Error rate reduction of single-qubit gates via noise-aware decomposition into native gates

In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit’...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 12; H. 1; S. 6379 - 10
Hauptverfasser: Maldonado, Thomas J., Flick, Johannes, Krastanov, Stefan, Galda, Alexey
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 16.04.2022
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit’s initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On ibmq_rome, we demonstrate a reduction of the single-qubit error rate by 38%, from 1.6 × 10 - 3 to 1.0 × 10 - 3 , provided the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never decrease gate fidelity, provided the system’s T 1 and T 2 times have not drifted above 100 times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits’ intermediate states can be inferred. This paper presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native hardware gates.
AbstractList In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit’s initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On ibmq_rome, we demonstrate a reduction of the single-qubit error rate by 38%, from $$1.6 \times 10 ^{-3}$$ 1.6×10-3 to $$1.0 \times 10 ^{-3}$$ 1.0×10-3, provided the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never decrease gate fidelity, provided the system’s $$T_1$$ T1 and $$T_2$$ T2 times have not drifted above 100 times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits’ intermediate states can be inferred. This paper presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native hardware gates.
Abstract In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit’s initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On ibmq_rome, we demonstrate a reduction of the single-qubit error rate by 38%, from $$1.6 \times 10 ^{-3}$$ 1.6 × 10 - 3 to $$1.0 \times 10 ^{-3}$$ 1.0 × 10 - 3 , provided the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never decrease gate fidelity, provided the system’s $$T_1$$ T 1 and $$T_2$$ T 2 times have not drifted above 100 times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits’ intermediate states can be inferred. This paper presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native hardware gates.
In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit’s initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On ibmq_rome, we demonstrate a reduction of the single-qubit error rate by 38%, from 1.6×10-3 to 1.0×10-3, provided the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never decrease gate fidelity, provided the system’s T1 and T2 times have not drifted above 100 times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits’ intermediate states can be inferred. This paper presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native hardware gates.
In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit’s initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On ibmq_rome, we demonstrate a reduction of the single-qubit error rate by 38%, from 1.6 × 10 - 3 to 1.0 × 10 - 3 , provided the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never decrease gate fidelity, provided the system’s T 1 and T 2 times have not drifted above 100 times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits’ intermediate states can be inferred. This paper presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native hardware gates.
In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit’s initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On ibmq_rome, we demonstrate a reduction of the single-qubit error rate by 38%, from $1.6 \times 10 ^{-3}$ to $1.0 \times 10 ^{-3}$ , provided the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never decrease gate fidelity, provided the system’s T1 and T2 times have not drifted above 100 times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits’ intermediate states can be inferred. This paper presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native hardware gates.
In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit's initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On ibmq_rome, we demonstrate a reduction of the single-qubit error rate by 38%, from [Formula: see text] to [Formula: see text], provided the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never decrease gate fidelity, provided the system's [Formula: see text] and [Formula: see text] times have not drifted above 100 times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits' intermediate states can be inferred. This paper presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native hardware gates.
In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit's initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On ibmq_rome, we demonstrate a reduction of the single-qubit error rate by 38%, from [Formula: see text] to [Formula: see text], provided the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never decrease gate fidelity, provided the system's [Formula: see text] and [Formula: see text] times have not drifted above 100 times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits' intermediate states can be inferred. This paper presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native hardware gates.In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit's initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On ibmq_rome, we demonstrate a reduction of the single-qubit error rate by 38%, from [Formula: see text] to [Formula: see text], provided the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never decrease gate fidelity, provided the system's [Formula: see text] and [Formula: see text] times have not drifted above 100 times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits' intermediate states can be inferred. This paper presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native hardware gates.
In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this paper, we introduce an approach by which knowledge of a qubit’s initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On , we demonstrate a reduction of the single-qubit error rate by 38%, from $$1.6 \times 10 ^{-3}$$ 1.6 × 10 - 3 to $$1.0 \times 10 ^{-3}$$ 1.0 × 10 - 3 , provided the initial state of the input qubit is known. On , we prove that our protocol will never decrease gate fidelity, provided the system’s $$T_1$$ T 1 and $$T_2$$ T 2 times have not drifted above 100 times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits’ intermediate states can be inferred. This paper presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native hardware gates.
ArticleNumber 6379
Author Maldonado, Thomas J.
Krastanov, Stefan
Flick, Johannes
Galda, Alexey
Author_xml – sequence: 1
  givenname: Thomas J.
  surname: Maldonado
  fullname: Maldonado, Thomas J.
  email: maldonado@princeton.edu
  organization: Department of Electrical and Computer Engineering, Princeton University, Department of Physics, Harvard University
– sequence: 2
  givenname: Johannes
  surname: Flick
  fullname: Flick, Johannes
  organization: Center for Computational Quantum Physics, Flatiron Institute
– sequence: 3
  givenname: Stefan
  surname: Krastanov
  fullname: Krastanov, Stefan
  organization: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, John A. Paulson School of Engineering and Applied Sciences, Harvard University
– sequence: 4
  givenname: Alexey
  surname: Galda
  fullname: Galda, Alexey
  organization: Menten AI, Inc., James Franck Institute, University of Chicago, Computational Science Division, Argonne National Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35430608$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/2470007$$D View this record in Osti.gov
BookMark eNp9UsFu1DAQjVARLaU_wAFFcOESGNuxE1-QUFWgUiUucOFiOfZk61XW3trOIv4e76aUtof6Ynv83psZz3tZHfngsapeE_hAgPUfU0u47BugtCl3Jht4Vp1QaHlDGaVH987H1VlKayiLU9kS-aI6ZrxlIKA_qX5dxBhiHXXGOqKdTXbB12Gsk_OrCZubeXC5XpXnVO-crn1wCRv9W0esLZqw2YbkDhznc6i9zm6HC_5V9XzUU8Kz2_20-vnl4sf5t-bq-9fL889XjeGiy40mHWeGa6vHgY6oe9sD9gBDK6xlkrJWEMAS0YM0AxF8GLpeUN5REIIIzU6ry0XXBr1W2-g2Ov5RQTt1CIS4UjpmZyZUI-OMdaSIWt3SthuM6bjthBhASmFF0fq0aG3nYYPWoM9RTw9EH754d61WYackEMYEKwJvF4GQslPJuIzm2gTv0WRVMpYpdAX0_jZLDDczpqw2LhmcJu0xzElRwSlQyTgt0HePoOswR1_-c48C2YGEfdY398u-q_ffnAuALgATQ0oRxzsIAbX3k1r8pIqf1MFPCgqpf0Qq7ej9sEvrbnqayhZqKnn8CuP_sp9g_QXTxN2d
CitedBy_id crossref_primary_10_1088_2058_9565_adb3c7
crossref_primary_10_3389_fphy_2024_1360080
crossref_primary_10_1038_s41467_025_58545_4
crossref_primary_10_1038_s41598_023_28109_x
crossref_primary_10_1038_s41598_024_60605_6
crossref_primary_10_1103_PhysRevApplied_23_044036
crossref_primary_10_3390_quantum7020024
Cites_doi 10.22331/q-2019-05-13-140
10.1016/j.cpc.2012.02.021
10.1038/s41534-019-0182-7
10.1103/PhysRevApplied.10.044030
10.1103/RevModPhys.88.021002
10.1038/nphys1400
10.1038/s41592-019-0686-2
10.1007/BF02650179
10.1038/s41534-017-0052-0
10.1103/PhysRevApplied.15.064054
10.1016/j.cpc.2012.11.019
10.1103/PhysRevLett.121.060502
10.1088/2058-9565/abe519
10.1103/PhysRevA.77.012307
10.22331/q-2018-08-06-79
10.1126/science.1231930
10.1038/s41534-020-00346-2
10.1038/s41534-020-00309-7
10.1103/PhysRevLett.74.4091
10.1063/1.5089550
10.1109/MICRO50266.2020.00027
10.1103/physrevlett.121.220502
10.1103/physreva.94.052325
10.1103/PhysRevA.96.022330
10.1088/1361-6633/aa7e1a
10.1038/30156
10.5281/zenodo.2562110
10.1103/PhysRevX.10.011001
10.1137/s0097539795293172
10.1038/19718
10.1103/PhysRevA.57.120
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Argonne National Laboratory (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Laboratory (ANL), Argonne, IL (United States)
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41598-022-10339-0
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database


PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_f353371923da4247bcc75d766b0996d6
PMC9013363
2470007
35430608
10_1038_s41598_022_10339_0
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c567t-a1753c5adafb2fea8d80e800b46dd39234610ee80ab9cb165bb786257206616a3
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000782910400020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:33:20 EST 2025
Tue Nov 04 01:58:44 EST 2025
Mon Mar 17 03:27:52 EDT 2025
Thu Oct 02 05:22:52 EDT 2025
Tue Oct 07 07:40:46 EDT 2025
Thu Apr 03 07:03:54 EDT 2025
Tue Nov 18 22:04:21 EST 2025
Sat Nov 29 06:25:50 EST 2025
Fri Feb 21 02:39:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-a1753c5adafb2fea8d80e800b46dd39234610ee80ab9cb165bb786257206616a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-06CH11357
USDOE
OpenAccessLink https://doaj.org/article/f353371923da4247bcc75d766b0996d6
PMID 35430608
PQID 2650970903
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_f353371923da4247bcc75d766b0996d6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9013363
osti_scitechconnect_2470007
proquest_miscellaneous_2652029352
proquest_journals_2650970903
pubmed_primary_35430608
crossref_primary_10_1038_s41598_022_10339_0
crossref_citationtrail_10_1038_s41598_022_10339_0
springer_journals_10_1038_s41598_022_10339_0
PublicationCentury 2000
PublicationDate 2022-04-16
PublicationDateYYYYMMDD 2022-04-16
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Cross, A. W., Bishop, L. S., Smolin, J. A. & Gambetta, J. M. Open quantum assembly language. arXiv preprintarXiv:1707.03429 (2017).
