Developing Train Station Parking Algorithms: New Frameworks Based on Fuzzy Reinforcement Learning

Train station parking (TSP) accuracy is important to enhance the efficiency of train operation and the safety of passengers for urban rail transit. However, TSP is always subject to a series of uncertain factors such as extreme weather and uncertain conditions of rail track resistances. To increase...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of advanced transportation Ročník 2019; číslo 2019; s. 1 - 9
Hlavní autori: Chen, Dewang, Yin, Jiateng, Xian, Kai, Li, Wei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cairo, Egypt Hindawi Publishing Corporation 2019
Hindawi
John Wiley & Sons, Inc
Wiley
Predmet:
ISSN:0197-6729, 2042-3195
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Train station parking (TSP) accuracy is important to enhance the efficiency of train operation and the safety of passengers for urban rail transit. However, TSP is always subject to a series of uncertain factors such as extreme weather and uncertain conditions of rail track resistances. To increase the parking accuracy, robustness, and self-learning ability, we propose new train station parking frameworks by using the reinforcement learning (RL) theory combined with the information of balises. Three algorithms were developed, involving a stochastic optimal selection algorithm (SOSA), a Q-learning algorithm (QLA), and a fuzzy function based Q-learning algorithm (FQLA) in order to reduce the parking error in urban rail transit. Meanwhile, five braking rates are adopted as the action vector of the three algorithms and some statistical indices are developed to evaluate parking errors. Simulation results based on real-world data show that the parking errors of the three algorithms are all within the ±30cm, which meet the requirement of urban rail transit.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0197-6729
2042-3195
DOI:10.1155/2019/3072495