Spin–phonon couplings in transition metal complexes with slow magnetic relaxation

Spin–phonon coupling plays an important role in single-molecule magnets and molecular qubits. However, there have been few detailed studies of its nature. Here, we show for the first time distinct couplings of g phonons of Co II (acac) 2 (H 2 O) 2 (acac = acetylacetonate) and its deuterated analogs...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature communications Ročník 9; číslo 1; s. 2572 - 11
Hlavní autoři: Moseley, Duncan H., Stavretis, Shelby E., Thirunavukkuarasu, Komalavalli, Ozerov, Mykhaylo, Cheng, Yongqiang, Daemen, Luke L., Ludwig, Jonathan, Lu, Zhengguang, Smirnov, Dmitry, Brown, Craig M., Pandey, Anup, Ramirez-Cuesta, A. J., Lamb, Adam C., Atanasov, Mihail, Bill, Eckhard, Neese, Frank, Xue, Zi-Ling
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 03.07.2018
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2041-1723, 2041-1723
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Spin–phonon coupling plays an important role in single-molecule magnets and molecular qubits. However, there have been few detailed studies of its nature. Here, we show for the first time distinct couplings of g phonons of Co II (acac) 2 (H 2 O) 2 (acac = acetylacetonate) and its deuterated analogs with zero-field-split, excited magnetic/spin levels (Kramers doublet (KD)) of the S  = 3/2 electronic ground state. The couplings are observed as avoided crossings in magnetic-field-dependent Raman spectra with coupling constants of 1–2 cm −1 . Far-IR spectra reveal the magnetic-dipole-allowed, inter-KD transition, shifting to higher energy with increasing field. Density functional theory calculations are used to rationalize energies and symmetries of the phonons. A vibronic coupling model, supported by electronic structure calculations, is proposed to rationalize the behavior of the coupled Raman peaks. This work spectroscopically reveals and quantitates the spin–phonon couplings in typical transition metal complexes and sheds light on the origin of the spin–phonon entanglement. Transition metal complexes that display slow magnetic relaxation show promise for information storage, but our mechanistic understanding of the magnetic relaxation of such compounds remains limited. Here, the authors spectroscopically and computationally characterize the strength of spin–phonon couplings, which play an important role in the relaxation process.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
National Science Foundation (NSF)
AC05-00OR22725
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-04896-0