CiracJIZollerPQuantum computations with cold trapped ionsPhys. Rev. Lett.199574409140941995PhRvL..74.4091C1:CAS:528:DyaK2MXls1anu7Y%3D10.1103/PhysRevLett.74.409110058410
McKayDCWoodCJSheldonSChowJMGambettaJMEfficient z gates for quantum computingPhys. Rev. A2017960223302017PhRvA..96b2330M10.1103/PhysRevA.96.022330
Helsen, J., Xue, X., Vandersypen, L. M. K. & Wehner, S. A new class of efficient randomized benchmarking protocols (2019). arXiv:1806.02048.
ibmq_rome v1.1.0, IBM Quantum team. Retrieved from https://quantum-computing.ibm.com (2020).
VirtanenPSciPy 1.0: Fundamental algorithms for scientific computing in pythonNat. Methods2020172612721:CAS:528:DC%2BB3cXislCjuro%3D10.1038/s41592-019-0686-2320155437056644
JurcevicPDemonstration of quantum volume 64 on a superconducting quantum computing systemQuantum Sci. Technol.202160250202021QS&T....6b5020J10.1088/2058-9565/abe519
Carvalho, A. R. R., Ball, H., Biercuk, M. J., Hush, M. R. & Thomsen, F. Error-robust quantum logic optimization using a cloud quantum computer interface (2020). arXiv:2010.08057.
ibmq_bogota v1.0.0, IBM Quantum team. Retrieved from https://quantum-computing.ibm.com (2020).
NakamuraYPashkinYATsaiJSCoherent control of macroscopic quantum states in a single-cooper-pair boxNature19993987867881999Natur.398..786N1:CAS:528:DyaK1MXjtVSkurs%3D10.1038/19718
BreuerH-PLaineE-MPiiloJVacchiniBColloquium: Non-Markovian dynamics in open quantum systemsRev. Mod. Phys.2016880210022016RvMP...88b1002B10.1103/RevModPhys.88.021002
Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys21, 467–488 (1982).
ShorPWPolynomial-time algorithms for prime factorization and discrete logarithms on a quantum computerSIAM J. Comput.19972614841509147199010.1137/s00975397952931721005.11065
LossDDiVincenzoDPQuantum computation with quantum dotsPhys. Rev. A1998571201261998PhRvA..57..120L1:CAS:528:DyaK1cXitlamug%3D%3D10.1103/PhysRevA.57.120
WendinGQuantum information processing with superconducting circuits: A reviewRep. Prog. Phys.2017801060137081211:CAS:528:DC%2BC1cXntl2ktb0%3D10.1088/1361-6633/aa7e1a
MavadiaSExperimental quantum verification in the presence of temporally correlated noisenpj Quantum Inf.20184192018npjQI...4....7M10.1038/s41534-017-0052-0
Gokhale, P., Javadi-Abhari, A., Earnest, N., Shi, Y. & Chong, F. T. Optimized quantum compilation for near-term algorithms with openpulse. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 186–200, https://doi.org/10.1109/MICRO50266.2020.00027 (2020).
MagnardPFast and unconditional all-microwave reset of a superconducting qubitPhys. Rev. Lett.20181210605022018PhRvL.121f0502M1:CAS:528:DC%2BC1MXltFSgt7o%3D10.1103/PhysRevLett.121.06050230141638
Aleksandrowicz, G. et al. Qiskit: An open-source framework for quantum computing. https://doi.org/10.5281/zenodo.2562110 (2019).
DevoretMHSchoelkopfRJSuperconducting circuits for quantum information: An outlookScience2013339116911742013Sci...339.1169D1:CAS:528:DC%2BC3sXjtlyksLs%3D10.1126/science.123193023471399
KrantzPA quantum engineer’s guide to superconducting qubitsAppl. Phys. Rev.201960213182019ApPRv...6b1318K1:CAS:528:DC%2BC1MXht1CnsrbP10.1063/1.5089550
Rigetti Computing Quantum Cloud Services, http://qcs.rigetti.com, accessed August, (2020).
