Learning from interpretation transition

We propose a novel framework for learning normal logic programs from transitions of interpretations. Given a set of pairs of interpretations ( I , J ) such that J = T P ( I ), where T P is the immediate consequence operator, we infer the program  P . The learning framework can be repeatedly applied...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Machine learning Ročník 94; číslo 1; s. 51 - 79
Hlavní autoři: Inoue, Katsumi, Ribeiro, Tony, Sakama, Chiaki
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.01.2014
Springer Nature B.V
Springer Verlag
Témata:
ISSN:0885-6125, 1573-0565
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose a novel framework for learning normal logic programs from transitions of interpretations. Given a set of pairs of interpretations ( I , J ) such that J = T P ( I ), where T P is the immediate consequence operator, we infer the program  P . The learning framework can be repeatedly applied for identifying Boolean networks from basins of attraction. Two algorithms have been implemented for this learning task, and are compared using examples from the biological literature. We also show how to incorporate background knowledge and inductive biases, then apply the framework to learning transition rules of cellular automata.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0885-6125
1573-0565
DOI:10.1007/s10994-013-5353-8