Error rate reduction of single-qubit gates via noise-aware decomposition into native gates
In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit’...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 12; číslo 1; s. 6379 - 10 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
16.04.2022
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit’s initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On ibmq_rome, we demonstrate a reduction of the single-qubit error rate by 38%, from
1.6
×
10
-
3
to
1.0
×
10
-
3
, provided the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never decrease gate fidelity, provided the system’s
T
1
and
T
2
times have not drifted above 100 times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits’ intermediate states can be inferred. This paper presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native hardware gates. |
|---|---|
| AbstractList | In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit’s initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On ibmq_rome, we demonstrate a reduction of the single-qubit error rate by 38%, from $$1.6 \times 10 ^{-3}$$ 1.6×10-3 to $$1.0 \times 10 ^{-3}$$ 1.0×10-3, provided the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never decrease gate fidelity, provided the system’s $$T_1$$ T1 and $$T_2$$ T2 times have not drifted above 100 times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits’ intermediate states can be inferred. This paper presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native hardware gates. Abstract In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit’s initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On ibmq_rome, we demonstrate a reduction of the single-qubit error rate by 38%, from $$1.6 \times 10 ^{-3}$$ 1.6 × 10 - 3 to $$1.0 \times 10 ^{-3}$$ 1.0 × 10 - 3 , provided the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never decrease gate fidelity, provided the system’s $$T_1$$ T 1 and $$T_2$$ T 2 times have not drifted above 100 times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits’ intermediate states can be inferred. This paper presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native hardware gates. In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit’s initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On ibmq_rome, we demonstrate a reduction of the single-qubit error rate by 38%, from 1.6×10-3 to 1.0×10-3, provided the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never decrease gate fidelity, provided the system’s T1 and T2 times have not drifted above 100 times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits’ intermediate states can be inferred. This paper presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native hardware gates. In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit’s initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On ibmq_rome, we demonstrate a reduction of the single-qubit error rate by 38%, from 1.6 × 10 - 3 to 1.0 × 10 - 3 , provided the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never decrease gate fidelity, provided the system’s T 1 and T 2 times have not drifted above 100 times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits’ intermediate states can be inferred. This paper presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native hardware gates. In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit’s initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On ibmq_rome, we demonstrate a reduction of the single-qubit error rate by 38%, from $1.6 \times 10 ^{-3}$ to $1.0 \times 10 ^{-3}$ , provided the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never decrease gate fidelity, provided the system’s T1 and T2 times have not drifted above 100 times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits’ intermediate states can be inferred. This paper presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native hardware gates. In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit's initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On