WerninghausMLeakage reduction in fast superconducting qubit gates via optimal controlnpj Quantum Inf.202171610.1038/s41534-020-00346-2
PokharelBAnandNFortmanBLidarDADemonstration of fidelity improvement using dynamical decoupling with superconducting qubitsPhys. Rev. Lett.20181212205022018PhRvL.121v0502P1:CAS:528:DC%2BC1MXltFWjsLs%3D10.1103/physrevlett.121.22050230547654
NielsenMAChuangIQuantum Computation and Quantum Information2002Cambridge University Press1049.81015
KnillERandomized benchmarking of quantum gatesPhys. Rev. A2008770123072008PhRvA..77a2307K1:CAS:528:DC%2BD1cXisFKltbg%3D10.1103/PhysRevA.77.012307
ElderSSHigh-fidelity measurement of qubits encoded in multilevel superconducting circuitsPhys. Rev. X20201001100140862231:CAS:528:DC%2BB3cXhtVGju7nL10.1103/PhysRevX.10.011001
EggerDPulsed reset protocol for fixed-frequency superconducting qubitsPhys. Rev. Appl.2018100440302018PhRvP..10d4030E1:CAS:528:DC%2BC1MXlsF2ntrw%3D10.1103/PhysRevApplied.10.044030
PreskillJQuantum computing in the NISQ era and beyondQuantum201827910.22331/q-2018-08-06-79
WallmanJJEmersonJNoise tailoring for scalable quantum computation via randomized compilingPhys. Rev. A2016940523252016PhRvA..94e2325W1:CAS:528:DC%2BC1cXksFaj10.1103/physreva.94.052325
KaneBEA silicon-based nuclear spin quantum computerNature19983931331371998Natur.393..133K1:CAS:528:DyaK1cXjt1Wqt74%3D10.1038/30156
JohanssonJRNationPDNoriFQutip: An open-source python framework for the dynamics of open quantum systemsComput. Phys. Commun.2012183176017722012CoPhC.183.1760J1:CAS:528:DC%2BC38Xjs1Gku74%3D10.1016/j.cpc.2012.02.021
NachmanBUrbanekMde JongWABauerCWUnfolding quantum computer readout noisenpj Quantum Inf.202061710.1038/s41534-020-00309-7
JohanssonJRNationPDNoriFQutip: An open-source python framework for the dynamics of open quantum systemsComput. Phys. Commun.2013184123412402013CoPhC.184.1234J1:CAS:528:DC%2BC3sXktlKm10.1016/j.cpc.2012.11.019
KhatriSQuantum-assisted quantum compilingQuantum2019314010.22331/q-2019-05-13-140
MalletFSingle-shot qubit readout in circuit quantum electrodynamicsNat. Phys.200957917951:CAS:528:DC%2BD1MXhtlGjt7jI10.1038/nphys1400
10339_CR29
MH Devoret (10339_CR7) 2013; 339
JJ Wallman (10339_CR16) 2016; 94
10339_CR26
B Pokharel (10339_CR17) 2018; 121
MA Nielsen (10339_CR25) 2002
JR Johansson (10339_CR31) 2012; 183
10339_CR24
10339_CR23
Y Nakamura (10339_CR5) 1999; 398
E Knill (10339_CR22) 2008; 77
JR Johansson (10339_CR32) 2013; 184
S Mavadia (10339_CR35) 2018; 4
D Loss (10339_CR3) 1998; 57
DC McKay (10339_CR27) 2017; 96
SS Elder (10339_CR21) 2020; 10
P Virtanen (10339_CR30) 2020; 17
PW Shor (10339_CR2) 1997; 26
D Egger (10339_CR19) 2018; 10
S Khatri (10339_CR12) 2019; 3
F Mallet (10339_CR20) 2009; 5
10339_CR14
H-P Breuer (10339_CR28) 2016; 88
10339_CR36
JI Cirac (10339_CR4) 1995; 74
10339_CR13
G Wendin (10339_CR8) 2017; 80
P Krantz (10339_CR9) 2019; 6
10339_CR33
BE Kane (10339_CR6) 1998; 393
J Preskill (10339_CR10) 2018; 2
P Magnard (10339_CR18) 2018; 121
B Nachman (10339_CR34) 2020; 6
10339_CR1
P Jurcevic (10339_CR11) 2021; 6
M Werninghaus (10339_CR15) 2021; 7
References_xml – reference: MavadiaSExperimental quantum verification in the presence of temporally correlated noisenpj Quantum Inf.20184192018npjQI...4....7M10.1038/s41534-017-0052-0
– reference: Carvalho, A. R. R., Ball, H., Biercuk, M. J., Hush, M. R. & Thomsen, F. Error-robust quantum logic optimization using a cloud quantum computer interface (2020). arXiv:2010.08057.
