Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm

Purpose Oral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and classification are made possible. Medical imaging technique, computer-aided diagnosis and detection can make potential changes in cancer treatment....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of cancer research and clinical oncology Ročník 145; číslo 4; s. 829 - 837
Hlavní autoři: Jeyaraj, Pandia Rajan, Samuel Nadar, Edward Rajan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2019
Springer Nature B.V
Témata:
ISSN:0171-5216, 1432-1335, 1432-1335
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Purpose Oral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and classification are made possible. Medical imaging technique, computer-aided diagnosis and detection can make potential changes in cancer treatment. In this research work, we have developed a deep learning algorithm for automated, computer-aided oral cancer detecting system by investigating patient hyperspectral images. Methods To validate the proposed regression-based partitioned deep learning algorithm, we compare the performance with other techniques by its classification accuracy, specificity, and sensitivity. For the accurate medical image classification objective, we demonstrate a new structure of partitioned deep Convolution Neural Network (CNN) with two partitioned layers for labeling and classify by labeling region of interest in multidimensional hyperspectral image. Results The performance of the partitioned deep CNN was verified by classification accuracy. We have obtained classification accuracy of 91.4% with sensitivity 0.94 and a specificity of 0.91 for 100 image data sets training for task classification of cancerous tumor with benign and for task classification of cancerous tumor with normal tissue accuracy of 94.5% for 500 training patterns was obtained. Conclusions We compared the obtained results from another traditional medical image classification algorithm. From the obtained result, we identify that the quality of diagnosis is increased by proposed regression-based partitioned CNN learning algorithm for a complex medical image of oral cancer diagnosis.
AbstractList Purpose Oral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and classification are made possible. Medical imaging technique, computer-aided diagnosis and detection can make potential changes in cancer treatment. In this research work, we have developed a deep learning algorithm for automated, computer-aided oral cancer detecting system by investigating patient hyperspectral images. Methods To validate the proposed regression-based partitioned deep learning algorithm, we compare the performance with other techniques by its classification accuracy, specificity, and sensitivity. For the accurate medical image classification objective, we demonstrate a new structure of partitioned deep Convolution Neural Network (CNN) with two partitioned layers for labeling and classify by labeling region of interest in multidimensional hyperspectral image. Results The performance of the partitioned deep CNN was verified by classification accuracy. We have obtained classification accuracy of 91.4% with sensitivity 0.94 and a specificity of 0.91 for 100 image data sets training for task classification of cancerous tumor with benign and for task classification of cancerous tumor with normal tissue accuracy of 94.5% for 500 training patterns was obtained. Conclusions We compared the obtained results from another traditional medical image classification algorithm. From the obtained result, we identify that the quality of diagnosis is increased by proposed regression-based partitioned CNN learning algorithm for a complex medical image of oral cancer diagnosis.
PurposeOral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and classification are made possible. Medical imaging technique, computer-aided diagnosis and detection can make potential changes in cancer treatment. In this research work, we have developed a deep learning algorithm for automated, computer-aided oral cancer detecting system by investigating patient hyperspectral images.MethodsTo validate the proposed regression-based partitioned deep learning algorithm, we compare the performance with other techniques by its classification accuracy, specificity, and sensitivity. For the accurate medical image classification objective, we demonstrate a new structure of partitioned deep Convolution Neural Network (CNN) with two partitioned layers for labeling and classify by labeling region of interest in multidimensional hyperspectral image.ResultsThe performance of the partitioned deep CNN was verified by classification accuracy. We have obtained classification accuracy of 91.4% with sensitivity 0.94 and a specificity of 0.91 for 100 image data sets training for task classification of cancerous tumor with benign and for task classification of cancerous tumor with normal tissue accuracy of 94.5% for 500 training patterns was obtained.ConclusionsWe compared the obtained results from another traditional medical image classification algorithm. From the obtained result, we identify that the quality of diagnosis is increased by proposed regression-based partitioned CNN learning algorithm for a complex medical image of oral cancer diagnosis.
Oral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and classification are made possible. Medical imaging technique, computer-aided diagnosis and detection can make potential changes in cancer treatment. In this research work, we have developed a deep learning algorithm for automated, computer-aided oral cancer detecting system by investigating patient hyperspectral images.PURPOSEOral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and classification are made possible. Medical imaging technique, computer-aided diagnosis and detection can make potential changes in cancer treatment. In this research work, we have developed a deep learning algorithm for automated, computer-aided oral cancer detecting system by investigating patient hyperspectral images.To validate the proposed regression-based partitioned deep learning algorithm, we compare the performance with other techniques by its classification accuracy, specificity, and sensitivity. For the accurate medical image classification objective, we demonstrate a new structure of partitioned deep Convolution Neural Network (CNN) with two partitioned layers for labeling and classify by labeling region of interest in multidimensional hyperspectral image.METHODSTo validate the proposed regression-based partitioned deep learning algorithm, we compare the performance with other techniques by its classification accuracy, specificity, and sensitivity. For the accurate medical image classification objective, we demonstrate a new structure of partitioned deep Convolution Neural Network (CNN) with two partitioned layers for labeling and classify by labeling region of interest in multidimensional hyperspectral image.The performance of the partitioned deep CNN was verified by classification accuracy. We have obtained classification accuracy of 91.4% with sensitivity 0.94 and a specificity of 0.91 for 100 image data sets training for task classification of cancerous tumor with benign and for task classification of cancerous tumor with normal tissue accuracy of 94.5% for 500 training patterns was obtained.RESULTSThe performance of the partitioned deep CNN was verified by classification accuracy. We have obtained classification accuracy of 91.4% with sensitivity 0.94 and a specificity of 0.91 for 100 image data sets training for task classification of cancerous tumor with benign and for task classification of cancerous tumor with normal tissue accuracy of 94.5% for 500 training patterns was obtained.We compared the obtained results from another traditional medical image classification algorithm. From the obtained result, we identify that the quality of diagnosis is increased by proposed regression-based partitioned CNN learning algorithm for a complex medical image of oral cancer diagnosis.CONCLUSIONSWe compared the obtained results from another traditional medical image classification algorithm. From the obtained result, we identify that the quality of diagnosis is increased by proposed regression-based partitioned CNN learning algorithm for a complex medical image of oral cancer diagnosis.