ibmq_rome, we demonstrate a reduction of the single-qubit error rate by 38%, from [Formula: see text] to [Formula: see text], provided the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never decrease gate fidelity, provided the system's [Formula: see text] and [Formula: see text] times have not drifted above 100 times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits' intermediate states can be inferred. This paper presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native hardware gates. In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit's initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On ibmq_rome, we demonstrate a reduction of the single-qubit error rate by 38%, from [Formula: see text] to [Formula: see text], provided the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never decrease gate fidelity, provided the system's [Formula: see text] and [Formula: see text] times have not drifted above 100 times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits' intermediate states can be inferred. This paper presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native hardware gates.In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit's initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On ibmq_rome, we demonstrate a reduction of the single-qubit error rate by 38%, from [Formula: see text] to [Formula: see text], provided the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never decrease gate fidelity, provided the system's [Formula: see text] and [Formula: see text] times have not drifted above 100 times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits' intermediate states can be inferred. This paper presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native hardware gates. In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit’s initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On , we demonstrate a reduction of the single-qubit error rate by 38%, from $$1.6 \times 10 ^{-3}$$ 1.6 × 10 - 3 to $$1.0 \times 10 ^{-3}$$ 1.0 × 10 - 3 , provided the initial state of the input qubit is known. On , we prove that our protocol will never decrease gate fidelity, provided the system’s $$T_1$$ T 1 and $$T_2$$ T 2 times have not drifted above 100 times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits’ intermediate states can be inferred. This paper presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native hardware gates. |
| ArticleNumber | 6379 |
| Author | Maldonado, Thomas J. Krastanov, Stefan Flick, Johannes Galda, Alexey |
| Author_xml | – sequence: 1 givenname: Thomas J. surname: Maldonado fullname: Maldonado, Thomas J. email: maldonado@princeton.edu organization: Department of Electrical and Computer Engineering, Princeton University, Department of Physics, Harvard University – sequence: 2 givenname: Johannes surname: Flick fullname: Flick, Johannes organization: Center for Computational Quantum Physics, Flatiron Institute – sequence: 3 givenname: Stefan surname: Krastanov fullname: Krastanov, Stefan organization: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, John A. Paulson School of Engineering and Applied Sciences, Harvard University – sequence: 4 givenname: Alexey surname: Galda fullname: Galda, Alexey organization: Menten AI, Inc., James Franck Institute, University of Chicago, Computational Science Division, Argonne National Laboratory |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35430608$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/2470007$$D View this record in Osti.gov |
| BookMark | eNp9UsFu1DAQjVARLaU_wAFFcOESGNuxE1-QUFWgUiUucOFiOfZk61XW3trOIv4e76aUtof6Ynv83psZz3tZHfngsapeE_hAgPUfU0u47BugtCl3Jht4Vp1QaHlDGaVH987H1VlKayiLU9kS-aI6ZrxlIKA_qX5dxBhiHXXGOqKdTXbB12Gsk_OrCZubeXC5XpXnVO-crn1wCRv9W0esLZqw2YbkDhznc6i9zm6HC_5V9XzUU8Kz2_20-vnl4sf5t-bq-9fL889XjeGiy40mHWeGa6vHgY6oe9sD9gBDK6xlkrJWEMAS0YM0AxF8GLpeUN5REIIIzU6ry0XXBr1W2-g2Ov5RQTt1CIS4UjpmZyZUI-OMdaSIWt3SthuM6bjthBhASmFF0fq0aG3nYYPWoM9RTw9EH754d61WYackEMYEKwJvF4GQslPJuIzm2gTv0WRVMpYpdAX0_jZLDDczpqw2LhmcJu0xzElRwSlQyTgt0HePoOswR1_-c48C2YGEfdY398u-q_ffnAuALgATQ0oRxzsIAbX3k1r8pIqf1MFPCgqpf0Qq7ej9sEvrbnqayhZqKnn8CuP_sp9g_QXTxN2d |