– reference: KaneBEA silicon-based nuclear spin quantum computerNature19983931331371998Natur.393..133K1:CAS:528:DyaK1cXjt1Wqt74%3D10.1038/30156
– reference: NielsenMAChuangIQuantum Computation and Quantum Information2002Cambridge University Press1049.81015
– reference: PokharelBAnandNFortmanBLidarDADemonstration of fidelity improvement using dynamical decoupling with superconducting qubitsPhys. Rev. Lett.20181212205022018PhRvL.121v0502P1:CAS:528:DC%2BC1MXltFWjsLs%3D10.1103/physrevlett.121.22050230547654
– reference: WerninghausMLeakage reduction in fast superconducting qubit gates via optimal controlnpj Quantum Inf.202171610.1038/s41534-020-00346-2
– reference: MalletFSingle-shot qubit readout in circuit quantum electrodynamicsNat. Phys.200957917951:CAS:528:DC%2BD1MXhtlGjt7jI10.1038/nphys1400
– reference: CiracJIZollerPQuantum computations with cold trapped ionsPhys. Rev. Lett.199574409140941995PhRvL..74.4091C1:CAS:528:DyaK2MXls1anu7Y%3D10.1103/PhysRevLett.74.409110058410
– reference: Cross, A. W., Bishop, L. S., Smolin, J. A. & Gambetta, J. M. Open quantum assembly language. arXiv preprintarXiv:1707.03429 (2017).
– reference: McKayDCWoodCJSheldonSChowJMGambettaJMEfficient z gates for quantum computingPhys. Rev. A2017960223302017PhRvA..96b2330M10.1103/PhysRevA.96.022330
– reference: NachmanBUrbanekMde JongWABauerCWUnfolding quantum computer readout noisenpj Quantum Inf.202061710.1038/s41534-020-00309-7
– reference: Gokhale, P., Javadi-Abhari, A., Earnest, N., Shi, Y. & Chong, F. T. Optimized quantum compilation for near-term algorithms with openpulse. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 186–200, https://doi.org/10.1109/MICRO50266.2020.00027 (2020).
– reference: JohanssonJRNationPDNoriFQutip: An open-source python framework for the dynamics of open quantum systemsComput. Phys. Commun.2013184123412402013CoPhC.184.1234J1:CAS:528:DC%2BC3sXktlKm10.1016/j.cpc.2012.11.019
– reference: Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys21, 467–488 (1982).
– reference: VirtanenPSciPy 1.0: Fundamental algorithms for scientific computing in pythonNat. Methods2020172612721:CAS:528:DC%2BB3cXislCjuro%3D10.1038/s41592-019-0686-2320155437056644
– reference: NakamuraYPashkinYATsaiJSCoherent control of macroscopic quantum states in a single-cooper-pair boxNature19993987867881999Natur.398..786N1:CAS:528:DyaK1MXjtVSkurs%3D10.1038/19718
– reference: PreskillJQuantum computing in the NISQ era and beyondQuantum201827910.22331/q-2018-08-06-79
– reference: KnillERandomized benchmarking of quantum gatesPhys. Rev. A2008770123072008PhRvA..77a2307K1:CAS:528:DC%2BD1cXisFKltbg%3D10.1103/PhysRevA.77.012307
– reference: BreuerH-PLaineE-MPiiloJVacchiniBColloquium: Non-Markovian dynamics in open quantum systemsRev. Mod. Phys.2016880210022016RvMP...88b1002B10.1103/RevModPhys.88.021002
– reference: MagnardPFast and unconditional all-microwave reset of a superconducting qubitPhys. Rev. Lett.20181210605022018PhRvL.121f0502M1:CAS:528:DC%2BC1MXltFSgt7o%3D10.1103/PhysRevLett.121.06050230141638
– reference: ibmq_bogota v1.0.0, IBM Quantum team. Retrieved from https://quantum-computing.ibm.com (2020).
– reference: Rigetti Computing Quantum Cloud Services, http://qcs.rigetti.com, accessed August, (2020).
– reference: WallmanJJEmersonJNoise tailoring for scalable quantum computation via randomized compilingPhys. Rev. A2016940523252016PhRvA..94e2325W1:CAS:528:DC%2BC1cXksFaj10.1103/physreva.94.052325
– reference: ibmq_rome v1.1.0, IBM Quantum team. Retrieved from https://quantum-computing.ibm.com (2020).
– reference: JohanssonJRNationPDNoriFQutip: An open-source python framework for the dynamics of open quantum systemsComput. Phys. Commun.2012183176017722012CoPhC.183.1760J1:CAS:528:DC%2BC38Xjs1Gku74%3D10.1016/j.cpc.2012.02.021
– reference: KrantzPA quantum engineer’s guide to superconducting qubitsAppl. Phys. Rev.201960213182019ApPRv...6b1318K1:CAS:528:DC%2BC1MXht1CnsrbP10.1063/1.5089550
– reference: EggerDPulsed reset protocol for fixed-frequency superconducting qubitsPhys. Rev. Appl.2018100440302018PhRvP..10d4030E1:CAS:528:DC%2BC1MXlsF2ntrw%3D10.1103/PhysRevApplied.10.044030
– reference: KhatriSQuantum-assisted quantum compilingQuantum2019314010.22331/q-2019-05-13-140
– reference: JurcevicPDemonstration of quantum volume 64 on a superconducting quantum computing systemQuantum Sci. Technol.202160250202021QS&T....6b5020J10.1088/2058-9565/abe519
– reference: WendinGQuantum information processing with superconducting circuits: A reviewRep. Prog. Phys.2017801060137081211:CAS:528:DC%2BC1cXntl2ktb0%3D10.1088/1361-6633/aa7e1a
– reference: Aleksandrowicz, G. et al. Qiskit: An open-source framework for quantum computing. https://doi.org/10.5281/zenodo.2562110 (2019).
– reference: ShorPWPolynomial-time algorithms for prime factorization and discrete logarithms on a quantum computerSIAM J. Comput.19972614841509147199010.1137/s00975397952931721005.11065
– reference: LossDDiVincenzoDPQuantum computation with quantum dotsPhys. Rev. A1998571201261998PhRvA..57..120L1:CAS:528:DyaK1cXitlamug%3D%3D10.1103/PhysRevA.57.120
– reference: Helsen, J., Xue, X., Vandersypen, L. M. K. & Wehner, S. A new class of efficient randomized benchmarking protocols (2019). arXiv:1806.02048.
– reference: DevoretMHSchoelkopfRJSuperconducting circuits for quantum information: An outlookScience2013339116911742013Sci...339.1169D1:CAS:528:DC%2BC3sXjtlyksLs%3D10.1126/science.123193023471399
– reference: ElderSSHigh-fidelity measurement of qubits encoded in multilevel superconducting circuitsPhys. Rev. X20201001100140862231:CAS:528:DC%2BB3cXhtVGju7nL10.1103/PhysRevX.10.011001
– volume: 3
  start-page: 140
  year: 2019
  ident: 10339_CR12
  publication-title: Quantum
  doi: 10.22331/q-2019-05-13-140
– volume: 183
  start-page: 1760
  year: 2012
  ident: 10339_CR31
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.02.021
– ident: 10339_CR33
  doi: 10.1038/s41534-019-0182-7
– volume: 10
  start-page: 044030
  year: 2018
  ident: 10339_CR19
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.10.044030
– volume: 88
  start-page: 021002
  year: 2016
  ident: 10339_CR28
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.88.021002
– volume: 5
  start-page: 791
  year: 2009
  ident: 10339_CR20
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1400
– volume: 17
  start-page: 261
  year: 2020
  ident: 10339_CR30
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– ident: 10339_CR1
  doi: 10.1007/BF02650179
– volume: 4
  start-page: 1
  year: 2018
  ident: 10339_CR35
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-017-0052-0
– ident: 10339_CR14
  doi: 10.1103/PhysRevApplied.15.064054
– volume: 184
  start-page: 1234
  year: 2013
  ident: 10339_CR32
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.11.019
– volume: 121
  start-page: 060502
  year: 2018
  ident: 10339_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.060502
– volume: 6
  start-page: 025020
  year: 2021
  ident: 10339_CR11
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/abe519
– volume: 77
  start-page: 012307
  year: 2008
  ident: 10339_CR22
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.77.012307
– ident: 10339_CR23
– volume: 2
  start-page: 79
  year: 2018
  ident: 10339_CR10
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– volume: 339
  start-page: 1169
  year: 2013
  ident: 10339_CR7
  publication-title: Science
  doi: 10.1126/science.1231930
– volume: 7
  start-page: 1
  year: 2021
  ident: 10339_CR15
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-020-00346-2
– volume: 6
  start-page: 1
  year: 2020
  ident: 10339_CR34
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-020-00309-7
– ident: 10339_CR36
– volume: 74
  start-page: 4091
  year: 1995
  ident: 10339_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.4091
– volume: 6
  start-page: 021318
  year: 2019
  ident: 10339_CR9
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5089550
– ident: 10339_CR13
  doi: 10.1109/MICRO50266.2020.00027
– volume: 121
  start-page: 220502
  year: 2018
  ident: 10339_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.121.220502
– volume: 94
  start-page: 052325
  year: 2016
  ident: 10339_CR16
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.94.052325
– volume: 96
  start-page: 022330
  year: 2017
  ident: 10339_CR27
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.96.022330
– volume: 80
  start-page: 10601
  year: 2017
  ident: 10339_CR8
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/aa7e1a
– volume-title: Quantum Computation and Quantum Information
  year: 2002
  ident: 10339_CR25
– volume: 393
  start-page: 133
  year: 1998
  ident: 10339_CR6
  publication-title: Nature
  doi: 10.1038/30156
– ident: 10339_CR24
– ident: 10339_CR26
– ident: 10339_CR29
  doi: 10.5281/zenodo.2562110
– volume: 10
  start-page: 011001
  year: 2020
  ident: 10339_CR21
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.10.011001
– volume: 26
  start-page: 1484
  year: 1997
  ident: 10339_CR2
  publication-title: SIAM J. Comput.