Oral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and classification are made possible. Medical imaging technique, computer-aided diagnosis and detection can make potential changes in cancer treatment. In this research work, we have developed a deep learning algorithm for automated, computer-aided oral cancer detecting system by investigating patient hyperspectral images. To validate the proposed regression-based partitioned deep learning algorithm, we compare the performance with other techniques by its classification accuracy, specificity, and sensitivity. For the accurate medical image classification objective, we demonstrate a new structure of partitioned deep Convolution Neural Network (CNN) with two partitioned layers for labeling and classify by labeling region of interest in multidimensional hyperspectral image. The performance of the partitioned deep CNN was verified by classification accuracy. We have obtained classification accuracy of 91.4% with sensitivity 0.94 and a specificity of 0.91 for 100 image data sets training for task classification of cancerous tumor with benign and for task classification of cancerous tumor with normal tissue accuracy of 94.5% for 500 training patterns was obtained. We compared the obtained results from another traditional medical image classification algorithm. From the obtained result, we identify that the quality of diagnosis is increased by proposed regression-based partitioned CNN learning algorithm for a complex medical image of oral cancer diagnosis.
Author Samuel Nadar, Edward Rajan
Jeyaraj, Pandia Rajan
Author_xml – sequence: 1
  givenname: Pandia Rajan
  orcidid: 0000-0001-7086-6596
  surname: Jeyaraj
  fullname: Jeyaraj, Pandia Rajan
  email: pandiarajan@mepcoeng.ac.in
  organization: Department of Electrical and Electronics Engineering, Mepco Schlenk Engineering College (Autonomous)
– sequence: 2
  givenname: Edward Rajan
  surname: Samuel Nadar
  fullname: Samuel Nadar, Edward Rajan
  organization: Department of Electrical and Electronics Engineering, Mepco Schlenk Engineering College (Autonomous)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30603908$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAUtFARvS38AAsUiQ2bgJ9xvELoipdUiQ2sLdc5Tl05drATpPv3OL0tjy7uyjo-M-M5PnOBzmKKgNBLgt8SjOW7gjFntMWkbzHtGW_lE7Qj2xVhTJyhHSaStIKS7hxdlHKLay0kfYbOGe4wU7jfobJP07wukFtTii8LDM0Eg7cmNH4yIzQ2bA1XbxafYuNSbsDkcGgGb8aYKqdJrkm5EqyJFmp7mkM6-Dg2A8DchAqPW2XCmLJfbqbn6KkzocCL-_MS_fj08fv-S3v17fPX_Yer1opOLa3lHceMMAGCykGw3g2cMaMIV8SZ3rhry7mjUhppFRjRq447aagYlBNggV2i90fdeb2uQ1mIS7Wp51wnywedjNf_d6K_0WP6pQnpCSaKVIU39wo5_VyhLHryxUIIJkJai65fyzBWQqkKff0IepvWHOt8mhElOt5LSk-hqhbtJMN8e_bVv8b_OH5YWwX0R4DNqZQMTlu_3C2ozuGDJlhvCdHHhOiaEH2XEC0rlT6iPqifJLEjqVRwHCH_tX2C9RuTZM7W
CitedBy_id crossref_primary_10_3390_app13053370
crossref_primary_10_3390_cancers13194751
crossref_primary_10_2186_jpr_JPOR_2019_354
crossref_primary_10_1016_j_identj_2022_03_001
crossref_primary_10_1007_s11277_024_11587_1
crossref_primary_10_1016_j_oooo_2023_10_003
crossref_primary_10_7759_cureus_88407
crossref_primary_10_1049_iet_ipr_2019_0900
crossref_primary_10_1007_s11042_023_17568_z
crossref_primary_10_1016_j_smhl_2024_100538
crossref_primary_10_1109_ACCESS_2020_3009412
crossref_primary_10_3390_bioengineering11111107
crossref_primary_10_1016_j_compbiomed_2025_109913
crossref_primary_10_1038_s41598_025_11861_7
crossref_primary_10_1088_1361_6560_adc8f5
crossref_primary_10_1016_j_compbiomed_2025_109918
crossref_primary_10_1016_j_bspc_2023_104704
crossref_primary_10_1109_ACCESS_2020_3019332
crossref_primary_10_3389_froh_2021_686863
crossref_primary_10_1088_2516_1091_ac1f6c
crossref_primary_10_3390_diagnostics13213360
crossref_primary_10_3390_jpm12020166
crossref_primary_10_1016_j_artmed_2021_102060
crossref_primary_10_3389_fnagi_2021_764872
crossref_primary_10_2174_012212697X315512240821045542
crossref_primary_10_1007_s40009_022_01157_z
crossref_primary_10_1109_ACCESS_2022_3187507
crossref_primary_10_1002_cpe_7451
crossref_primary_10_1016_j_bspc_2020_102258
crossref_primary_10_1016_j_tice_2019_101322
crossref_primary_10_1007_s41060_023_00502_9
crossref_primary_10_1136_bmjopen_2025_101169
crossref_primary_10_1016_j_jormas_2019_06_002
crossref_primary_10_1016_j_jacr_2019_05_047
crossref_primary_10_4103_jomfp_JOMFP_215_19
crossref_primary_10_1038_s41598_025_03268_1
crossref_primary_10_3389_fpls_2022_860656