| CitedBy_id | crossref_primary_10_1088_2058_9565_adb3c7 crossref_primary_10_3389_fphy_2024_1360080 crossref_primary_10_1038_s41467_025_58545_4 crossref_primary_10_1038_s41598_023_28109_x crossref_primary_10_1038_s41598_024_60605_6 crossref_primary_10_1103_PhysRevApplied_23_044036 crossref_primary_10_3390_quantum7020024 |
| Cites_doi | 10.22331/q-2019-05-13-140 10.1016/j.cpc.2012.02.021 10.1038/s41534-019-0182-7 10.1103/PhysRevApplied.10.044030 10.1103/RevModPhys.88.021002 10.1038/nphys1400 10.1038/s41592-019-0686-2 10.1007/BF02650179 10.1038/s41534-017-0052-0 10.1103/PhysRevApplied.15.064054 10.1016/j.cpc.2012.11.019 10.1103/PhysRevLett.121.060502 10.1088/2058-9565/abe519 10.1103/PhysRevA.77.012307 10.22331/q-2018-08-06-79 10.1126/science.1231930 10.1038/s41534-020-00346-2 10.1038/s41534-020-00309-7 10.1103/PhysRevLett.74.4091 10.1063/1.5089550 10.1109/MICRO50266.2020.00027 10.1103/physrevlett.121.220502 10.1103/physreva.94.052325 10.1103/PhysRevA.96.022330 10.1088/1361-6633/aa7e1a 10.1038/30156 10.5281/zenodo.2562110 10.1103/PhysRevX.10.011001 10.1137/s0097539795293172 10.1038/19718 10.1103/PhysRevA.57.120 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | Argonne National Laboratory (ANL), Argonne, IL (United States) |
| CorporateAuthor_xml | – name: Argonne National Laboratory (ANL), Argonne, IL (United States) |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 OIOZB OTOTI 5PM DOA |
| DOI | 10.1038/s41598-022-10339-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 10 |
| ExternalDocumentID | oai_doaj_org_article_f353371923da4247bcc75d766b0996d6 PMC9013363 2470007 35430608 10_1038_s41598_022_10339_0 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO OIOZB OTOTI 5PM |
| ID | FETCH-LOGICAL-c567t-a1753c5adafb2fea8d80e800b46dd39234610ee80ab9cb165bb786257206616a3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000782910400020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 04:33:20 EST 2025 Tue Nov 04 01:58:44 EST 2025 Mon Mar 17 03:27:52 EDT 2025 Thu Oct 02 05:22:52 EDT 2025 Tue Oct 07 07:40:46 EDT 2025 Thu Apr 03 07:03:54 EDT 2025 Tue Nov 18 22:04:21 EST 2025 Sat Nov 29 06:25:50 EST 2025 Fri Feb 21 02:39:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c567t-a1753c5adafb2fea8d80e800b46dd39234610ee80ab9cb165bb786257206616a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-06CH11357 USDOE |
| OpenAccessLink | https://www.proquest.com/docview/2650970903?pq-origsite=%requestingapplication% |
| PMID | 35430608 |
| PQID | 2650970903 |
| PQPubID | 2041939 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f353371923da4247bcc75d766b0996d6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9013363 osti_scitechconnect_2470007 proquest_miscellaneous_2652029352 proquest_journals_2650970903 pubmed_primary_35430608 crossref_primary_10_1038_s41598_022_10339_0 crossref_citationtrail_10_1038_s41598_022_10339_0 springer_journals_10_1038_s41598_022_10339_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-16 |
| PublicationDateYYYYMMDD | 2022-04-16 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: United States |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Cross, A. W., Bishop, L. S., Smolin, J. A. & Gambetta, J. M. Open quantum assembly language. arXiv preprintarXiv:1707.03429 (2017). CiracJIZollerPQuantum computations with cold trapped ionsPhys. Rev. Lett.199574409140941995PhRvL..74.4091C1:CAS:528:DyaK2MXls1anu7Y%3D10.1103/PhysRevLett.74.409110058410 McKayDCWoodCJSheldonSChowJMGambettaJMEfficient z gates for quantum computingPhys. Rev. A2017960223302017PhRvA..96b2330M10.1103/PhysRevA.96.022330 Helsen, J., Xue, X., Vandersypen, L. M. K. & Wehner, S. A new class of efficient randomized benchmarking protocols (2019). arXiv:1806.02048. ibmq_rome v1.1.0, IBM Quantum team. Retrieved from https://quantum-computing.ibm.com (2020). VirtanenPSciPy 1.0: Fundamental algorithms for scientific computing in