comjnl_bxaa136 crossref_primary_10_1007_s13198_025_02968_1 crossref_primary_10_1089_cmb_2024_0927 crossref_primary_10_1002_widm_1426 crossref_primary_10_1109_ACCESS_2021_3061477 crossref_primary_10_1111_exsy_13311 crossref_primary_10_1155_2022_3232670 crossref_primary_10_3390_app12115715 crossref_primary_10_3390_cancers13184600 crossref_primary_10_1109_ACCESS_2023_3282315 crossref_primary_10_1148_ryai_2021200267 crossref_primary_10_1007_s11042_022_13412_y crossref_primary_10_1016_j_bspc_2023_104645 crossref_primary_10_3390_diagnostics12051029 crossref_primary_10_3390_healthcare10112188 crossref_primary_10_34248_bsengineering_1528581 crossref_primary_10_1155_2022_9984873 crossref_primary_10_1080_1448837X_2024_2354995 crossref_primary_10_3390_healthcare11010113 crossref_primary_10_3233_XST_210993 crossref_primary_10_1007_s00432_023_04754_7 crossref_primary_10_1055_s_0042_1760314 crossref_primary_10_1109_ACCESS_2023_3302271 crossref_primary_10_1016_j_oraloncology_2024_107165 crossref_primary_10_3390_cancers16213623 crossref_primary_10_3390_s22249790 crossref_primary_10_1016_j_procs_2025_03_296 crossref_primary_10_1109_ACCESS_2020_3020591 crossref_primary_10_3390_cancers13112766 crossref_primary_10_1007_s11042_024_19040_y crossref_primary_10_1111_cas_16395 crossref_primary_10_3389_fnins_2021_714318 crossref_primary_10_1111_jop_13042 crossref_primary_10_3390_diagnostics13071353 crossref_primary_10_1109_ACCESS_2021_3068392 crossref_primary_10_1177_0022034520902128 crossref_primary_10_1109_ACCESS_2020_3011127 crossref_primary_10_1111_odi_15067 crossref_primary_10_1016_j_ymeth_2020_04_004 crossref_primary_10_1007_s11831_021_09676_6 crossref_primary_10_1016_j_procs_2024_04_207 crossref_primary_10_1177_01655515231202761 crossref_primary_10_3389_fonc_2022_894978 crossref_primary_10_1155_2021_9025470 crossref_primary_10_3390_jcm12226973 crossref_primary_10_3390_s21186221 crossref_primary_10_3390_diagnostics14242804 crossref_primary_10_1007_s00500_023_08283_w crossref_primary_10_1007_s11282_023_00715_5 crossref_primary_10_1007_s12070_025_05877_8 crossref_primary_10_1117_1_JMI_11_6_065501 crossref_primary_10_1109_ACCESS_2024_3454338 crossref_primary_10_1007_s00106_023_01276_z crossref_primary_10_1016_j_jormas_2024_101840 crossref_primary_10_1002_jbio_202400284 crossref_primary_10_61186_ijbc_17_1_47 crossref_primary_10_3390_s22145445 crossref_primary_10_1155_2021_9921095 crossref_primary_10_1049_ccs_2019_0004 crossref_primary_10_3389_frai_2023_1069353 crossref_primary_10_1016_j_ijmedinf_2020_104313 crossref_primary_10_3390_biomedicines10020397 crossref_primary_10_3390_cancers13061291 crossref_primary_10_1007_s10462_024_10814_2 crossref_primary_10_1016_j_oraloncology_2021_105254 crossref_primary_10_3389_fgene_2021_624820 crossref_primary_10_1007_s00500_022_07246_x crossref_primary_10_1016_j_bspc_2025_107731 crossref_primary_10_1109_ACCESS_2023_3253430 crossref_primary_10_3390_diagnostics13142416 crossref_primary_10_1007_s13721_024_00459_0 crossref_primary_10_1016_j_neunet_2020_05_003 crossref_primary_10_2478_pjmpe_2025_0021 crossref_primary_10_1142_S0218001425520184 crossref_primary_10_1007_s11704_020_0025_x crossref_primary_10_3390_app13063439 crossref_primary_10_1007_s11042_022_12258_8 crossref_primary_10_1155_2022_6364102 crossref_primary_10_1177_00220345241272048 crossref_primary_10_3390_jcm10225326 crossref_primary_10_1016_j_bios_2024_116982 crossref_primary_10_1109_ACCESS_2021_3086333 crossref_primary_10_3390_electronics9121993 crossref_primary_10_1038_s41598_025_07957_9 crossref_primary_10_1002_cnr2_1293 crossref_primary_10_1186_s12903_024_04347_x crossref_primary_10_1038_s41598_025_86400_5 crossref_primary_10_1016_j_bspc_2023_105546 crossref_primary_10_1109_ACCESS_2020_3010180 crossref_primary_10_1007_s11760_025_04735_y crossref_primary_10_7717_peerj_11451 crossref_primary_10_35378_gujs_1480477 crossref_primary_10_1002_jbio_202100167 crossref_primary_10_1080_07853890_2023_2279239 crossref_primary_10_1111_jop_13013 crossref_primary_10_1007_s10916_019_1500_5 crossref_primary_10_1109_TIM_2023_3293548 crossref_primary_10_1111_jerd_12844 crossref_primary_10_1155_2022_9699612 crossref_primary_10_32604_cmc_2022_029326 crossref_primary_10_3389_froh_2024_1494867 crossref_primary_10_3390_biomimetics8060499 crossref_primary_10_1038_s41598_024_79250_0 crossref_primary_10_1002_ima_22381 crossref_primary_10_1002_2050_7038_12521 crossref_primary_10_1109_ACCESS_2020_3012130 crossref_primary_10_3390_jcm11216596 crossref_primary_10_1002_cyto_a_23871 crossref_primary_10_3390_cancers13081784 crossref_primary_10_1038_s41598_025_93718_7 crossref_primary_10_1186_s12880_023_01076_5 crossref_primary_10_1007_s11517_022_02535_x crossref_primary_10_1016_j_chaos_2020_110071 crossref_primary_10_1007_s11277_024_11242_9 crossref_primary_10_1080_08839514_2022_2073724 crossref_primary_10_1016_j_procs_2025_04_283 crossref_primary_10_1007_s10278_023_00775_3 crossref_primary_10_1186_s12903_023_03533_7 crossref_primary_10_2196_76148 crossref_primary_10_1038_s41598_023_49438_x crossref_primary_10_22399_ijcesen_1666 crossref_primary_10_1038_s41598_022_17489_1 crossref_primary_10_5005_jp_journals_10062_0203 crossref_primary_10_1007_s00521_024_10956_y crossref_primary_10_1016_j_procs_2024_04_023 crossref_primary_10_1038_s41416_021_01386_x |
| Cites_doi | 10.1109/TCYB.2015.2484324 10.1016/j.fcij.2017.12.001 10.1109/TBME.2015.2468589 10.1016/j.csbj.2014.11.005 10.1049/iet-cvi.2017.0475 10.1145/3072959.3073609 10.1016/j.compbiomed.2018.05.018 10.3390/s16010115 10.1109/TDEI.2017.006793 10.1016/j.celrep.2018.03.046 10.1049/iet-cvi.2017.0261 10.1016/j.crad.2017.02.013 10.3390/app7060581 10.1016/j.bjoms.2015.12.005 10.1109/TIP.2017.2713099 10.1109/TMI.2016.2528129 10.1049/iet-ipr.2017.0987 10.1109/LGRS.2014.2376034 10.1016/j.jacr.2017.12.027 10.1016/j.radonc.2017.11.012 10.1109/JBHI.2016.2636929 10.1109/LGRS.2017.2668299 10.1109/MSP.2012.2205597 10.1016/j.eij.2015.08.001 10.1016/j.compbiomed.2018.05.013 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Journal of Cancer Research and Clinical Oncology is a copyright of Springer, (2019). All Rights Reserved. Copyright Springer Nature B.V. Apr 2019 Springer-Verlag GmbH Germany, part of Springer Nature 2019 2019 |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Journal of Cancer Research and Clinical Oncology is a copyright of Springer, (2019). All Rights Reserved. – notice: Copyright Springer Nature B.V. Apr 2019 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 2019 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TO 7X7 7XB 88E 8AO 8C1 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH H94 K9. M0S M1P M2O MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI Q9U 7X8 5PM |
| DOI | 10.1007/s00432-018-02834-7 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Research Library Prep MEDLINE - Academic Research Library Prep MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1432-1335 |
| EndPage | 837 |
| ExternalDocumentID | PMC11810191 30603908 10_1007_s00432_018_02834_7 |
| Genre | Journal Article |
| GroupedDBID | --- -53 -5E -5G -BR -EM -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 203 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 36B 4.4 406 408 409 40D 40E 5RE 5VS 67Z 6NX 78A 7X7 88E 8AO 8C1 8FI 8FJ 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABSXP ABTEG ABTKH ABTMW ABUWG ABWNU ABXPI ACGFS ACHSB ACHVE ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BDATZ BENPR BGNMA BPHCQ BVXVI C6C CCPQU CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMB EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAS LLZTM M1P M2O M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9S PF0 PQQKQ PROAC PSQYO PT5 Q2X QOK QOR QOS R89 R9I RHV ROL RPX RRX RSV S16 S27 S37 S3B SAP SDH SDM SHX SISQX SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7U Z82 Z83 Z87 Z8O Z8V Z8W Z91 ZMTXR ZOVNA ~EX ~KM -Y2 .55 .GJ 1SB 2.D 28- 2P1 2VQ 3O- 53G 5QI AAFWJ AANXM AARHV AASML AAYTO AAYXX ABDBE ABFSG ABQSL ACACY ACBXY ACSTC ACUDM ACULB ADHKG AEBTG AEFIE AEKMD AEZWR AFEXP AFFHD AFFNX AFGXO AFHIU AFPKN AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW AYFIA BBWZM C24 CAG CITATION COF EN4 GROUPED_DOAJ GRRUI H13 KOW N2Q NDZJH O9- OVD PHGZM PHGZT PJZUB PPXIY RNI RPM RZK S1Z S26 S28 SCLPG SDE T16 TEORI X7M ZGI ZXP AAYOK CGR CUY CVF ECM EIF NPM RIG 3V. 7TO 7XB 8FK H94 K9. MBDVC PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c569t-c46403135e527d538fd433a91491fa8afbc44f277a7c9ea58964f7a25d9f5ece3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 195 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000462617300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0171-5216 1432-1335 |
| IngestDate | Tue Nov 04 02:03:57 EST 2025 Thu Oct 02 10:56:05 EDT 2025 Sat Oct 18 23:13:57 EDT 2025 Sat Oct 18 22:45:26 EDT 2025 Sun Jul 20 01:30:38 EDT 2025 Sat Nov 29 03:43:42 EST 2025 Tue Nov 18 22:40:10 EST 2025 Fri Feb 21 02:26:31 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Hyperspectral image data Image labeling Medical image classification Oral cancer diagnosis Deep learning algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c569t-c46403135e527d538fd433a91491fa8afbc44f277a7c9ea58964f7a25d9f5ece3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7086-6596 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/11810191 |
| PMID | 30603908 |
| PQID | 2162673041 |
| PQPubID | 47182 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11810191 proquest_miscellaneous_2163009599 proquest_journals_3195648722 proquest_journals_2162673041 pubmed_primary_30603908 crossref_citationtrail_10_1007_s00432_018_02834_7 crossref_primary_10_1007_s00432_018_02834_7 springer_journals_10_1007_s00432_018_02834_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-01 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | Journal of cancer research and clinical oncology |
| PublicationTitleAbbrev | J Cancer Res Clin Oncol |
| PublicationTitleAlternate | J Cancer Res Clin Oncol |
