Error rate reduction of single-qubit gates via noise-aware decomposition into native gates

In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit’...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 12; no. 1; pp. 6379 - 10
Main Authors: Maldonado, Thomas J., Flick, Johannes, Krastanov, Stefan, Galda, Alexey
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 16.04.2022
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit’s initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On ibmq_rome, we demonstrate a reduction of the single-qubit error rate by 38%, from 1.6 × 10 - 3 to 1.0 × 10 - 3 , provided the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never decrease gate fidelity, provided the system’s T 1 and T 2 times have not drifted above 100 times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits’ intermediate states can be inferred. This paper presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native hardware gates.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-06CH11357
USDOE
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-10339-0