pythonNat. Methods2020172612721:CAS:528:DC%2BB3cXislCjuro%3D10.1038/s41592-019-0686-2320155437056644 JurcevicPDemonstration of quantum volume 64 on a superconducting quantum computing systemQuantum Sci. Technol.202160250202021QS&T....6b5020J10.1088/2058-9565/abe519 Carvalho, A. R. R., Ball, H., Biercuk, M. J., Hush, M. R. & Thomsen, F. Error-robust quantum logic optimization using a cloud quantum computer interface (2020). arXiv:2010.08057. ibmq_bogota v1.0.0, IBM Quantum team. Retrieved from https://quantum-computing.ibm.com (2020). NakamuraYPashkinYATsaiJSCoherent control of macroscopic quantum states in a single-cooper-pair boxNature19993987867881999Natur.398..786N1:CAS:528:DyaK1MXjtVSkurs%3D10.1038/19718 BreuerH-PLaineE-MPiiloJVacchiniBColloquium: Non-Markovian dynamics in open quantum systemsRev. Mod. Phys.2016880210022016RvMP...88b1002B10.1103/RevModPhys.88.021002 Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys21, 467–488 (1982). ShorPWPolynomial-time algorithms for prime factorization and discrete logarithms on a quantum computerSIAM J. Comput.19972614841509147199010.1137/s00975397952931721005.11065 LossDDiVincenzoDPQuantum computation with quantum dotsPhys. Rev. A1998571201261998PhRvA..57..120L1:CAS:528:DyaK1cXitlamug%3D%3D10.1103/PhysRevA.57.120 WendinGQuantum information processing with superconducting circuits: A reviewRep. Prog. Phys.2017801060137081211:CAS:528:DC%2BC1cXntl2ktb0%3D10.1088/1361-6633/aa7e1a MavadiaSExperimental quantum verification in the presence of temporally correlated noisenpj Quantum Inf.20184192018npjQI...4....7M10.1038/s41534-017-0052-0 Gokhale, P., Javadi-Abhari, A., Earnest, N., Shi, Y. & Chong, F. T. Optimized quantum compilation for near-term algorithms with openpulse. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 186–200, https://doi.org/10.1109/MICRO50266.2020.00027 (2020). MagnardPFast and unconditional all-microwave reset of a superconducting qubitPhys. Rev. Lett.20181210605022018PhRvL.121f0502M1:CAS:528:DC%2BC1MXltFSgt7o%3D10.1103/PhysRevLett.121.06050230141638 Aleksandrowicz, G. et al. Qiskit: An open-source framework for quantum computing. https://doi.org/10.5281/zenodo.2562110 (2019). DevoretMHSchoelkopfRJSuperconducting circuits for quantum information: An outlookScience2013339116911742013Sci...339.1169D1:CAS:528:DC%2BC3sXjtlyksLs%3D10.1126/science.123193023471399 KrantzPA quantum engineer’s guide to superconducting qubitsAppl. Phys. Rev.201960213182019ApPRv...6b1318K1:CAS:528:DC%2BC1MXht1CnsrbP10.1063/1.5089550 Rigetti Computing Quantum Cloud Services, http://qcs.rigetti.com, accessed August, (2020). WerninghausMLeakage reduction in fast superconducting qubit gates via optimal controlnpj Quantum Inf.202171610.1038/s41534-020-00346-2 PokharelBAnandNFortmanBLidarDADemonstration of fidelity improvement using dynamical decoupling with superconducting qubitsPhys. Rev. Lett.20181212205022018PhRvL.121v0502P1:CAS:528:DC%2BC1MXltFWjsLs%3D10.1103/physrevlett.121.22050230547654 NielsenMAChuangIQuantum Computation and Quantum Information2002Cambridge University Press1049.81015 KnillERandomized benchmarking of quantum gatesPhys. Rev. A2008770123072008PhRvA..77a2307K1:CAS:528:DC%2BD1cXisFKltbg%3D10.1103/PhysRevA.77.012307 ElderSSHigh-fidelity measurement of qubits encoded in multilevel superconducting circuitsPhys. Rev. X20201001100140862231:CAS:528:DC%2BB3cXhtVGju7nL10.1103/PhysRevX.10.011001 EggerDPulsed reset protocol for fixed-frequency superconducting qubitsPhys. Rev. Appl.2018100440302018PhRvP..10d4030E1:CAS:528:DC%2BC1MXlsF2ntrw%3D10.1103/PhysRevApplied.10.044030 PreskillJQuantum computing in the NISQ era and beyondQuantum201827910.22331/q-2018-08-06-79 WallmanJJEmersonJNoise tailoring for scalable quantum computation via randomized compilingPhys. Rev. A2016940523252016PhRvA..94e2325W1:CAS:528:DC%2BC1cXksFaj10.1103/physreva.94.052325 KaneBEA silicon-based nuclear spin quantum computerNature19983931331371998Natur.393..133K1:CAS:528:DyaK1cXjt1Wqt74%3D10.1038/30156 JohanssonJRNationPDNoriFQutip: An open-source python framework for the dynamics of open quantum systemsComput. Phys. Commun.2012183176017722012CoPhC.183.1760J1:CAS:528:DC%2BC38Xjs1Gku74%3D10.1016/j.cpc.2012.02.021 NachmanBUrbanekMde JongWABauerCWUnfolding quantum computer readout noisenpj Quantum Inf.202061710.1038/s41534-020-00309-7 JohanssonJRNationPDNoriFQutip: An open-source python framework for the dynamics of open quantum systemsComput. Phys. Commun.2013184123412402013CoPhC.184.1234J1:CAS:528:DC%2BC3sXktlKm10.1016/j.cpc.2012.11.019 KhatriSQuantum-assisted quantum compilingQuantum2019314010.22331/q-2019-05-13-140 MalletFSingle-shot qubit readout in circuit quantum electrodynamicsNat. Phys.200957917951:CAS:528:DC%2BD1MXhtlGjt7jI10.1038/nphys1400 10339_CR29 MH Devoret (10339_CR7) 2013; 339 JJ Wallman (10339_CR16) 2016; 94 10339_CR26 B Pokharel (10339_CR17) 2018; 121 MA Nielsen (10339_CR25) 2002 JR Johansson (10339_CR31) 2012; 183 10339_CR24 10339_CR23 Y Nakamura (10339_CR5) 1999; 398 E Knill (10339_CR22) 2008; 77 JR Johansson (10339_CR32) 2013; 184 S Mavadia (10339_CR35) 2018; 4 D Loss (10339_CR3) 1998; 57 DC McKay (10339_CR27) 2017; 96 SS Elder (10339_CR21) 2020; 10 P Virtanen (10339_CR30) 2020; 17 PW Shor (10339_CR2) 1997; 26 D Egger (10339_CR19) 2018; 10 S Khatri (10339_CR12) 2019; 3 F Mallet (10339_CR20) 2009; 5 10339_CR14 H-P Breuer (10339_CR28) 2016; 88 10339_CR36 JI Cirac (10339_CR4) 1995; 74 10339_CR13 G Wendin (10339_CR8) 2017; 80 P Krantz (10339_CR9) 2019; 6 10339_CR33 BE Kane (10339_CR6) 1998; 393 J Preskill (10339_CR10) 2018; 2 P Magnard (10339_CR18) 2018; 121 B Nachman (10339_CR34) 2020; 6 10339_CR1 P Jurcevic (10339_CR11) 2021; 6 M Werninghaus (10339_CR15) 2021; 7 |
| References_xml | – reference: MavadiaSExperimental quantum verification in the presence of temporally correlated noisenpj Quantum Inf.20184192018npjQI...4....7M10.1038/s41534-017-0052-0 – reference: Carvalho, A. R. R., Ball, H., Biercuk, M. J., Hush, M. R. & Thomsen, F. Error-robust quantum logic optimization using a cloud quantum computer interface (2020). arXiv:2010.08057. – reference: KaneBEA silicon-based nuclear spin quantum computerNature19983931331371998Natur.393..133K1:CAS:528:DyaK1cXjt1Wqt74%3D10.1038/30156 – reference: NielsenMAChuangIQuantum Computation and Quantum Information2002Cambridge University Press1049.81015 – reference: PokharelBAnandNFortmanBLidarDADemonstration of fidelity improvement using dynamical decoupling with superconducting qubitsPhys. Rev. Lett.20181212205022018PhRvL.121v0502P1:CAS:528:DC%2BC1MXltFWjsLs%3D10.1103/physrevlett.121.22050230547654 – reference: WerninghausMLeakage reduction in fast superconducting qubit gates via optimal controlnpj Quantum Inf.202171610.1038/s41534-020-00346-2 – reference: MalletFSingle-shot qubit readout in circuit quantum electrodynamicsNat. Phys.200957917951:CAS:528:DC%2BD1MXhtlGjt7jI10.1038/nphys1400 – reference: CiracJIZollerPQuantum computations with cold trapped ionsPhys. Rev. Lett.199574409140941995PhRvL..74.4091C1:CAS:528:DyaK2MXls1anu7Y%3D10.1103/PhysRevLett.74.409110058410 – reference: Cross, A. W., Bishop, L. S., Smolin, J. A. & Gambetta, J. M. Open quantum assembly language. arXiv preprintarXiv:1707.03429 (2017). – reference: McKayDCWoodCJSheldonSChowJMGambettaJMEfficient z gates for quantum computingPhys. Rev. A2017960223302017PhRvA..96b2330M10.1103/PhysRevA.96.022330 – reference: NachmanBUrbanekMde JongWABauerCWUnfolding quantum computer readout noisenpj Quantum Inf.202061710.1038/s41534-020-00309-7 – reference: Gokhale, P., Javadi-Abhari, A., Earnest, N., Shi, Y. & Chong, F. T. Optimized quantum compilation for near-term algorithms with openpulse. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 186–200, https://doi.org/10.1109/MICRO50266.2020.00027 (2020). – reference: JohanssonJRNationPDNoriFQutip: An open-source python framework for the dynamics of open quantum systemsComput. Phys. Commun.2013184123412402013CoPhC.184.1234J1:CAS:528:DC%2BC3sXktlKm10.1016/j.cpc.2012.11.019 – reference: Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys21, 467–488 (1982). – reference: VirtanenPSciPy 1.0: Fundamental algorithms for scientific computing in pythonNat. Methods2020172612721:CAS:528:DC%2BB3cXislCjuro%3D10.1038/s41592-019-0686-2320155437056644 – reference: NakamuraYPashkinYATsaiJSCoherent control of macroscopic quantum states in a single-cooper-pair boxNature19993987867881999Natur.398..786N1:CAS:528:DyaK1MXjtVSkurs%3D10.1038/19718 – reference: PreskillJQuantum computing in the NISQ era and beyondQuantum201827910.22331/q-2018-08-06-79 – reference: KnillERandomized benchmarking of quantum gatesPhys. Rev. A2008770123072008PhRvA..77a2307K1:CAS:528:DC%2BD1cXisFKltbg%3D10.1103/PhysRevA.77.012307 – reference: BreuerH-PLaineE-MPiiloJVacchiniBColloquium: Non-Markovian dynamics in open quantum systemsRev. Mod. Phys.2016880210022016RvMP...88b1002B10.1103/RevModPhys.88.021002 – reference: MagnardPFast and unconditional all-microwave reset of a superconducting qubitPhys. Rev. Lett.20181210605022018PhRvL.121f0502M1:CAS:528:DC%2BC1MXltFSgt7o%3D10.1103/PhysRevLett.121.06050230141638 – reference: ibmq_bogota v1.0.0, IBM Quantum team. Retrieved from https://quantum-computing.ibm.com (2020). – reference: Rigetti Computing Quantum Cloud Services, http://qcs.rigetti.com, accessed August, (2020). – reference: WallmanJJEmersonJNoise tailoring for scalable quantum computation via randomized compilingPhys. Rev. A2016940523252016PhRvA..94e2325W1:CAS:528:DC%2BC1cXksFaj10.1103/physreva.94.052325 – reference: ibmq_rome v1.1.0, IBM Quantum team. Retrieved from https://quantum-computing.ibm.com (2020). – reference: JohanssonJRNationPDNoriFQutip: An open-source python framework for the dynamics of open quantum systemsComput. Phys. Commun.2012183176017722012CoPhC.183.1760J1:CAS:528:DC%2BC38Xjs1Gku74%3D10.1016/j.cpc.2012.02.021 – reference: KrantzPA quantum engineer’s guide to superconducting qubitsAppl. Phys. Rev.201960213182019ApPRv...6b1318K1:CAS:528:DC%2BC1MXht1CnsrbP10.1063/1.5089550 – reference: EggerDPulsed reset protocol for fixed-frequency superconducting qubitsPhys. Rev. Appl.2018100440302018PhRvP..10d4030E1:CAS:528:DC%2BC1MXlsF2ntrw%3D10.1103/PhysRevApplied.10.044030 – reference: KhatriSQuantum-assisted quantum compilingQuantum2019314010.22331/q-2019-05-13-140 – reference: JurcevicPDemonstration of quantum volume 64 on a superconducting quantum computing systemQuantum Sci. Technol.202160250202021QS&T....6b5020J10.1088/2058-9565/abe519 – reference: WendinGQuantum information processing with superconducting circuits: A reviewRep. Prog. Phys.2017801060137081211:CAS:528:DC%2BC1cXntl2ktb0%3D10.1088/1361-6633/aa7e1a – reference: Aleksandrowicz, G. et al. Qiskit: An open-source framework for quantum computing. https://doi.org/10.5281/zenodo.2562110 (2019). – reference: ShorPWPolynomial-time algorithms for prime factorization and discrete logarithms on a quantum computerSIAM J. Comput.19972614841509147199010.1137/s00975397952931721005.11065 – reference: LossDDiVincenzoDPQuantum computation with quantum dotsPhys. Rev. A1998571201261998PhRvA..57..120L1:CAS:528:DyaK1cXitlamug%3D%3D10.1103/PhysRevA.57.120 – reference: Helsen, J., Xue, X., Vandersypen, L. M. K. & Wehner, S. A new class of efficient randomized benchmarking protocols (2019). arXiv:1806.02048. – reference: DevoretMHSchoelkopfRJSuperconducting circuits for quantum information: An outlookScience2013339116911742013Sci...339.1169D1:CAS:528:DC%2BC3sXjtlyksLs%3D10.1126/science.123193023471399 – reference: ElderSSHigh-fidelity measurement of qubits encoded in multilevel superconducting circuitsPhys. Rev. X20201001100140862231:CAS:528:DC%2BB3cXhtVGju7nL10.1103/PhysRevX.10.011001 – volume: 3 start-page: 140 year: 2019 ident: 10339_CR12 publication-title: Quantum doi: 10.22331/q-2019-05-13-140 – volume: 183 start-page: 1760 year: 2012 ident: 10339_CR31 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.02.021 – ident: 10339_CR33 doi: 10.1038/s41534-019-0182-7 – volume: 10 start-page: 044030 year: 2018 ident: 10339_CR19 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.10.044030 – volume: 88 start-page: 021002 year: 2016 ident: 10339_CR28 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.88.021002 – volume: 5 start-page: 791 year: 2009 ident: 10339_CR20 publication-title: Nat. Phys. doi: 10.1038/nphys1400 – volume: 17 start-page: 261 year: 2020 ident: 10339_CR30 publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – ident: 10339_CR1 doi: 10.1007/BF02650179 – volume: 4 start-page: 1 year: 2018 ident: 10339_CR35 publication-title: npj Quantum Inf. doi: 10.1038/s41534-017-0052-0 – ident: 10339_CR14 doi: 10.1103/PhysRevApplied.15.064054 – volume: 184 start-page: 1234 year: 2013 ident: 10339_CR32 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.11.019 – volume: 121 start-page: 060502 year: 2018 ident: 10339_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.060502 – volume: 6 start-page: 025020 year: 2021 ident: 10339_CR11 publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/abe519 – volume: 77 start-page: 012307 year: 2008 ident: 10339_CR22 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.77.012307 – ident: 10339_CR23 – volume: 2 start-page: 79 year: 2018 ident: 10339_CR10 publication-title: Quantum doi: 10.22331/q-2018-08-06-79 – volume: 339 start-page: 1169 year: 2013 ident: 10339_CR7 publication-title: Science doi: 10.1126/science.1231930 – volume: 7 start-page: 1 year: 2021 ident: 10339_CR15 publication-title: npj Quantum Inf. doi: 10.1038/s41534-020-00346-2 – volume: 6 start-page: 1 year: 2020 ident: 10339_CR34 publication-title: npj Quantum Inf. doi: 10.1038/s41534-020-00309-7 – ident: 10339_CR36 – volume: 74 start-page: 4091 year: 1995 ident: 10339_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.4091 – volume: 6 start-page: 021318 year: 2019 ident: 10339_CR9 publication-title: Appl. Phys. Rev. doi: 10.1063/1.5089550 – ident: 10339_CR13 doi: 10.1109/MICRO50266.2020.00027 – volume: 121 start-page: 220502 year: 2018 ident: 10339_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.121.220502 – volume: 94 start-page: 052325 year: 2016 ident: 10339_CR16 publication-title: Phys. Rev. A doi: 10.1103/physreva.94.052325 – volume: 96 start-page: 022330 year: 2017 ident: 10339_CR27 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.96.022330 – volume: 80 start-page: 10601 year: 2017 ident: 10339_CR8 publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/aa7e1a – volume-title: Quantum Computation and Quantum Information year: 2002 ident: 10339_CR25 – volume: 393 start-page: 133 year: 1998 ident: 10339_CR6 publication-title: Nature doi: 10.1038/30156 – ident: 10339_CR24 – ident: 10339_CR26 – ident: 10339_CR29 doi: 10.5281/zenodo.2562110 – volume: 10 start-page: 011001 year: 2020 ident: 10339_CR21 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.10.011001 – volume: 26 start-page: 1484 year: 1997 ident: 10339_CR2 publication-title: SIAM J. Comput. doi: 10.1137/s0097539795293172 – volume: 398 start-page: 786 year: 1999 ident: 10339_CR5 publication-title: Nature doi: 10.1038/19718 – volume: 57 start-page: 120 year: 1998 ident: 10339_CR3 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.57.120 |
| SSID | ssj0000529419 |
| Score | 2.4570267 |
| Snippet | In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly... Abstract In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to... |
| SourceID | doaj pubmedcentral osti proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6379 |
| SubjectTerms | 639/705/258 639/766/25 639/766/259 639/766/483/1139 639/766/483/2802 639/766/483/481 applied physics CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Computer applications Computers Decomposition Gates Humanities and Social Sciences information technology information theory and computation multidisciplinary Noise Noise levels quantum information quantum mechanics qubits Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: DOAJ dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuiDehBRmJG0RNYsdOjoBacao4gFRxsfyKiFQlkGSL-PfM2Nmly_PCZaNNJruJvxn5sz3-BuB50ckybj9Tvva5ENznrecu72pVVsa5MngTi02os7Pm_Lx9d6XUF-WEJXng1HDHHUdCooiHeCMqoaxzqvZKSovcRvootl2o9spgKql6V60o23WXTMGb4xl7KtpNhmMv_M7bvNjriaJgPx5GDKzfkc1fcyZ_WjiN_dHpbbi1Ekn2Kr3AHbgWhrtwI5WW_HYPPp5M0zgxEoJgE8mzEgBs7BjNDVyE_MvG9gujObSZXfaGDWM_h9x8NVNgPlCi-ZrNxfphGdkQ9cGT_X34cHry_s3bfK2jkLtaqiU3pMbpauNNZ6sumMY3RUCiaIX0HvkRJ831gGeMbZ0tZW2twoFOrUjqvZSGP4CDYRzCI2DWtB5RFfhZCI-_iPypaxEAbqQwXmVQbttUu1VknGpdXOi42M0bnXDQiIOOOOgigxe7ez4niY2_Wr8mqHaWJI8dT6DT6NVp9L-cJoNDAlojyyCpXEc5RW7RaEmcKYOjLf56jehZVyQ1qGhWK4Nnu8sYi7TAYoYwbqJNVSB_qqsMHiZ32T0nrwWOzoomA7XnSHsvsn9l6D9FvW-kbJxL_N-XW5f78Vh_bqjH_6OhDuFmRSFD4pbyCA6WaROewHV3ufTz9DTG3HeV-yxZ priority: 102 providerName: Directory of Open Access Journals |
| Title | Error rate reduction of single-qubit gates via noise-aware decomposition into native gates |
| URI | https://link.springer.com/article/10.1038/s41598-022-10339-0 https://www.ncbi.nlm.nih.gov/pubmed/35430608 https://www.proquest.com/docview/2650970903 https://www.proquest.com/docview/2652029352 https://www.osti.gov/servlets/purl/2470007 https://pubmed.ncbi.nlm.nih.gov/PMC9013363 https://doaj.org/article/f353371923da4247bcc75d766b0996d6 |
| Volume | 12 |
| WOSCitedRecordID | wos000782910400020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYChIvfH-EjcpIvEG0JE7s5Akx1AkeVkUIpMKL5dgORJqSLUmH-O-5c9xO5WMvvFzVxG3j3tn--e78O0JeRjWP3fEzYTITpikzYWGYDutMxInSOrZGuWITYrnMV6ui9A63wadVbuZEN1GbTqOP_ChBqjeBXoU35xchVo3C6KovobFHZshUBnY-O14sy49bLwvGsdK48KdlIpYfDbBi4aky2IPBe1aE0c6K5Ij74aWDAfY30Pln7uRvAVS3Lp3c_d8e3SN3PCKlbycTuk9u2PYBuTXVqPz5kHxd9H3XU2SUoD3yvKImaVdTdDKc2fBiXTUjRWfcQC8bRduuGWyofqjeUmMxY92nhdGmHTvaOqLxqf0j8vlk8end-9AXZAh1xsUYKqT11Jkyqq6S2qrc5JEFxFml3BgAWgzJ2y1cUVWhq5hnVSVgx5QJ5IyPuWKPyX7btfYpoZUqDJhHCjJKDXwjALG6SGDCUTxVRgQk3ihFas9WjkUzzqSLmrNcToqUoEjpFCmjgLzafuZ84uq4tvUx6nrbEnm23YWu_yb9sJU1AzgsEAUblSapqLQWmRGcV4CsueEBOUBLkQBXkHNXY3KSHiW0RPAVkMON5qWfGgZ5pfaAvNjehkGNkRrV2m7t2iQRALEsCciTyd62z8myFLZ5UR4QsWOJOx3ZvdM23x1xOGA_xjj87uuNzV491r__qGfX9-KA3E5wNCH_JT8k-2O_ts_JTX05NkM_J3tiJZzM535wzp3fA-RpUqIUIGflh9Pyyy_ZTkL- |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70doASPBCaLmaScHhHi0atVS9VCkiotxbAciVUmbZFv1T_EbmXGSrZZHbz1w2dUms9k4-3n8eTz-BuBlUPLQbT8TJjV-ksTGz02s_TIVYaS0Dq1RrtiE2N3NDg7yvSX4Oe2FobTKySc6R20aTTHytYik3gRFFd4dHftUNYpWV6cSGgMstu3ZKU7Zurdbn_D_fRVFG-v7Hzf9saqAr1Muel-RNqVOlVFlEZVWZSYLLNKmIuHGIFuISYHc4hFV5LoIeVoUAml_Kkj4POQqxutegatII6LApQruzWM6tGqWhPm4NyeIs7UOx0faw4YzPvwc536wMP65MgH41mB3_hvF_TNT87flWjcKbtz-357fHbg18m32fuggd2HJ1vfg-lCB8-w-fF1v26ZlpJfBWlKxJZyypmQUQjm0_vGsqHpGocaOnVSK1U3VWV-dqtYyYykff0x6Y1XdN6x2MuqD_QP4cikNewjLdVPbx8AKlRsEf4KvQWLwikgzyzxCd6p4oozwIJxAIPWoxU4lQQ6lywmIMzkARyJwpAOODDx4Pf_O0aBEcqH1B8LW3JJUxN2Bpv0uR6ckyxjJviCOb1QSJaLQWqRGcF7gvIEb7sEKIVMiGSNFYU2pV7qXaEnU0oPVCWlydHydPIeZBy_mp9Fl0TqUqm0zczZRgDQzjTx4NOB7fp9xmuAkNsg8EAvIX2jI4pm6-uFk0ZHZxjHH330z9ZHz2_r3g3pycSuew43N_c87cmdrd3sFbkbUk0npk6_Cct_O7FO4pk_6qmufOVfA4Ntl951fLMiXxg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o_QAkaCE0Sbp50cEALaFVXRqgeQKi6uYzsQqUraJNuqf41fx4yT3Wp59NYDl11tMpuNs9-MZ8bjbwBeBiUP3fYzYVLjJ0ls_NzE2i9TEUZK69Aa5ZpNiNks29_P99bg52IvDJVVLmyiM9Sm0ZQjn0RE9SYoqzApx7KIva3pu6NjnzpI0Urrop3GAJFde3aK4Vv3dmcL_-tXUTTd_vLxkz92GPB1ykXvK-Kp1Kkyqiyi0qrMZIFFF6pIuDHoOcTERm7xiCpyXYQ8LQqBIUAqiAQ95CrG616Bq4JYsahsMNpb5ndoBS0J83GfThBnkw7nStrPhtEffo5zP1iZC13LAHxrULX_5u7-WbX529KtmxGnt__nZ3kHbo1-OHs_KM5dWLP1Pbg-dOY8uw_fttu2aRnxaLCW2G0Jv6wpGaVWDq1_PC-qnlEKsmMnlWJ1U3XWV6eqtcxYqtMfi-FYVfcNqx29-iD_AL5eysAewnrd1PYxsELlBpUiwdcgMXhFdD_LPEIzq3iijPAgXABC6pGjnVqFHEpXKxBncgCRRBBJByIZePB6-Z2jgaHkQukPhLOlJLGLuwNN-12OxkqWMQYBgnx_o5IoEYXWIjWC8wLjCW64BxuEUolOGjENayrJ0r1ESXI5PdhcoE6OBrGT55Dz4MXyNJoyWp9StW3mTiYK0P1MIw8eDVhf3mecJhjcBpkHYkULVgayeqaufji6dPR445jj775Z6Mv5bf37QT25eBTP4QaqjPy8M9vdgJsRKTURgPJNWO_buX0K1_RJX3XtM2cVGBxctur8Aq-9oIo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Error+rate+reduction+of+single-qubit+gates+via+noise-aware+decomposition+into+native+gates&rft.jtitle=Scientific+reports&rft.au=Maldonado%2C+Thomas+J.&rft.au=Flick%2C+Johannes&rft.au=Krastanov%2C+Stefan&rft.au=Galda%2C+Alexey&rft.date=2022-04-16&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft_id=info:doi/10.1038%2Fs41598-022-10339-0&rft_id=info%3Apmid%2F35430608&rft.externalDocID=PMC9013363 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |