Statistical data preparation: management of missing values and outliers

Missing values and outliers are frequently encountered while collecting data. The presence of missing values reduces the data available to be analyzed, compromising the statistical power of the study, and eventually the reliability of its results. In addition, it causes a significant bias in the res...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Korean journal of anesthesiology Ročník 70; číslo 4; s. 407 - 411
Hlavní autoři: Kwak, Sang Kyu, Kim, Jong Hae
Médium: Journal Article
Jazyk:angličtina
Vydáno: Korea (South) The Korean Society of Anesthesiologists 01.08.2017
Korean Society of Anesthesiologists
대한마취통증의학회
Témata:
ISSN:2005-6419, 2005-7563
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Missing values and outliers are frequently encountered while collecting data. The presence of missing values reduces the data available to be analyzed, compromising the statistical power of the study, and eventually the reliability of its results. In addition, it causes a significant bias in the results and degrades the efficiency of the data. Outliers significantly affect the process of estimating statistics ( , the average and standard deviation of a sample), resulting in overestimated or underestimated values. Therefore, the results of data analysis are considerably dependent on the ways in which the missing values and outliers are processed. In this regard, this review discusses the types of missing values, ways of identifying outliers, and dealing with the two.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:2005-6419
2005-7563
DOI:10.4097/kjae.2017.70.4.407