  doi: 10.1137/s0097539795293172
– volume: 398
  start-page: 786
  year: 1999
  ident: 10339_CR5
  publication-title: Nature
  doi: 10.1038/19718
– volume: 57
  start-page: 120
  year: 1998
  ident: 10339_CR3
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.57.120
SSID ssj0000529419
Score 2.4570267
Snippet In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly...
Abstract In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6379
SubjectTerms 639/705/258
639/766/25
639/766/259
639/766/483/1139
639/766/483/2802
639/766/483/481
applied physics
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computer applications
Computers
Decomposition
Gates
Humanities and Social Sciences
information technology
information theory and computation
multidisciplinary
Noise
Noise levels
quantum information
quantum mechanics
qubits
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBYkLb2hoQUbiBlYTJ7aTE6JoK06rCoFUcbH8CkSqkjbJtuLfM5N4t1oevXBaJZlo48yM_Xlm8g0hbyQsGd4KwVxwKUPAy6rSSBa4crAlcqFU9dRsQi2X5elpdRIDbkMsq1zPidNE7TuHMfJDjlRvCqMK788vGHaNwuxqbKFxm-wiUxnY-e7RYnnyeRNlwTxWkVXxa5k0Lw8HWLHwqzLYg8FxXrF0a0WaiPvhpwMH-xvo_LN28rcE6rQuHT_43xE9JPcjIqUfZhN6RG6F9jG5O_eo_PmEfFv0fddTZJSgPfK8oiZpV1MMMpwFdrGyzUgxGDfQy8bQtmuGwMyV6QP1ASvWY1kYbdqxo-1END7LPyVfjxdfPn5isSEDc0KqkRmk9XTCeFNbXgdT-jINgDhtIb0HoJUjeXuAM8ZWzmZSWKtgxyQUcsZn0uTPyE7btWGP0BJgSuC1lKG2gOgMdl7PlFfcWSEtFwnJ1krRLrKVY9OMMz1lzfNSz4rUoEg9KVKnCXm7ued85uq4UfoIdb2RRJ7t6UTXf9fRbXWdAxxWiIK9KXihrHNKeCWlBWQtvUzIPlqKBriCnLsOi5PcqEESwVdCDtaa13FqGPS12hPyenMZnBozNaYN3WqS4SkAMcET8ny2t81z5qKAbV5aJkRtWeLWQLavtM2PiTgcsF-eS_jfd2ubvX6sf7-oFzePYp_c4-hNyH8pD8jO2K_CS3LHXY7N0L-KDvkLVrI7zw
  priority: 102
  providerName: ProQuest
Title Error rate reduction of single-qubit gates via noise-aware decomposition into native gates
URI https://link.springer.com/article/10.1038/s41598-022-10339-0
https://www.ncbi.nlm.nih.gov/pubmed/35430608
https://www.proquest.com/docview/2650970903
https://www.proquest.com/docview/2652029352
https://www.osti.gov/servlets/purl/2470007
https://pubmed.ncbi.nlm.nih.gov/PMC9013363
https://doaj.org/article/f353371923da4247bcc75d766b0996d6
Volume 12
WOSCitedRecordID wos000782910400020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BC1IviDehZWUkbhA168R2cqRoKzh0tUIgLVws23HUSFUC2Wwr_j0zTnbp8rxwcRRnoiSeGfkbe_INwAuJU0ZphYidd0lMgDcuciNjz5XDkMj5XFWh2ISaz_PlslhcK_VFOWEDPfAwcMdVioBEEQ4pTcYzZZ1TolRSWsQ2sgxk24kqrgVTA6s3L7JpMf4lk6T58QpnKvqbDGMvPE-LONmZiQJhPx5adKzfgc1fcyZ_2jgN89HpXbgzAkn2eviAe3DDN_fh9lBa8tsD-DzrurZjRATBOqJnJQWwtmK0NnDh469rW_eM1tBW7LI2rGnrlY_Nlek8Kz0lmo_ZXKxu-pY1gR98kH8IH09nH968