| PublicationYear | 2019 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Baljit Singh, Singh (CR1) 2016; 17 He, Ma (CR10) 2012 Christodoulidis, Anthimopoulos, Ebner (CR3) 2017; 21 Murray, Rourke, Hogan, Fenton (CR22) 2016; 54 Mathews, Kambhamettu, Barner (CR21) 2018; 99 Chudgar, Conant, Weinstein (CR4) 2017; 72 Ge, Wang, Liu, Li (CR8) 2018; 12 Palsson, Sveinsson, Ulfarsson (CR24) 2017; 14 Lustberg, van Soest, Mark (CR20) 2018; 126 Jie, Shufang, Xizhao, Guoqing, Liyan (CR15) 2018; 12 Hinton, Deng, Yu (CR13) 2012; 29 Kourou, Exarchos, Exarchos (CR19) 2015; 13 Yuan, Lin, Wang (CR28) 2015; 46 Bradley, Erickson, Panagiotis (CR2) 2018; 15 Deepak Kumar, Surendra Bilouhan, Kumar (CR5) 2018; 25 Wang, Gong, Yu (CR27) 2017; 36 Zhihuai, Zhenhua, Chengshan (CR29) 2018; 12 Dey, Chatterjee, Dalai, Munshi, Chakravorti (CR6) 2017; 24 Kalantari, Ramamoorthi (CR17) 2017; 36 Philippe, Vincent, Christophe, Alex (CR25) 2018; 98 Hijazi, Chan (CR12) 2012; 4 Huang, Xiao, Wei (CR14) 2015; 12 Heba, El-Dahshan, El-Horbaty, Abdel-Badeeh (CR11) 2018; 3 Gregory, Way, Sanchez (CR9) 2018; 23 Kiranyaz, Ince, Gabbouj (CR18) 2016; 63 Prochzazka, Vaseghi, Charvatova (CR26) 2017; 7 Ordonez, Roggen (CR23) 2016; 16 Dou, Chen, Yu (CR7) 2016; 35 Jin, McCann, Froustey (CR16) 2017; 26 AV Chudgar (2834_CR4) 2017; 72 P Gregory (2834_CR9) 2018; 23 Y Yuan (2834_CR28) 2015; 46 N Kalantari (2834_CR17) 2017; 36 C Wang (2834_CR27) 2017; 36 H Hijazi (2834_CR12) 2012; 4 J Bradley (2834_CR2) 2018; 15 H He (2834_CR10) 2012 W Huang (2834_CR14) 2015; 12 KH Jin (2834_CR16) 2017; 26 S Kiranyaz (2834_CR18) 2016; 63 S Christodoulidis (2834_CR3) 2017; 21 D Dey (2834_CR6) 2017; 24 Q Dou (2834_CR7) 2016; 35 X Zhihuai (2834_CR29) 2018; 12 T Lustberg (2834_CR20) 2018; 126 M Philippe (2834_CR25) 2018; 98 FJ Ordonez (2834_CR23) 2016; 16 M Heba (2834_CR11) 2018; 3 G Hinton (2834_CR13) 2012; 29 F Palsson (2834_CR24) 2017; 14 H Ge (2834_CR8) 2018; 12 A Prochzazka (2834_CR26) 2017; 7 K Baljit Singh (2834_CR1) 2016; 17 Z Jie (2834_CR15) 2018; 12 K Kourou (2834_CR19) 2015; 13 SM Mathews (2834_CR21) 2018; 99 G Murray (2834_CR22) 2016; 54 J Deepak Kumar (2834_CR5) 2018; 25 |
| References_xml | – volume: 46 start-page: 2966 issue: 12 year: 2015 end-page: 2977 ident: CR28 article-title: Hyperspectral image classification via multitask joint sparse representation and stepwise MRF optimization publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2015.2484324 – volume: 3 start-page: 68 issue: 1 year: 2018 end-page: 71 ident: CR11 article-title: Classification using deep learning neural networks for brain tumors publication-title: Future Comput Inf J doi: 10.1016/j.fcij.2017.12.001 – volume: 63 start-page: 664 issue: 3 year: 2016 end-page: 675 ident: CR18 article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2468589 – volume: 13 start-page: 8 issue: 1 year: 2015 end-page: 17 ident: CR19 article-title: Machine learning applications in cancer prognosis and prediction publication-title: Comput Struct Biotech J doi: 10.1016/j.csbj.2014.11.005 – volume: 12 start-page: 476 issue: 4 year: 2018 end-page: 483 ident: CR29 article-title: Palmprint gender classification by convolutional neural network publication-title: IET Compt Vis doi: 10.1049/iet-cvi.2017.0475 – volume: 36 start-page: 1 issue: 4 year: 2017 end-page: 12 ident: CR17 article-title: Deep high dynamic range imaging of dynamic scenes publication-title: ACM Trans Graph doi: 10.1145/3072959.3073609 – volume: 98 start-page: 126 year: 2018 end-page: 146 ident: CR25 article-title: Survey on deep learning for radiotherapy publication-title: Compt Biol Med doi: 10.1016/j.compbiomed.2018.05.018 – volume: 16 start-page: 1 issue: 1 year: 2016 end-page: 25 ident: CR23 article-title: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition publication-title: Sensors doi: 10.3390/s16010115 – volume: 25 start-page: 252 issue: 1 year: 2018 end-page: 259 ident: CR5 article-title: An approach for hyperspectral image classification by optimizing SVM using self-organizing map publication-title: J Comput Sci – volume: 24 start-page: 3894 issue: 6 year: 2017 end-page: 3897 ident: CR6 article-title: A deep learning framework using convolution neural network for classification of impulse fault patterns in transformers with increased accuracy publication-title: IEEE Trans Dielectr Electr Insul doi: 10.1109/TDEI.2017.006793 – volume: 36 start-page: 513 issue: 3 year: 2017 end-page: 517 ident: CR27 article-title: DLAU: a scalable deep learning accelerator unit on FPGA publication-title: IEEE Trans Comput Aided Des Integr Circuits Syst – volume: 23 start-page: 172 issue: 1 year: 2018 end-page: 180 ident: CR9 article-title: Machine learning detects pan-cancer ras pathway activation in the cancer genome Atlas publication-title: Cell Reports doi: 10.1016/j.celrep.2018.03.046 – volume: 4 start-page: 255 issue: 4 year: 2012 end-page: 284 ident: CR12 article-title: A classification framework applied to cancer gene expression profiles publication-title: J Healthc Eng – volume: 12 start-page: 350 issue: 3 year: 2018 end-page: 356 ident: CR15 article-title: Multi-image matching for object recognition publication-title: IET Compt Vis doi: 10.1049/iet-cvi.2017.0261 – volume: 72 start-page: 573 issue: 7 year: 2017 end-page: 579 ident: CR4 article-title: Assessment of disease extent on contrast-enhanced MRI in breast cancer detected at digital breast tomosynthesis versus digital mammography alone publication-title: Clin Radiol doi: 10.1016/j.crad.2017.02.013 – volume: 7 start-page: 581 issue: 6 year: 2017 end-page: 591 ident: CR26 article-title: Cycling segments multimodal analysis and classification using neural networks publication-title: Appl Sci doi: 10.3390/app7060581 – volume: 54 start-page: 163 issue: 2 year: 2016 end-page: 165 ident: CR22 article-title: Detecting internet search activity for mouth cancer in Ireland publication-title: British J of Oral Maxillofacial Surg doi: 10.1016/j.bjoms.2015.12.005 – volume: 26 start-page: 4509 issue: 9 year: 2017 end-page: 4522 ident: CR16 article-title: Deep convolutional neural network for inverse problems in imaging publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2713099 – volume: 35 start-page: 1182 issue: 5 year: 2016 end-page: 1195 ident: CR7 article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2528129 – volume: 12 start-page: 941 issue: 6 year: 2018 end-page: 947 ident: CR8 article-title: Hyperspectral image classification based on adaptive-weighted LLE and clustering-based FSVMs publication-title: IET Image Proc doi: 10.1049/iet-ipr.2017.0987 – volume: 12 start-page: 1037 issue: 5 year: 2015 end-page: 1041 ident: CR14 article-title: A new pan-sharpening method with deep neural networks publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2014.2376034 – volume: 15 start-page: 521 issue: 3 year: 2018 end-page: 526 ident: CR2 article-title: Deep learning in radiology: does one size fit all? publication-title: J Am Coll Rad doi: 10.1016/j.jacr.2017.12.027 – volume: 126 start-page: 312 year: 2018 end-page: 317 ident: CR20 article-title: Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer publication-title: Radio Onco doi: 10.1016/j.radonc.2017.11.012 – volume: 21 start-page: 76 issue: 1 year: 2017 end-page: 84 ident: CR3 article-title: Multisource transfer learning with convolutional neural networks for lung pattern analysis publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2016.2636929 – volume: 14 start-page: 639 issue: 5 year: 2017 end-page: 643 ident: CR24 article-title: Multispectral and hyperspectral image fusion using a 3-d-convolutional neural network publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2017.2668299 – volume: 29 start-page: 82 issue: 6 year: 2012 end-page: 97 ident: CR13 article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2012.2205597 – volume: 17 start-page: 11 issue: 1 year: 2016 end-page: 20 ident: CR1 article-title: Classification of clustered microcalcifications using MLFFBP-ANN and SVM publication-title: Egyptian Infor J doi: 10.1016/j.eij.2015.08.001 – volume: 99 start-page: 53 issue: 1 year: 2018 end-page: 62 ident: CR21 article-title: A novel application of deep learning for single-lead ECG classification publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.05.013 – year: 2012 ident: CR10 publication-title: Imbalanced learning: foundations, algorithms and applications – volume: 36 start-page: 513 issue: 3 year: 2017 ident: 2834_CR27 publication-title: IEEE Trans Comput Aided Des Integr Circuits Syst – volume: 12 start-page: 350 issue: 3 year: 2018 ident: 2834_CR15 publication-title: IET Compt Vis doi: 10.1049/iet-cvi.2017.0261 – volume: 7 start-page: 581 issue: 6 year: 2017 ident: 2834_CR26 publication-title: Appl Sci doi: 10.3390/app7060581 – volume: 46 start-page: 2966 issue: 12 year: 2015 ident: 2834_CR28 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2015.2484324 – volume: 26 start-page: 4509 issue: 9 year: 2017 ident: 2834_CR16 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2713099 – volume: 4 start-page: 255 issue: 4 year: 2012 ident: 2834_CR12 publication-title: J Healthc Eng – volume: 98 start-page: 126 year: 2018 ident: 2834_CR25 publication-title: Compt Biol Med doi: 10.1016/j.compbiomed.2018.05.018 – volume-title: Imbalanced learning: foundations, algorithms and applications year: 2012 ident: 2834_CR10 – volume: 13 start-page: 8 issue: 1 year: 2015 ident: 2834_CR19 publication-title: Comput Struct Biotech J doi: 10.1016/j.csbj.2014.11.005 – volume: 24 start-page: 3894 issue: 6 year: 2017 ident: 2834_CR6 publication-title: IEEE Trans Dielectr Electr Insul doi: 10.1109/TDEI.2017.006793 – volume: 99 start-page: 53 issue: 1 year: 2018 ident: 2834_CR21 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.05.013 – volume: 29 start-page: 82 issue: 6 year: 2012 ident: 2834_CR13 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2012.2205597 – volume: 12 start-page: 1037 issue: 5 year: 2015 ident: 2834_CR14 publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2014.2376034 – volume: 25 start-page: 252 issue: 1 year: 2018 ident: 2834_CR5 publication-title: J Comput Sci – volume: 3 start-page: 68 issue: 1 year: 2018 ident: 2834_CR11 publication-title: Future Comput Inf J doi: 10.1016/j.fcij.2017.12.001 – volume: 12 start-page: 941 issue: 6 year: 2018 ident: 2834_CR8 publication-title: IET Image Proc doi: 10.1049/iet-ipr.2017.0987 – volume: 63 start-page: 664 issue: 3 year: 2016 ident: 2834_CR18 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2468589 – volume: 21 start-page: 76 issue: 1 year: 2017 ident: 2834_CR3 publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2016.2636929 – volume: 17 start-page: 11 issue: 1 year: 2016 ident: 2834_CR1 publication-title: Egyptian Infor J doi: 10.1016/j.eij.2015.08.001 – volume: 14 start-page: 639 issue: 5 year: 2017 ident: 2834_CR24 publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2017.2668299 – volume: 12 start-page: 476 issue: 4 year: 2018 ident: 2834_CR29 publication-title: IET Compt Vis doi: 10.1049/iet-cvi.2017.0475 – volume: 15 start-page: 521 issue: 3 year: 2018 ident: 2834_CR2 publication-title: J Am Coll Rad doi: 10.1016/j.jacr.2017.12.027 – volume: 72 start-page: 573 issue: 7 year: 2017 ident: 2834_CR4 publication-title: Clin Radiol doi: 10.1016/j.crad.2017.02.013 – volume: 36 start-page: 1 issue: 4 year: 2017 ident: 2834_CR17 publication-title: ACM Trans Graph doi: 10.1145/3072959.3073609 – volume: 23 start-page: 172 issue: 1 year: 2018 ident: 2834_CR9 publication-title: Cell Reports doi: 10.1016/j.celrep.2018.03.046 – volume: 126 start-page: 312 year: 2018 ident: 2834_CR20 publication-title: Radio Onco doi: 10.1016/j.radonc.2017.11.012 – volume: 54 start-page: 163 issue: 2 year: 2016 ident: 2834_CR22 publication-title: British J of Oral Maxillofacial Surg doi: 10.1016/j.bjoms.2015.12.005 – volume: 35 start-page: 1182 issue: 5 year: 2016 ident: 2834_CR7 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2528129 – volume: 16 start-page: 1 issue: 1 year: 2016 ident: 2834_CR23 publication-title: Sensors doi: 10.3390/s16010115 |
| SSID | ssj0017572 |
| Score | 2.6448736 |
| Snippet | Purpose
Oral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and... Oral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and classification... PurposeOral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 829 |
| SubjectTerms | Accuracy Algorithms Cancer Research Cancer therapies Classification Deep Learning Diagnosis Early Detection of Cancer - methods Hematology Humans Image processing Image Processing, Computer-Assisted - methods Internal Medicine Medicine Medicine & Public Health Mouth Neoplasms - diagnostic imaging Neural networks Oncology Oral cancer Original Article – Cancer Research Original – Cancer Research Tumors |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VilAvpYXSLlDkSr2Bpd04ju0jqoq4gKrSIm6RYzsQic2izdLf3xnnUS0vqZw9iWzP2P5GM_MNwFfnxtI7UXBZCM_TUgWug_EcsbJzQpZECxWbTaizM315aX50RWFNn-3ehyTjTT0Uu0X2OHR9Nac3MeVqBV7jc6epYcPP84shdqBkbNlERDDoZk2yrlTm8X8sP0cPMObDVMl78dL4DB1vvGwB7-BtBzvZUWsn7-FVqDdh_bQLrG9B03d34AimSfOeTdsQDqumeOUwRyib0oqiJhlCXRaIG5n5NlevatisZFTuzxwZEg7HXsI4QeZDuGVde4orZm-uZvNqcT39AL-Pv__6dsK7fgzcycwsuEuzlKgeZZCJ8nhTlj4Vwhp0sial1bYsXJqWiVJWOROs1CZD5dtEelPK4ILYhtV6VodPwFBSI9ZA8KCJIQ39qEJSB_tQ6MKiRzSCSa-W3HVk5dQz4yYfaJbjbua4m3nczVyN4GD45ral6nhWeq_Xdt4d2yZHa0kyvPPSyaPDgoor0cNLkhF8GYbxPFKQxdZhdhd_ISLdsxnBx9Z2htmgezYWZoyr00tWNQgQ1_fySF1dR85vqg9GNI7zOuyN69-8nl7lzv-J78IbBISmzUzag9XF_C58hjX3Z1E18_14zP4C0FYiAg priority: 102 providerName: Springer Nature |
| Title | Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm |
| URI | https://link.springer.com/article/10.1007/s00432-018-02834-7 https://www.ncbi.nlm.nih.gov/pubmed/30603908 https://www.proquest.com/docview/2162673041 https://www.proquest.com/docview/3195648722 https://www.proquest.com/docview/2163009599 https://pubmed.ncbi.nlm.nih.gov/PMC11810191 |
| Volume | 145 |
| WOSCitedRecordID | wos000462617300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-1335 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017572 issn: 0171-5216 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BixAXvgsLpTISN7DYxHFsnxCtWnHpUpUP7S1KbKddqZtdmi2_nxnHSbUt7aUXS5GdyNaM7TcZ-z2AD9aOpbOi4rISjme18lx74zhiZWuFrIkWKohNqMlET6fmKP5wa-Oxyn5NDAu1W1j6R_5Z0MU2RNdp-mX5h5NqFGVXo4TGfdgk2WzyczUdAi7cGYN4E1HCYMCV5PHSTLg6F7joMJDWnHbYjKv1jeka2rx-aPJK5jRsSAdP7jqUp_A4QlH2tfOdZ3DPN8_h4WFMtr-Atld84AiwyRscm3dpHTab4zLELCFvOmoUrMsQ_jJPfMnMdef3Zi1b1IwoAJgl58LqoC-Mw2HO-yWLkhUnrDw7wQ6uTucv4dfB_s-9bzxqNHArc7PiNsszon-UXqbK4epZu0yI0mDgldSlLuvKZlmdKlUqa3wptcnRIcpUOlNLb73Ygo1m0fjXwLClRvyBgEITaxrGVpUkVXtf6arEKGkESW-gwkYCc9LROCsG6uVg1AKNWgSjFmoEH4d3lh19x62tt3uDFXEqtwX6TZrjOpgl_62-NOYI3g_VOEcp8VI2fnERPiECBbQZwavOi4beYMg2FmaMo9Nr_jU0IP7v9Zpmdhp4wOnOMCJ07Nen3hUv-3XzKN_cPoy38AhBoelOJ23Dxur8wr-DB_bvatae74QJFkqNpd5LdmBzd39ydIxPh-l3LI9__P4H_sAxYw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL78dCASPBCSx2YzuxDwghoGrVduFQpN5Sx3balbrZpdmC-FP8RmacR7UUeuuBs53Idj6P58uMvwF44dxQeScKrgrhuSyzwHUwnqOv7JxQJclCxWIT2Xis9_bMlxX41d2FobTKziZGQ-1njv6RvxF0sQ296yR5N__GqWoURVe7EhoNLLbCzx9I2eq3mx_x-75MkvVPux82eFtVgDuVmgV3MpUkWKiCSjKP-730UghrkCqMSqttWTgpyyTLbOZMsEqbFKdgE-VNqYILAt97CS5LYkKUKph87qMWmYrFokiCBgneKG0v6cSrelH7Dom75nSiS54tH4RnvNuzSZp_RGrjAbh-839bultwo3W12ftmb9yGlVDdgas7bTLBXai7ihYcCQSh3bNpE7ZikymaWeaIWVAqVUQvQ_eeBdKDZr7JT5zUbFYykjhgjjYPNsf6ybh8zIcwZ21JjgNmjw5wQRaH03vw9UKmfB9Wq1kVHgLDnhr9K3SYNKnCIXcs0JuWOhS6sMgCBzDqAJG7VqCd6oQc5b20dARRjiDKI4jybACv-mfmjTzJub3XOoDkramqc8RpkqKdl6O_Np-CZwDP-2a0QRRYslWYncRXiChxbQbwoEFtPxqkpENhhjg7vYTnvgPpmy-3VJPDqHNOd6KRgeC4XnfQPx3Xv2f56PxpPINrG7s72_n25njrMVxHB9g0mVhrsLo4PglP4Ir7vpjUx0_j5mawf9Fb4jeuWokR |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLaq48H4sFDASnMDqbmLH9gEhoF1RFVYrBFJvaWI77Urd7NJsQfw1fh0zzqNaCr31wNlOZDvfjGcyM98APLd2IJ2Ncy7z2HFRKM-1N46jrWxtLAuihQrNJtR4rPf3zWQNfrW1MJRW2erEoKjd3NI_8q2YCtvQuo6iraJJi5hsj94svnHqIEWR1radRg2RPf_zB7pv1evdbfzWL6JotPPl_QfedBjgViZmya1IBJEXSi8j5VD2CyfiODPoNgyLTGdFboUoIqUyZY3PpDYJbieLpDOF9NbH-N4rsK7QyBA9WH-3M5587mIYSobWUURIg-7eMGlKdkLhXmDCQzdec7rfBVer1-I5W_d8yuYfcdtwHY5u_M8HeROuN0Y4e1tLzS1Y8-Vt2PjUpBncgartdcHRtSA5cGxWB7TYdIYKmFnyOSjJKuCaoeHPPDFFM1dnLk4rNi8YkR8wS2KFw6GzMh4lc94vWNOs45Blx4d4IMuj2V34eilbvge9cl76B8BwpkbLC00pTXxx6FXmaGcL7XOdZ-gf9mHYgiO1DXU7dRA5TjvS6QCoFAGVBkClqg8vu2cWNXHJhbM3W7CkjRKrUsRslOANIIZ_HT4DUh-edcOonSjklJV-fhpeEQfya9OH-zWCu9WgszqIzQB3p1ew3U0g5vPVkXJ6FBjQqVoafRNc16tWDM7W9e9dPrx4G09hAyUh_bg73nsE19AyNnWK1ib0lien_jFctd-X0-rkSSPpDA4uWyZ-A0Axky4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-assisted+medical+image+classification+for+early+diagnosis+of+oral+cancer+employing+deep+learning+algorithm&rft.jtitle=Journal+of+cancer+research+and+clinical+oncology&rft.au=Jeyaraj%2C+Pandia+Rajan&rft.au=Samuel+Nadar%2C+Edward+Rajan&rft.date=2019-04-01&rft.issn=1432-1335&rft.eissn=1432-1335&rft.volume=145&rft.issue=4&rft.spage=829&rft_id=info:doi/10.1007%2Fs00432-018-02834-7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0171-5216&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0171-5216&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0171-5216&client=summon |