crossref_primary_10_1007_s11042_020_09384_6
crossref_primary_10_1007_s11265_022_01757_4
crossref_primary_10_3390_diagnostics11061004
crossref_primary_10_1109_ACCESS_2024_3450444
crossref_primary_10_3389_froh_2021_794248
crossref_primary_10_32604_cmc_2022_028560
crossref_primary_10_1088_1361_6560_acd2a0
crossref_primary_10_1093_rpd_ncac062
crossref_primary_10_1080_00223131_2020_1856733
crossref_primary_10_1111_odi_13825
crossref_primary_10_1007_s11042_022_14088_0
crossref_primary_10_1097_MS9_0000000000003127
crossref_primary_10_3390_foods13020251
crossref_primary_10_3390_cancers16010207
crossref_primary_10_1093_comjnl_bxaa136
crossref_primary_10_1007_s13198_025_02968_1
crossref_primary_10_1089_cmb_2024_0927
crossref_primary_10_1002_widm_1426
crossref_primary_10_1109_ACCESS_2021_3061477
crossref_primary_10_1111_exsy_13311
crossref_primary_10_1155_2022_3232670
crossref_primary_10_3390_app12115715
crossref_primary_10_3390_cancers13184600
crossref_primary_10_1109_ACCESS_2023_3282315
crossref_primary_10_1148_ryai_2021200267
crossref_primary_10_1007_s11042_022_13412_y
crossref_primary_10_1016_j_bspc_2023_104645
crossref_primary_10_3390_diagnostics12051029
crossref_primary_10_3390_healthcare10112188
crossref_primary_10_34248_bsengineering_1528581
crossref_primary_10_1155_2022_9984873
crossref_primary_10_1080_1448837X_2024_2354995
crossref_primary_10_3390_healthcare11010113
crossref_primary_10_3233_XST_210993
crossref_primary_10_1007_s00432_023_04754_7
crossref_primary_10_1055_s_0042_1760314
crossref_primary_10_1109_ACCESS_2023_3302271
crossref_primary_10_1016_j_oraloncology_2024_107165
crossref_primary_10_3390_cancers16213623
crossref_primary_10_3390_s22249790
crossref_primary_10_1016_j_procs_2025_03_296
crossref_primary_10_1109_ACCESS_2020_3020591
crossref_primary_10_3390_cancers13112766
crossref_primary_10_1007_s11042_024_19040_y
crossref_primary_10_1111_cas_16395
crossref_primary_10_3389_fnins_2021_714318
crossref_primary_10_1111_jop_13042
crossref_primary_10_3390_diagnostics13071353
crossref_primary_10_1109_ACCESS_2021_3068392
crossref_primary_10_1177_0022034520902128
crossref_primary_10_1109_ACCESS_2020_3011127
crossref_primary_10_1111_odi_15067
crossref_primary_10_1016_j_ymeth_2020_04_004
crossref_primary_10_1007_s11831_021_09676_6
crossref_primary_10_1016_j_procs_2024_04_207
crossref_primary_10_1177_01655515231202761
crossref_primary_10_3389_fonc_2022_894978
crossref_primary_10_1155_2021_9025470
crossref_primary_10_3390_jcm12226973
crossref_primary_10_3390_s21186221
crossref_primary_10_3390_diagnostics14242804
crossref_primary_10_1007_s00500_023_08283_w
crossref_primary_10_1007_s11282_023_00715_5
crossref_primary_10_1007_s12070_025_05877_8
crossref_primary_10_1117_1_JMI_11_6_065501
crossref_primary_10_1109_ACCESS_2024_3454338
crossref_primary_10_1007_s00106_023_01276_z
crossref_primary_10_1016_j_jormas_2024_101840
crossref_primary_10_1002_jbio_202400284
crossref_primary_10_61186_ijbc_17_1_47
crossref_primary_10_3390_s22145445
crossref_primary_10_1155_2021_9921095
crossref_primary_10_1049_ccs_2019_0004
crossref_primary_10_3389_frai_2023_1069353
crossref_primary_10_1016_j_ijmedinf_2020_104313
crossref_primary_10_3390_biomedicines10020397
crossref_primary_10_3390_cancers13061291
crossref_primary_10_1007_s10462_024_10814_2
crossref_primary_10_1016_j_oraloncology_2021_105254
crossref_primary_10_3389_fgene_2021_624820
crossref_primary_10_1007_s00500_022_07246_x
crossref_primary_10_1016_j_bspc_2025_107731
crossref_primary_10_1109_ACCESS_2023_3253430
crossref_primary_10_3390_diagnostics13142416
crossref_primary_10_1007_s13721_024_00459_0
crossref_primary_10_1016_j_neunet_2020_05_003
crossref_primary_10_2478_pjmpe_2025_0021
crossref_primary_10_1142_S0218001425520184
crossref_primary_10_1007_s11704_020_0025_x
crossref_primary_10_3390_app13063439
crossref_primary_10_1007_s11042_022_12258_8
crossref_primary_10_1155_2022_6364102
crossref_primary_10_1177_00220345241272048
crossref_primary_10_3390_jcm10225326
crossref_primary_10_1016_j_bios_2024_116982
crossref_primary_10_1109_ACCESS_2021_3086333
crossref_primary_10_3390_electronics9121993
crossref_primary_10_1038_s41598_025_07957_9
crossref_primary_10_1002_cnr2_1293
crossref_primary_10_1186_s12903_024_04347_x
crossref_primary_10_1038_s41598_025_86400_5
crossref_primary_10_1016_j_bspc_2023_105546
crossref_primary_10_1109_ACCESS_2020_3010180
crossref_primary_10_1007_s11760_025_04735_y
crossref_primary_10_7717_peerj_11451
crossref_primary_10_35378_gujs_1480477
crossref_primary_10_1002_jbio_202100167
crossref_primary_10_1080_07853890_2023_2279239
crossref_primary_10_1111_jop_13013
crossref_primary_10_1007_s10916_019_1500_5
crossref_primary_10_1109_TIM_2023_3293548
crossref_primary_10_1111_jerd_12844
crossref_primary_10_1155_2022_9699612
crossref_primary_10_32604_cmc_2022_029326
crossref_primary_10_3389_froh_2024_1494867
crossref_primary_10_3390_biomimetics8060499
crossref_primary_10_1038_s41598_024_79250_0
crossref_primary_10_1002_ima_22381
crossref_primary_10_1002_2050_7038_12521
crossref_primary_10_1109_ACCESS_2020_3012130
crossref_primary_10_3390_jcm11216596
crossref_primary_10_1002_cyto_a_23871
crossref_primary_10_3390_cancers13081784
crossref_primary_10_1038_s41598_025_93718_7
crossref_primary_10_1186_s12880_023_01076_5
crossref_primary_10_1007_s11517_022_02535_x
crossref_primary_10_1016_j_chaos_2020_110071
crossref_primary_10_1007_s11277_024_11242_9
crossref_primary_10_1080_08839514_2022_2073724
crossref_primary_10_1016_j_procs_2025_04_283
crossref_primary_10_1007_s10278_023_00775_3
crossref_primary_10_1186_s12903_023_03533_7
crossref_primary_10_2196_76148
crossref_primary_10_1038_s41598_023_49438_x
crossref_primary_10_22399_ijcesen_1666
crossref_primary_10_1038_s41598_022_17489_1
crossref_primary_10_5005_jp_journals_10062_0203
crossref_primary_10_1007_s00521_024_10956_y
crossref_primary_10_1016_j_procs_2024_04_023
crossref_primary_10_1038_s41416_021_01386_x
Cites_doi 10.1109/TCYB.2015.2484324
10.1016/j.fcij.2017.12.001
10.1109/TBME.2015.2468589
10.1016/j.csbj.2014.11.005
10.1049/iet-cvi.2017.0475
10.1145/3072959.3073609
10.1016/j.compbiomed.2018.05.018
10.3390/s16010115
10.1109/TDEI.2017.006793
10.1016/j.celrep.2018.03.046
10.1049/iet-cvi.2017.0261
10.1016/j.crad.2017.02.013
10.3390/app7060581
10.1016/j.bjoms.2015.12.005
10.1109/TIP.2017.2713099
10.1109/TMI.2016.2528129
10.1049/iet-ipr.2017.0987
10.1109/LGRS.2014.2376034
10.1016/j.jacr.2017.12.027
10.1016/j.radonc.2017.11.012
10.1109/JBHI.2016.2636929
10.1109/LGRS.2017.2668299
10.1109/MSP.2012.2205597
10.1016/j.eij.2015.08.001
10.1016/j.compbiomed.2018.05.013
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Journal of Cancer Research and Clinical Oncology is a copyright of Springer, (2019). All Rights Reserved.
Copyright Springer Nature B.V. Apr 2019
Springer-Verlag GmbH Germany, part of Springer Nature 2019 2019
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Journal of Cancer Research and Clinical Oncology is a copyright of Springer, (2019). All Rights Reserved.
– notice: Copyright Springer Nature B.V. Apr 2019
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TO
7X7
7XB
88E
8AO
8C1
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
H94
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1007/s00432-018-02834-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Oncogenes and Growth Factors Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Research Library Prep
MEDLINE - Academic
Research Library Prep
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1335
EndPage 837
ExternalDocumentID PMC11810191
30603908
10_1007_s00432_018_02834_7
Genre Journal Article
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
203
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
36B
4.4
406
408
409
40D
40E
5RE
5VS
67Z
6NX
78A
7X7
88E
8AO
8C1
8FI
8FJ
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACGFS
ACHSB
ACHVE
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BPHCQ
BVXVI
C6C
CCPQU
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAS
LLZTM
M1P
M2O
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9S
PF0
PQQKQ
PROAC
PSQYO
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
ROL
RPX
RRX
RSV
S16
S27
S37
S3B
SAP
SDH
SDM
SHX
SISQX
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7U
Z82
Z83
Z87
Z8O
Z8V
Z8W
Z91
ZMTXR
ZOVNA
~EX
~KM
-Y2
.55
.GJ
1SB
2.D
28-
2P1
2VQ
3O-
53G
5QI
AAFWJ
AANXM
AARHV
AASML
AAYTO
AAYXX
ABDBE
ABFSG
ABQSL
ACACY
ACBXY
ACSTC
ACUDM
ACULB
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFEXP
AFFHD
AFFNX
AFGXO
AFHIU
AFPKN
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
AYFIA
BBWZM
C24
CAG
CITATION
COF
EN4
GROUPED_DOAJ
GRRUI
H13
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PJZUB
PPXIY
RNI
RPM
RZK
S1Z
S26
S28
SCLPG
SDE
T16
TEORI
X7M
ZGI
ZXP
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
RIG
3V.
7TO
7XB
8FK
H94
K9.
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c569t-c46403135e527d538fd433a91491fa8afbc44f277a7c9ea58964f7a25d9f5ece3
IEDL.DBID 7X7
ISICitedReferencesCount 195
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000462617300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0171-5216
1432-1335
IngestDate Tue Nov 04 02:03:57 EST 2025
Thu Oct 02 10:56:05 EDT 2025
Sat Oct 18 23:13:57 EDT 2025
Sat Oct 18 22:45:26 EDT 2025
Sun Jul 20 01:30:38 EDT 2025
Sat Nov 29 03:43:42 EST 2025
Tue Nov 18 22:40:10 EST 2025
Fri Feb 21 02:26:31 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Hyperspectral image data
Image labeling
Medical image classification
Oral cancer diagnosis
Deep learning algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c569t-c46403135e527d538fd433a91491fa8afbc44f277a7c9ea58964f7a25d9f5ece3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7086-6596
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11810191
PMID 30603908
PQID 2162673041
PQPubID 47182
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11810191
proquest_miscellaneous_2163009599
proquest_journals_3195648722
proquest_journals_2162673041
pubmed_primary_30603908
crossref_citationtrail_10_1007_s00432_018_02834_7
crossref_primary_10_1007_s00432_018_02834_7
springer_journals_10_1007_s00432_018_02834_7
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Journal of cancer research and clinical oncology
PublicationTitleAbbrev J Cancer Res Clin Oncol
PublicationTitleAlternate J Cancer Res Clin Oncol
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Baljit Singh, Singh (CR1) 2016; 17
He, Ma (CR10) 2012
Christodoulidis, Anthimopoulos, Ebner (CR3) 2017; 21
Murray, Rourke, Hogan, Fenton (CR22) 2016; 54
Mathews, Kambhamettu, Barner (CR21) 2018; 99
Chudgar, Conant, Weinstein (CR4) 2017; 72
Ge, Wang, Liu, Li (CR8) 2018; 12
Palsson, Sveinsson, Ulfarsson (CR24) 2017; 14
Lustberg, van Soest, Mark (CR20) 2018; 126
Jie, Shufang, Xizhao, Guoqing, Liyan (CR15) 2018; 12
Hinton, Deng, Yu (CR13) 2012; 29
Kourou, Exarchos, Exarchos (CR19) 2015; 13
Yuan, Lin, Wang (CR28) 2015; 46
Bradley, Erickson, Panagiotis (CR2) 2018; 15
Deepak Kumar, Surendra Bilouhan, Kumar (CR5) 2018; 25
Wang, Gong, Yu (CR27) 2017; 36
Zhihuai, Zhenhua, Chengshan (CR29) 2018; 12
Dey, Chatterjee, Dalai, Munshi, Chakravorti (CR6) 2017; 24
Kalantari, Ramamoorthi (CR17) 2017; 36
Philippe, Vincent, Christophe, Alex (CR25) 2018; 98
Hijazi, Chan (CR12) 2012; 4
Huang, Xiao, Wei (CR14) 2015; 12
Heba, El-Dahshan, El-Horbaty, Abdel-Badeeh (CR11) 2018; 3
Gregory, Way, Sanchez (CR9) 2018; 23
Kiranyaz, Ince, Gabbouj (CR18) 2016; 63
Prochzazka, Vaseghi, Charvatova (CR26) 2017; 7
Ordonez, Roggen (CR23) 2016; 16
Dou, Chen, Yu (CR7) 2016; 35
Jin, McCann, Froustey (CR16) 2017; 26
AV Chudgar (2834_CR4) 2017; 72
P Gregory (2834_CR9) 2018; 23
Y Yuan (2834_CR28) 2015; 46
N Kalantari (2834_CR17) 2017; 36
C Wang (2834_CR27) 2017; 36
H Hijazi (2834_CR12) 2012; 4
J Bradley (2834_CR2) 2018; 15
H He (2834_CR10) 2012
W Huang (2834_CR14) 2015; 12
KH Jin (2834_CR16) 2017; 26
S Kiranyaz (2834_CR18) 2016; 63
S Christodoulidis (2834_CR3) 2017; 21
D Dey (2834_CR6) 2017; 24
Q Dou (2834_CR7) 2016; 35
X Zhihuai (2834_CR29) 2018; 12
T Lustberg (2834_CR20) 2018; 126
M Philippe (2834_CR25) 2018; 98
FJ Ordonez (2834_CR23) 2016; 16
M Heba (2834_CR11) 2018; 3
G Hinton (2834_CR13) 2012; 29
F Palsson (2834_CR24) 2017; 14
H Ge (2834_CR8) 2018; 12
A Prochzazka (2834_CR26) 2017; 7
K Baljit Singh (2834_CR1) 2016; 17
Z Jie (2834_CR15) 2018; 12
K Kourou (2834_CR19) 2015; 13
SM Mathews (2834_CR21) 2018; 99
G Murray (2834_CR22) 2016; 54
J Deepak Kumar (2834_CR5) 2018; 25
References_xml – volume: 46
  start-page: 2966
  issue: 12
  year: 2015
  end-page: 2977
  ident: CR28
  article-title: Hyperspectral image classification via multitask joint sparse representation and stepwise MRF optimization
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2015.2484324
– volume: 3
  start-page: 68
  issue: 1
  year: 2018
  end-page: 71
  ident: CR11
  article-title: Classification using deep learning neural networks for brain tumors
  publication-title: Future Comput Inf J
  doi: 10.1016/j.fcij.2017.12.001
– volume: 63
  start-page: 664
  issue: 3
  year: 2016
  end-page: 675
  ident: CR18
  article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2468589
– volume: 13
  start-page: 8
  issue: 1
  year: 2015
  end-page: 17
  ident: CR19
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Comput Struct Biotech J
  doi: 10.1016/j.csbj.2014.11.005
– volume: 12
  start-page: 476
  issue: 4
  year: 2018
  end-page: 483
  ident: CR29
  article-title: Palmprint gender classification by convolutional neural network
  publication-title: IET Compt Vis
  doi: 10.1049/iet-cvi.2017.0475
– volume: 36
  start-page: 1
  issue: 4
  year: 2017
  end-page: 12
  ident: CR17
  article-title: Deep high dynamic range imaging of dynamic scenes
  publication-title: ACM Trans Graph
  doi: 10.1145/3072959.3073609
– volume: 98
  start-page: 126
  year: 2018
  end-page: 146
  ident: CR25
  article-title: Survey on deep learning for radiotherapy
  publication-title: Compt Biol Med
  doi: 10.1016/j.compbiomed.2018.05.018
– volume: 16
  start-page: 1
  issue: 1
  year: 2016
  end-page: 25
  ident: CR23
  article-title: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition
  publication-title: Sensors
  doi: 10.3390/s16010115
– volume: 25
  start-page: 252
  issue: 1
  year: 2018
  end-page: 259
  ident: CR5
  article-title: An approach for hyperspectral image classification by optimizing SVM using self-organizing map
  publication-title: J Comput Sci
– volume: 24
  start-page: 3894
  issue: 6
  year: 2017
  end-page: 3897
  ident: CR6
  article-title: A deep learning framework using convolution neural network for classification of impulse fault patterns in transformers with increased accuracy
  publication-title: IEEE Trans Dielectr Electr Insul
  doi: 10.1109/TDEI.2017.006793
– volume: 36
  start-page: 513
  issue: 3
  year: 2017
  end-page: 517
  ident: CR27
  article-title: DLAU: a scalable deep learning accelerator unit on FPGA
  publication-title: IEEE Trans Comput Aided Des Integr Circuits Syst
– volume: 23
  start-page: 172
  issue: 1
  year: 2018
  end-page: 180
  ident: CR9
  article-title: Machine learning detects pan-cancer ras pathway activation in the cancer genome Atlas
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2018.03.046
– volume: 4
  start-page: 255
  issue: 4
  year: 2012
  end-page: 284
  ident: CR12
  article-title: A classification framework applied to cancer gene expression profiles
  publication-title: J Healthc Eng
– volume: 12
  start-page: 350
  issue: 3
  year: 2018
  end-page: 356
  ident: CR15
  article-title: Multi-image matching for object recognition
  publication-title: IET Compt Vis
  doi: 10.1049/iet-cvi.2017.0261
– volume: 72
  start-page: 573
  issue: 7
  year: 2017
  end-page: 579
  ident: CR4
  article-title: Assessment of disease extent on contrast-enhanced MRI in breast cancer detected at digital breast tomosynthesis versus digital mammography alone
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2017.02.013
– volume: 7
  start-page: 581
  issue: 6
  year: 2017
  end-page: 591
  ident: CR26
  article-title: Cycling segments multimodal analysis and classification using neural networks
  publication-title: Appl Sci
  doi: 10.3390/app7060581
– volume: 54
  start-page: 163
  issue: 2
  year: 2016
  end-page: 165
  ident: CR22
  article-title: Detecting internet search activity for mouth cancer in Ireland
  publication-title: British J of Oral Maxillofacial Surg
  doi: 10.1016/j.bjoms.2015.12.005
– volume: 26
  start-page: 4509
  issue: 9
  year: 2017
  end-page: 4522
  ident: CR16
  article-title: Deep convolutional neural network for inverse problems in imaging
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2713099
– volume: 35
  start-page: 1182
  issue: 5
  year: 2016
  end-page: 1195
  ident: CR7
  article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2528129
– volume: 12
  start-page: 941
  issue: 6
  year: 2018
  end-page: 947
  ident: CR8
  article-title: Hyperspectral image classification based on adaptive-weighted LLE and clustering-based FSVMs
  publication-title: IET Image Proc
  doi: 10.1049/iet-ipr.2017.0987
– volume: 12
  start-page: 1037
  issue: 5
  year: 2015
  end-page: 1041
  ident: CR14
  article-title: A new pan-sharpening method with deep neural networks
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2014.2376034
– volume: 15
  start-page: 521
  issue: 3
  year: 2018
  end-page: 526
  ident: CR2
  article-title: Deep learning in radiology: does one size fit all?
  publication-title: J Am Coll Rad
  doi: 10.1016/j.jacr.2017.12.027
– volume: 126
  start-page: 312
  year: 2018
  end-page: 317
  ident: CR20
  article-title: Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer
  publication-title: Radio Onco
  doi: 10.1016/j.radonc.2017.11.012
– volume: 21
  start-page: 76
  issue: 1
  year: 2017
  end-page: 84
  ident: CR3
  article-title: Multisource transfer learning with convolutional neural networks for lung pattern analysis
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2016.2636929
– volume: 14
  start-page: 639
  issue: 5
  year: 2017
  end-page: 643
  ident: CR24
  article-title: Multispectral and hyperspectral image fusion using a 3-d-convolutional neural network
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2017.2668299
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  end-page: 97
  ident: CR13
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2012.2205597
– volume: 17
  start-page: 11
  issue: 1
  year: 2016
  end-page: 20
  ident: CR1
  article-title: Classification of clustered microcalcifications using MLFFBP-ANN and SVM
  publication-title: Egyptian Infor J
  doi: 10.1016/j.eij.2015.08.001
– volume: 99
  start-page: 53
  issue: 1
  year: 2018
  end-page: 62
  ident: CR21
  article-title: A novel application of deep learning for single-lead ECG classification
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.05.013
– year: 2012
  ident: CR10
  publication-title: Imbalanced learning: foundations, algorithms and applications
– volume: 36
  start-page: 513
  issue: 3
  year: 2017
  ident: 2834_CR27
  publication-title: IEEE Trans Comput Aided Des Integr Circuits Syst
– volume: 12
  start-page: 350
  issue: 3
  year: 2018
  ident: 2834_CR15
  publication-title: IET Compt Vis
  doi: 10.1049/iet-cvi.2017.0261
– volume: 7
  start-page: 581
  issue: 6
  year: 2017
  ident: 2834_CR26
  publication-title: Appl Sci
  doi: 10.3390/app7060581
– volume: 46
  start-page: 2966
  issue: 12
  year: 2015
  ident: 2834_CR28
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2015.2484324
– volume: 26
  start-page: 4509
  issue: 9
  year: 2017
  ident: 2834_CR16
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2713099
– volume: 4
  start-page: 255
  issue: 4
  year: 2012
  ident: 2834_CR12
  publication-title: J Healthc Eng
– volume: 98
  start-page: 126
  year: 2018
  ident: 2834_CR25
  publication-title: Compt Biol Med
  doi: 10.1016/j.compbiomed.2018.05.018
– volume-title: Imbalanced learning: foundations, algorithms and applications
  year: 2012
  ident: 2834_CR10
– volume: 13
  start-page: 8
  issue: 1
  year: 2015
  ident: 2834_CR19
  publication-title: Comput Struct Biotech J
  doi: 10.1016/j.csbj.2014.11.005
– volume: 24
  start-page: 3894
  issue: 6
  year: 2017
  ident: 2834_CR6
  publication-title: IEEE Trans Dielectr Electr Insul
  doi: 10.1109/TDEI.2017.006793
– volume: 99
  start-page: 53
  issue: 1
  year: 2018
  ident: 2834_CR21
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.05.013
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 2834_CR13
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2012.2205597
– volume: 12
  start-page: 1037
  issue: 5
  year: 2015
  ident: 2834_CR14
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2014.2376034
– volume: 25
  start-page: 252
  issue: 1
  year: 2018
  ident: 2834_CR5
  publication-title: J Comput Sci
– volume: 3
  start-page: 68
  issue: 1
  year: 2018
  ident: 2834_CR11
  publication-title: Future Comput Inf J
  doi: 10.1016/j.fcij.2017.12.001
– volume: 12
  start-page: 941
  issue: 6
  year: 2018
  ident: 2834_CR8
  publication-title: IET Image Proc
  doi: 10.1049/iet-ipr.2017.0987
– volume: 63
  start-page: 664
  issue: 3
  year: 2016
  ident: 2834_CR18
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2468589
– volume: 21
  start-page: 76
  issue: 1
  year: 2017
  ident: 2834_CR3
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2016.2636929
– volume: 17
  start-page: 11
  issue: 1
  year: 2016
  ident: 2834_CR1
  publication-title: Egyptian Infor J
  doi: 10.1016/j.eij.2015.08.001
– volume: 14
  start-page: 639
  issue: 5
  year: 2017
  ident: 2834_CR24
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2017.2668299
– volume: 12
  start-page: 476
  issue: 4
  year: 2018
  ident: 2834_CR29
  publication-title: IET Compt Vis
  doi: 10.1049/iet-cvi.2017.0475
– volume: 15
  start-page: 521
  issue: 3
  year: 2018
  ident: 2834_CR2
  publication-title: J Am Coll Rad
  doi: 10.1016/j.jacr.2017.12.027
– volume: 72
  start-page: 573
  issue: 7
  year: 2017
  ident: 2834_CR4
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2017.02.013
– volume: 36
  start-page: 1
  issue: 4
  year: 2017
  ident: 2834_CR17
  publication-title: ACM Trans Graph
  doi: 10.1145/3072959.3073609
– volume: 23
  start-page: 172
  issue: 1
  year: 2018
  ident: 2834_CR9
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2018.03.046
– volume: 126
  start-page: 312
  year: 2018
  ident: 2834_CR20
  publication-title: Radio Onco
  doi: 10.1016/j.radonc.2017.11.012
– volume: 54
  start-page: 163
  issue: 2
  year: 2016
  ident: 2834_CR22
  publication-title: British J of Oral Maxillofacial Surg
  doi: 10.1016/j.bjoms.2015.12.005
– volume: 35
  start-page: 1182
  issue: 5
  year: 2016
  ident: 2834_CR7
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2528129
– volume: 16
  start-page: 1
  issue: 1
  year: 2016
  ident: 2834_CR23
  publication-title: Sensors
  doi: 10.3390/s16010115
SSID ssj0017572
Score 2.6449227
Snippet Purpose Oral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and...
Oral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and classification...
PurposeOral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 829
SubjectTerms Accuracy
Algorithms
Cancer Research
Cancer therapies
Classification
Deep Learning
Diagnosis
Early Detection of Cancer - methods
Hematology
Humans
Image processing
Image Processing, Computer-Assisted - methods
Internal Medicine
Medicine
Medicine & Public Health
Mouth Neoplasms - diagnostic imaging
Neural networks
Oncology
Oral cancer
Original Article – Cancer Research
Original – Cancer Research
Tumors
SummonAdditionalLinks – databaseName: Springer Nature - Connect here FIRST to enable access
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQYgL70KgICNxA0ub-BUfEaLiQoV4qbfIO3HaSN1stdny-5lxHmhpQYKzHWtij8ffaGa-AXhlMWDpVJALjbXUQRkZuBpNmwUqjEWxXOrUbMIdHZXHx_7TWBTWT9nuU0gyWeq52C2xx5HrW0p-E7V01-EGPXclN2z4_OX7HDtwJrVsYiIYcrNyO5bKXL3G7nN0CWNeTpX8LV6anqHDu__3A_fgzgg7xdtBT-7Dtdg9gFsfx8D6Q-in7g6SwDSffC1WQwhHtCsyOQIZZXNaUTpJQVBXROZGFvWQq9f2Yt0ILvcXyIpEw6mXMAko6hjPxdie4kSEs5P1pt2erh7Bt8P3X999kGM_BonG-q1EbTVTPZpoCleTpWxqrVTw5GTlTShDs0Stm8K54NDHYEpvdeNCYWrfmIhR7cNet-7iExDoGXfWgaYzH78lkLT05LrY3CJiXmeQT8dS4UhWzj0zzqqZZjntZkW7WaXdrFwGr-dvzgeqjr_OPphOuxqvbV-RthSWbJ7OrxxWXFxJHl5RZPByHqb7yEGW0MX1RVpCJbpnn8HjQXdmacg9Wyi_KDMod7RqnsBc37sjXXuaOL-5PpjQOMn1ZlKuX3L9-S-f_tv0Z3CbAKEfMpMOYG-7uYjP4Sb-2Lb95kW6Zj8BdSIiMA
  priority: 102
  providerName: Springer Nature
Title Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm
URI https://link.springer.com/article/10.1007/s00432-018-02834-7
https://www.ncbi.nlm.nih.gov/pubmed/30603908
https://www.proquest.com/docview/2162673041
https://www.proquest.com/docview/3195648722
https://www.proquest.com/docview/2163009599
https://pubmed.ncbi.nlm.nih.gov/PMC11810191
Volume 145
WOSCitedRecordID wos000462617300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1432-1335
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017572
  issn: 0171-5216
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BixAX3oVAqYzEDSw2iRPHJwRVKy5dqvLQ3iLv2GlX6j5otvx-Zhwn1VLohYulyE5ka8b2N5mZbwDelGix0rmVI4VOKpsX0nI2mipGmKPPsulUhWITejyuJhNzHH-4tTGssj8Tw0Htlsj_yN_nnNhG6DrLPqx-Sq4axd7VWELjNmxz2WzWcz0ZDC66GUPxJqaEIYMrLWPSTEidC1x0ZEhXkm9YJfXmxXQNbV4PmvzDcxoupMMH_7uUh3A_QlHxsdOdR3DLLx7D3aPobH8CbV_xQRLAZm1wYt65dcRsTseQQEbeHGoUpCsI_grPfMnCdfF7s1YsG8EUAAJZuag71Bem5Qjn_UrEkhWnwp6f0gTXZ_On8P3w4Nv-ZxlrNEgsSrOWqErF9I-FLzLt6PRsnMpza8jwShtb2WaKSjWZ1laj8baoTKkabbPCmabw6PMd2FosF_45CDSMRZ2l4czRXxJwmhoyZ8q0RMTUJZD2AqoxEphzHY3zeqBeDkKtSah1EGqtE3g7vLPq6DtuHL3bC6yOW7mtSW-yks5Blf61-0qYCbweummPsuPFLvzyMnwiDxTQJoFnnRYNsyGTbZSbUZVAtaFfwwDm_97sWczOAg845wwTQqd5vetV8Wpe_17li5uX8RLuESg0XXTSLmytLy79K7iDv9az9mIvbLDQVtRW--kebH86GB-f0NNR9oXak68_fgOgfDGR
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgqAX3o-UAkaCE1hsHCeODwghoGrVduFQpN5Sr-20K3WzS7Mt4k_1NzLjPKql0FsPnO1EtvPNeCYz8w3Aq8wam6vE8IG0jkuTpNxQNZpMBzaxXojRSIZmE2o4zPf29LclOOtqYSitstOJQVG7qaV_5O8SKmxD61qID7MfnLpGUXS1a6HRwGLL__qJLlv9fvMzft_XQqx_2f20wduuAtymmZ5zKzNJhIWpT4VyKO-lk0liNLoKcWlyU46slKVQyiirvUlznclSGZE6Xabe-gTfew2uS_KEKFVQfO2jFioNzaKIggYdvDhri3RCqV7gvkPHPed0o0uuFi_CC9btxSTNPyK14QJcv_O_Hd1duN2a2uxjIxv3YMlX9-HmTptM8ADqrqMFRweC0O7YpAlbsfEE1Syz5FlQKlVAL0Pznnnig2auyU8c12xaMqI4YJaEB4dD_2Q8Pua8n7G2JccBM0cHeCDzw8lD-H4lW34Ey9W08k-AWU22tjM4nXoQZGgYjjS6a1mcWWtjF0HcAaKwLUE79Qk5Knpq6QCiAkFUBBAVKoI3_TOzhp7k0tlrHUCKVlXVBeJUZKjnZfzX4XPwRPCyH0YdRIElU_npSXhFEiiudQSPG9T2q0GXdJDoQR5BvoDnfgLxmy-OVOPDwHNONdHogeC63nbQP1_Xv3e5evk2XsCtjd2d7WJ7c7j1FFbQANZNJtYaLM-PT_wzuGFP5-P6-HkQbgb7Vy0SvwEbyIk_
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLaq48H4sFDASnMDqxnHi-IAQ0K6oCqsVAqm31Gs77Urd7NJsQfw1fh0zzqNaCr31wNlOZDvfjGcyM98APE-tsZmKDR9I67g0ccINVaPJZGBj64WYTGRoNqFGo2x_X4_X4FdbC0Npla1ODIrazS39I9-KqbANrWshtoomLWK8PXyz-MapgxRFWtt2GjVE9vzPH-i-Va93t_FbvxBiuPPl_QfedBjgNkn1kluZSiIvTHwilEPZL5yMY6PRbYgKk5liYqUshFJGWe1NkulUFsqIxOki8dbH-N4rsK7QyJA9WH-3Mxp_7mIYKgmto4iQBt29KG1KdkLhXmDCQzc-43S_S65Wr8Vztu75lM0_4rbhOhze-J8P8iZcb4xw9raWmluw5svbsPGpSTO4A1Xb64Kja0Fy4NisDmix6QwVMLPkc1CSVcA1Q8OfeWKKZq7OXJxWbF4wIj9glsQKh0NnZTxK5rxfsKZZxyEzx4d4IMuj2V34eilbvge9cl76B8CsJivcGZxO3QlSNBknGh25NEqttZHrQ9SCI7cNdTt1EDnOO9LpAKgcAZUHQOWqDy-7ZxY1ccmFszdbsOSNEqtyxKxI8QaQ0V-Hz4DUh2fdMGonCjmZ0s9PwyviQH6t-3C_RnC3GnRWB7EeZH3IVrDdTSDm89WRcnoUGNCpWhp9E1zXq1YMztb1710-vHgbT2EDJSH_uDvaewTX0DLWdYrWJvSWJ6f-MVy135fT6uRJI-kMDi5bJn4DpgaTXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-assisted+medical+image+classification+for+early+diagnosis+of+oral+cancer+employing+deep+learning+algorithm&rft.jtitle=Journal+of+cancer+research+and+clinical+oncology&rft.date=2019-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0171-5216&rft.eissn=1432-1335&rft.volume=145&rft.issue=4&rft.spage=829&rft.epage=837&rft_id=info:doi/10.1007%2Fs00432-018-02834-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0171-5216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0171-5216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0171-5216&client=summon