Estimation of Space-Time Branching Process Models in Seismology Using an EM-Type Algorithm

Maximum likelihood estimation of branching point process models via numerical optimization procedures can be unstable and computationally intensive. We explore an alternative estimation method based on the expectation-maximization algorithm. The method involves viewing the estimation of such branchi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the American Statistical Association Ročník 103; číslo 482; s. 614 - 624
Hlavní autoři: Veen, Alejandro, Schoenberg, Frederic P
Médium: Journal Article
Jazyk:angličtina
Vydáno: Alexandria, VA Taylor & Francis 01.06.2008
American Statistical Association
Taylor & Francis Ltd
Témata:
ISSN:0162-1459, 1537-274X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Maximum likelihood estimation of branching point process models via numerical optimization procedures can be unstable and computationally intensive. We explore an alternative estimation method based on the expectation-maximization algorithm. The method involves viewing the estimation of such branching processes as analogous to incomplete data problems. Using an application from seismology, we show how the epidemic-type aftershock sequence (ETAS) model can, in fact, be estimated this way, and we propose a computationally efficient procedure to maximize the expected complete data log-likelihood function. Using a space-time ETAS model, we demonstrate that this method is extremely robust and accurate and use it to estimate declustered background seismicity rates of geologically distinct regions in Southern California. All regions show similar declustered background intensity estimates except for the one covering the southern section of the San Andreas fault system to the east of San Diego in which a substantially higher intensity is observed.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Feature-1
ObjectType-Article-2
content type line 23
ISSN:0162-1459
1537-274X
DOI:10.1198/016214508000000148