jcc6CrETUvWxITZOJ0xpKssrb_IyTzwCRZvJskR8lBLnusceYwtnp1JYqzDQEYqo3qfSpI9gr2kb_wRYjujC80pKX1kEYoYKpk9VqbizQlouIphuxlS7kWScal1c6LDZneZ60INGPeigB51E8HJ7z5eBYuOv0iekqq0k0WOHDjQaPRqN_pfRRHBIitaIMogq11FOkes1ShJmiuBoo389evRKc6IaVLSqFcHz7WX0RdpgMY1v10GGJ4ifBI_g8WAu2_dMRYbRWZJHoHYMaedDdq809Xng-0bIlqYSn_tqY3I_XuvPA_X0fwzUIRxwchkit5RHsNd3a_8MbrnLvl51E7ipliq0-QT2T2bzxftJ8ENsz_iCWoXt_uLd2eLTd8JSMoU
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb0poASPBCaJmnY2dPSDEo1WrllUPRaq4GNtxaKQqaZNsq_4pfiMzTrLV8uitB06rTSa7cfJ5_I09_gbglcAhIzNJElpno5AIbzhJtQgdlxZDIutSmftiE3I6TQ8OJntL8HPYC0NplYNP9I46qyzNka9zknqTNKvw_vgkpKpRtLo6lNDoYLHjzs8wZGvebX_G9_ua882N_U9bYV9VILSJkG2oSZvSJjrTueG502mWRg5pkxmLLEO2EJMCucMj2kysGYnEGIm0P5EkfD4SOsbfvQbXkUbwyKcK7s3ndGjVbDya9Htzojhdb3B8pD1sGPHh93gSRgvjny8TgB8Vdue_Udw_MzV_W671o-Dm3f_t-d2DOz3fZh-6DnIfllz5AG52FTjPH8K3jbquakZ6GawmFVvCKatyRlMoRy48mZmiZTTV2LDTQrOyKhoX6jNdO5Y5ysfvk95YUbYVK72Memf_CL5eScMew3JZle4JsBRJmOO5EC43yFc11ZUfyUxyaxJheBLAaACBsr0WO5UEOVI-JyBOVQcchcBRHjgqCuDN_JrjTonkUuuPhK25JamI-wNV_UP1TknlMZJ9SRw_02M-lsZamWRSCINxg8hEAKuETIVkjBSFLaVe2VahJVHLANYGpKne8TXqAmYBvJyfRpdF61C6dNXM2_AIaWbCA1jp8D2_zzgZYxAbpQHIBeQvNGTxTFkcell0ZLZxLPB_3w595OK2_v2gnl7eihdwa2v_y67a3Z7urMJtTj2ZlD7FGiy39cw9gxv2tC2a-rl3BQy-X3Xf-QV-nJby
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o_QAkaCE1ibdTZ29oAQ0K6oilY9gFRxcW3HgUhV0ibZVv1r_Dpm8thqefTWA6fVJs5unHwz_sYefwPwUuKQkdo45s67kBPh5dPESO6FchgSOZ-orC02oebzZH9_urcGP4e9MJRWOfjE1lGnpaM58pEgqTdFswqjrE-L2NuavTs65lRBilZah3IaHUR2_dkphm_1250tfNevhJhtf_n4ifcVBriLpWq4IZ1KF5vUZFZk3iRpEnqkUHYi0xSZQ0Rq5B6PGDt1dixjaxWGALEiEfSxNBH-7hW4qkgVi9IGxd5yfodW0Cbjab9PJ4ySUY1jJe1nw-gPv0dTHq6MhW3JAPwo0bT_Rnf_zNr8bem2HRFnt__nZ3kHbvU8nL3vDOcurPniHlzvKnOe3Ydv21VVVox0NFhF6raEX1ZmjKZWDj0_Xti8YTQFWbOT3LCizGvPzampPEs95en3yXAsL5qSFa28etf-AXy9lI49hPWiLPxjYAmSMy8yKX1mkccaqjc_VqkSzsbSijiA8QAI7XqNdioVcqjbXIEo0R2INIJItyDSYQCvl9ccdQolF7b-QDhbtiR18fZAWX3XvbPSWYRBgCLun5qJmCjrnIpTJaXFeEKmMoANQqlGkkZKw45SslyjsSVRzgA2B9Tp3iHW-hxyAbxYnkZXRutTpvDlom0jQqSfsQjgUYf15X1G8QSD2zAJQK1YwUpHVs8U-Y9WLh0ZbxRJ_N83g72c39a_H9STi3vxHG6gyejPO_PdDbgpyKhJAFRuwnpTLfxTuOZOmryunrVegcHBZZvOL_wFn7Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Error+rate+reduction+of+single-qubit+gates+via+noise-aware+decomposition+into+native+gates&rft.jtitle=Scientific+reports&rft.au=Maldonado%2C+Thomas+J.&rft.au=Flick%2C+Johannes&rft.au=Krastanov%2C+Stefan&rft.au=Galda%2C+Alexey&rft.date=2022-04-16&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-10339-0&rft.externalDocID=10_1038_s41598_022_10339_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon