Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: A concurrent taVNS/fMRI study and review
Electrical stimulation of the auricular branch of the vagus nerve (ABVN) via transcutaneous auricular vagus nerve stimulation (taVNS) may influence afferent vagal networks. There have been 5 prior taVNS/fMRI studies, with inconsistent findings due to variability in stimulation targets and parameters...
Saved in:
| Published in: | Brain stimulation Vol. 11; no. 3; pp. 492 - 500 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Inc
01.05.2018
|
| Subjects: | |
| ISSN: | 1935-861X, 1876-4754, 1876-4754 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Electrical stimulation of the auricular branch of the vagus nerve (ABVN) via transcutaneous auricular vagus nerve stimulation (taVNS) may influence afferent vagal networks. There have been 5 prior taVNS/fMRI studies, with inconsistent findings due to variability in stimulation targets and parameters.
We developed a taVNS/fMRI system to enable concurrent electrical stimulation and fMRI acquisition to compare the effects of taVNS in relation to control stimulation.
We enrolled 17 healthy adults in this single-blind, crossover taVNS/fMRI trial. Based on parameters shown to affect heart rate in healthy volunteers, participants received either left tragus (active) or earlobe (control) stimulation at 500 μs 25 HZ for 60 s (repeated 3 times over 6 min). Whole brain fMRI analysis was performed exploring the effect of: active stimulation, control stimulation, and the comparison. Region of interest analysis of the midbrain and brainstem was also conducted.
Active stimulation produced significant increased BOLD signal in the contralateral postcentral gyrus, bilateral insula, frontal cortex, right operculum, and left cerebellum. Control stimulation produced BOLD signal activation in the contralateral postcentral gyrus. In the active vs. control contrast, tragus stimulation produced significantly greater BOLD increases in the right caudate, bilateral anterior cingulate, cerebellum, left prefrontal cortex, and mid-cingulate.
Stimulation of the tragus activates the cerebral afferents of the vagal pathway and combined with our review of the literature suggest that taVNS is a promising form of VNS. Future taVNS/fMRI studies should systematically explore various parameters and alternative stimulation targets aimed to optimize this novel form of neuromodulation.
•A taVNS/fMRI system was developed to explore brain effects of stimulation.•Tragus stimulation reliably activates cerebral afferent vagal networks.•Earlobe stimulation demonstrates solely somatosensory activation.•Bilateral ACC and frontal activation is produced by 60s active stimulation.•taVNS at 500 μs 25 Hz may be a biologically active stimulation parameter. |
|---|---|
| AbstractList | Electrical stimulation of the auricular branch of the vagus nerve (ABVN) via transcutaneous auricular vagus nerve stimulation (taVNS) may influence afferent vagal networks. There have been 5 prior taVNS/fMRI studies, with inconsistent findings due to variability in stimulation targets and parameters.BACKGROUNDElectrical stimulation of the auricular branch of the vagus nerve (ABVN) via transcutaneous auricular vagus nerve stimulation (taVNS) may influence afferent vagal networks. There have been 5 prior taVNS/fMRI studies, with inconsistent findings due to variability in stimulation targets and parameters.We developed a taVNS/fMRI system to enable concurrent electrical stimulation and fMRI acquisition to compare the effects of taVNS in relation to control stimulation.OBJECTIVEWe developed a taVNS/fMRI system to enable concurrent electrical stimulation and fMRI acquisition to compare the effects of taVNS in relation to control stimulation.We enrolled 17 healthy adults in this single-blind, crossover taVNS/fMRI trial. Based on parameters shown to affect heart rate in healthy volunteers, participants received either left tragus (active) or earlobe (control) stimulation at 500 μs 25 HZ for 60 s (repeated 3 times over 6 min). Whole brain fMRI analysis was performed exploring the effect of: active stimulation, control stimulation, and the comparison. Region of interest analysis of the midbrain and brainstem was also conducted.METHODSWe enrolled 17 healthy adults in this single-blind, crossover taVNS/fMRI trial. Based on parameters shown to affect heart rate in healthy volunteers, participants received either left tragus (active) or earlobe (control) stimulation at 500 μs 25 HZ for 60 s (repeated 3 times over 6 min). Whole brain fMRI analysis was performed exploring the effect of: active stimulation, control stimulation, and the comparison. Region of interest analysis of the midbrain and brainstem was also conducted.Active stimulation produced significant increased BOLD signal in the contralateral postcentral gyrus, bilateral insula, frontal cortex, right operculum, and left cerebellum. Control stimulation produced BOLD signal activation in the contralateral postcentral gyrus. In the active vs. control contrast, tragus stimulation produced significantly greater BOLD increases in the right caudate, bilateral anterior cingulate, cerebellum, left prefrontal cortex, and mid-cingulate.RESULTSActive stimulation produced significant increased BOLD signal in the contralateral postcentral gyrus, bilateral insula, frontal cortex, right operculum, and left cerebellum. Control stimulation produced BOLD signal activation in the contralateral postcentral gyrus. In the active vs. control contrast, tragus stimulation produced significantly greater BOLD increases in the right caudate, bilateral anterior cingulate, cerebellum, left prefrontal cortex, and mid-cingulate.Stimulation of the tragus activates the cerebral afferents of the vagal pathway and combined with our review of the literature suggest that taVNS is a promising form of VNS. Future taVNS/fMRI studies should systematically explore various parameters and alternative stimulation targets aimed to optimize this novel form of neuromodulation.CONCLUSIONStimulation of the tragus activates the cerebral afferents of the vagal pathway and combined with our review of the literature suggest that taVNS is a promising form of VNS. Future taVNS/fMRI studies should systematically explore various parameters and alternative stimulation targets aimed to optimize this novel form of neuromodulation. Electrical stimulation of the auricular branch of the vagus nerve (ABVN) via transcutaneous auricular vagus nerve stimulation (taVNS) may influence afferent vagal networks. There have been 5 prior taVNS/fMRI studies, with inconsistent findings due to variability in stimulation targets and parameters. We developed a taVNS/fMRI system to enable concurrent electrical stimulation and fMRI acquisition to compare the effects of taVNS in relation to control stimulation. We enrolled 17 healthy adults in this single-blind, crossover taVNS/fMRI trial. Based on parameters shown to affect heart rate in healthy volunteers, participants received either left tragus (active) or earlobe (control) stimulation at 500 μs 25 HZ for 60 s (repeated 3 times over 6 min). Whole brain fMRI analysis was performed exploring the effect of: active stimulation, control stimulation, and the comparison. Region of interest analysis of the midbrain and brainstem was also conducted. Active stimulation produced significant increased BOLD signal in the contralateral postcentral gyrus, bilateral insula, frontal cortex, right operculum, and left cerebellum. Control stimulation produced BOLD signal activation in the contralateral postcentral gyrus. In the active vs. control contrast, tragus stimulation produced significantly greater BOLD increases in the right caudate, bilateral anterior cingulate, cerebellum, left prefrontal cortex, and mid-cingulate. Stimulation of the tragus activates the cerebral afferents of the vagal pathway and combined with our review of the literature suggest that taVNS is a promising form of VNS. Future taVNS/fMRI studies should systematically explore various parameters and alternative stimulation targets aimed to optimize this novel form of neuromodulation. •A taVNS/fMRI system was developed to explore brain effects of stimulation.•Tragus stimulation reliably activates cerebral afferent vagal networks.•Earlobe stimulation demonstrates solely somatosensory activation.•Bilateral ACC and frontal activation is produced by 60s active stimulation.•taVNS at 500 μs 25 Hz may be a biologically active stimulation parameter. Electrical stimulation of the auricular branch of the vagus nerve (ABVN) via transcutaneous auricular vagus nerve stimulation (taVNS) may influence afferent vagal networks. There have been 5 prior taVNS/fMRI studies, with inconsistent findings due to variability in stimulation targets and parameters. We developed a taVNS/fMRI system to enable concurrent electrical stimulation and fMRI acquisition to compare the effects of taVNS in relation to control stimulation. We enrolled 17 healthy adults in this single-blind, crossover taVNS/fMRI trial. Based on parameters shown to affect heart rate in healthy volunteers, participants received either left tragus (active) or earlobe (control) stimulation at 500 μs 25 HZ for 60 s (repeated 3 times over 6 min). Whole brain fMRI analysis was performed exploring the effect of: active stimulation, control stimulation, and the comparison. Region of interest analysis of the midbrain and brainstem was also conducted. Active stimulation produced significant increased BOLD signal in the contralateral postcentral gyrus, bilateral insula, frontal cortex, right operculum, and left cerebellum. Control stimulation produced BOLD signal activation in the contralateral postcentral gyrus. In the active vs. control contrast, tragus stimulation produced significantly greater BOLD increases in the right caudate, bilateral anterior cingulate, cerebellum, left prefrontal cortex, and mid-cingulate. Stimulation of the tragus activates the cerebral afferents of the vagal pathway and combined with our review of the literature suggest that taVNS is a promising form of VNS. Future taVNS/fMRI studies should systematically explore various parameters and alternative stimulation targets aimed to optimize this novel form of neuromodulation. |
| Author | George, Mark S. Dowdle, Logan T. Badran, Bashar W. Mithoefer, Oliver J. Coatsworth, James Brown, Joshua C. McTeague, Lisa M. DeVries, William H. Austelle, Christopher W. LaBate, Nicholas T. |
| AuthorAffiliation | a Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, United States c Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, United States d US Army Research Lab, Aberdeen Proving Ground, MD, 21005, United States g Department of Neurology, Medical University of South Carolina, Charleston, SC, 29425, United States b Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, United States h Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, United States e College of Charleston, Charleston, SC, 29403, United States f Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, 29425, United States |
| AuthorAffiliation_xml | – name: a Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, United States – name: g Department of Neurology, Medical University of South Carolina, Charleston, SC, 29425, United States – name: b Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, United States – name: e College of Charleston, Charleston, SC, 29403, United States – name: f Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, 29425, United States – name: c Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, United States – name: d US Army Research Lab, Aberdeen Proving Ground, MD, 21005, United States – name: h Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, United States |
| Author_xml | – sequence: 1 givenname: Bashar W. surname: Badran fullname: Badran, Bashar W. email: badran@musc.edu organization: Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, United States – sequence: 2 givenname: Logan T. surname: Dowdle fullname: Dowdle, Logan T. organization: Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, United States – sequence: 3 givenname: Oliver J. surname: Mithoefer fullname: Mithoefer, Oliver J. organization: Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, United States – sequence: 4 givenname: Nicholas T. surname: LaBate fullname: LaBate, Nicholas T. organization: College of Charleston, Charleston, SC, 29403, United States – sequence: 5 givenname: James surname: Coatsworth fullname: Coatsworth, James organization: Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, 29425, United States – sequence: 6 givenname: Joshua C. surname: Brown fullname: Brown, Joshua C. organization: Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, United States – sequence: 7 givenname: William H. surname: DeVries fullname: DeVries, William H. organization: Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, United States – sequence: 8 givenname: Christopher W. surname: Austelle fullname: Austelle, Christopher W. organization: Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, United States – sequence: 9 givenname: Lisa M. surname: McTeague fullname: McTeague, Lisa M. organization: Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, United States – sequence: 10 givenname: Mark S. surname: George fullname: George, Mark S. organization: Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29361441$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkstu1DAUhiNURC_wAGyQl2WR1M4kdgxSpariUqkUiZvYWWfskxkPGXuwk6B5Il4Tp1Mq2kVZ-fZ__7H-cw6zPecdZtlzRgtGGT9ZFfMQi5IyUbCyoFQ-yg5YI3heibraS3s5q_OGs-_72WGMK0prKRvxJNsv5YyzqmIH2e8rHILfLLfR-s4vrCbYtqj7SHxL-gAu6qEHh36IBIZg9dBBICMs0tlhGJHE3q7TZW-9I8c9fLv6_JKMFgh2ySYB0N2RTLZLnKyTxStyRrR3eggBXU-u6ZP2w6eLhAxmS8AZEnC0-Otp9riFLuKzm_Uo-_r2zZfz9_nlx3cX52eXua656HMmWwA0MBe1oLqV1Zy1UDflzIBkRjcgTUUNl2VTCSoEY4I2ICQ3poKGN_PZUXa6890M8zUanb4VoFObYNcQtsqDVXdfnF2qhR8Vr1LwnCaD4xuD4H8OGHu1tlFj1-1CVExK2tSMy0n64t9at0X-dicJ2E6gg48xYHsrYVRNE6BWKk2AmiZAsVKlCUiMuMdo219Hn75ruwfJ1zsSU74p86Citug0GhtSK5Xx9kFa3qN1Z93U_h-4_Q_7BxNs440 |
| CitedBy_id | crossref_primary_10_3389_fped_2024_1365767 crossref_primary_10_3389_fnhum_2022_862443 crossref_primary_10_1016_j_neuroscience_2025_04_037 crossref_primary_10_3389_fneur_2020_00933 crossref_primary_10_3389_fnhum_2023_1297325 crossref_primary_10_1007_s12311_023_01595_5 crossref_primary_10_3389_fnagi_2025_1549167 crossref_primary_10_3389_fnins_2023_1133964 crossref_primary_10_1016_j_jocn_2024_111016 crossref_primary_10_3389_fneur_2023_1210103 crossref_primary_10_3390_healthcare10101816 crossref_primary_10_1016_j_ijchp_2022_100360 crossref_primary_10_3390_brainsci11081084 crossref_primary_10_3389_fnins_2024_1287809 crossref_primary_10_3389_fnins_2025_1619532 crossref_primary_10_1016_j_brs_2021_09_001 crossref_primary_10_1161_STROKEAHA_123_043414 crossref_primary_10_1111_psyp_14739 crossref_primary_10_3390_medicina61050872 crossref_primary_10_1017_S0033291720005073 crossref_primary_10_1016_j_ijpsycho_2021_01_003 crossref_primary_10_3390_brainsci12081038 crossref_primary_10_1111_psyp_14735 crossref_primary_10_3390_brainsci14090875 crossref_primary_10_1016_j_brainresbull_2019_11_011 crossref_primary_10_1016_j_autneu_2021_102857 crossref_primary_10_3389_fnins_2020_00680 crossref_primary_10_3389_fnins_2021_709436 crossref_primary_10_1016_j_brs_2020_07_002 crossref_primary_10_1016_j_neurom_2022_01_008 crossref_primary_10_1007_s10143_022_01757_9 crossref_primary_10_1515_sjpain_2024_0037 crossref_primary_10_1016_j_jad_2023_05_048 crossref_primary_10_1016_j_jpeds_2023_113563 crossref_primary_10_1007_s10548_024_01088_6 crossref_primary_10_1111_cns_14309 crossref_primary_10_1016_j_brs_2024_03_006 crossref_primary_10_1097_PSY_0000000000000987 crossref_primary_10_1016_j_neurom_2025_02_003 crossref_primary_10_3390_jcm7100371 crossref_primary_10_1111_psyp_14744 crossref_primary_10_3389_fendo_2022_1000758 crossref_primary_10_1177_20406223221148061 crossref_primary_10_1177_15459683231173357 crossref_primary_10_3389_fpsyg_2020_01659 crossref_primary_10_1002_mds_29826 crossref_primary_10_3389_fneur_2025_1531127 crossref_primary_10_1016_j_brs_2023_10_003 crossref_primary_10_1111_1751_2980_13203 crossref_primary_10_1016_j_bbr_2022_114247 crossref_primary_10_1016_j_brainres_2025_149736 crossref_primary_10_3389_fnhum_2019_00421 crossref_primary_10_3389_fnbeh_2022_897247 crossref_primary_10_1016_j_brs_2023_07_050 crossref_primary_10_3390_jcm9082358 crossref_primary_10_1016_j_brs_2018_03_018 crossref_primary_10_3389_fnhum_2025_1539416 crossref_primary_10_1016_j_neurom_2024_05_004 crossref_primary_10_1088_1741_2552_ac620c crossref_primary_10_1016_j_brs_2023_10_007 crossref_primary_10_1109_TNSRE_2024_3497893 crossref_primary_10_1016_j_neurom_2025_07_011 crossref_primary_10_1155_2020_8870589 crossref_primary_10_3389_fnhum_2025_1531123 crossref_primary_10_1080_17434440_2021_1969913 crossref_primary_10_1136_bmjopen_2025_099736 crossref_primary_10_1007_s00384_021_04034_1 crossref_primary_10_3390_jpm10030119 crossref_primary_10_3389_fphys_2022_1000194 crossref_primary_10_3389_fnhum_2021_648556 crossref_primary_10_1186_s12967_021_03024_9 crossref_primary_10_1162_jocn_a_02332 crossref_primary_10_1371_journal_pone_0310917 crossref_primary_10_3389_fnhum_2020_00077 crossref_primary_10_1176_appi_focus_20210023 crossref_primary_10_3390_jcm12196315 crossref_primary_10_1111_ejn_16539 crossref_primary_10_1002_mds_29166 crossref_primary_10_1016_j_neuroimage_2025_121139 crossref_primary_10_1016_j_wjam_2021_05_014 crossref_primary_10_7759_cureus_56223 crossref_primary_10_1177_2331216518816215 crossref_primary_10_1016_j_brs_2021_01_001 crossref_primary_10_1111_nmo_14484 crossref_primary_10_1186_s42234_024_00162_5 crossref_primary_10_3389_fnhum_2020_561780 crossref_primary_10_1109_JSEN_2024_3441619 crossref_primary_10_3389_fnins_2022_937453 crossref_primary_10_1016_j_ejr_2023_03_001 crossref_primary_10_1111_joa_13122 crossref_primary_10_1016_j_brat_2021_103933 crossref_primary_10_1016_j_brs_2019_08_002 crossref_primary_10_1016_j_brs_2018_12_224 crossref_primary_10_3389_fphys_2020_599896 crossref_primary_10_1016_j_neurom_2025_05_008 crossref_primary_10_2340_jrm_v56_40348 crossref_primary_10_1016_j_mehy_2024_111462 crossref_primary_10_3389_fnhum_2020_568051 crossref_primary_10_3389_fnins_2021_680590 crossref_primary_10_1002_brb3_2343 crossref_primary_10_3389_fnins_2023_1213982 crossref_primary_10_1016_j_neurol_2023_11_004 crossref_primary_10_1016_j_autneu_2021_102900 crossref_primary_10_1016_j_brs_2021_12_004 crossref_primary_10_1111_ejn_16305 crossref_primary_10_3758_s13415_025_01341_w crossref_primary_10_1016_j_autneu_2021_102901 crossref_primary_10_1016_j_ijchp_2024_100462 crossref_primary_10_1016_j_neuropsychologia_2019_107201 crossref_primary_10_1016_j_brs_2018_06_003 crossref_primary_10_1186_s42234_023_00129_y crossref_primary_10_3389_fphys_2024_1452490 crossref_primary_10_3389_fnins_2022_947236 crossref_primary_10_1007_s41465_020_00167_3 crossref_primary_10_1016_j_neuroscience_2024_03_013 crossref_primary_10_3389_fnins_2021_650971 crossref_primary_10_1016_j_jad_2024_03_005 crossref_primary_10_1089_ict_2022_29034_dli crossref_primary_10_3389_fnins_2023_1145699 crossref_primary_10_3389_fnins_2021_609640 crossref_primary_10_1016_j_brs_2024_02_013 crossref_primary_10_1111_psyp_70040 crossref_primary_10_3389_fphys_2023_1215757 crossref_primary_10_3389_fpsyg_2022_1003411 crossref_primary_10_1038_s41380_023_02150_8 crossref_primary_10_1016_j_brs_2021_06_002 crossref_primary_10_1016_j_clinph_2019_12_176 crossref_primary_10_1111_cns_14755 crossref_primary_10_3389_fneur_2021_684791 crossref_primary_10_1016_j_brs_2018_06_009 crossref_primary_10_3389_fneur_2020_573718 crossref_primary_10_1038_s41539_020_0070_0 crossref_primary_10_1016_j_neuroscience_2019_05_059 crossref_primary_10_1111_psyp_14709 crossref_primary_10_1016_j_jad_2019_11_090 crossref_primary_10_1016_j_jad_2024_06_083 crossref_primary_10_1038_s41531_025_00889_1 crossref_primary_10_1016_j_brs_2019_02_003 crossref_primary_10_3389_fendo_2023_1295061 crossref_primary_10_3389_fnins_2023_1286267 crossref_primary_10_1007_s12264_020_00619_y crossref_primary_10_1111_apt_15869 crossref_primary_10_1016_j_neuroimage_2021_118679 crossref_primary_10_3390_jcm13082399 crossref_primary_10_3389_fneur_2024_1424792 crossref_primary_10_1176_appi_focus_20107 crossref_primary_10_1016_j_brs_2020_02_019 crossref_primary_10_3389_fpsyg_2024_1476021 crossref_primary_10_3389_fnhum_2018_00397 crossref_primary_10_1016_j_neuroimage_2025_121179 crossref_primary_10_3389_fnins_2023_1096865 crossref_primary_10_1016_j_brs_2018_04_004 crossref_primary_10_3389_fnins_2020_00284 crossref_primary_10_1016_j_autneu_2025_103318 crossref_primary_10_1016_j_brs_2020_10_012 crossref_primary_10_1016_j_brs_2020_02_028 crossref_primary_10_1016_j_jpsychires_2021_07_048 crossref_primary_10_3389_fnins_2021_632697 crossref_primary_10_3390_brainsci13070985 crossref_primary_10_1001_jamanetworkopen_2025_29127 crossref_primary_10_1016_j_wjam_2024_04_002 crossref_primary_10_3389_fnins_2024_1426618 crossref_primary_10_1371_journal_pone_0223848 crossref_primary_10_1111_psyp_14107 crossref_primary_10_3390_jcm12113673 crossref_primary_10_1111_psyp_70011 crossref_primary_10_1111_wrr_13151 crossref_primary_10_3389_fnins_2023_1151892 crossref_primary_10_1016_j_neurom_2024_03_002 crossref_primary_10_1186_s12974_020_01732_5 crossref_primary_10_3389_fneur_2025_1556506 crossref_primary_10_3390_ijms23169097 crossref_primary_10_2147_JPR_S370589 crossref_primary_10_3389_fnins_2024_1405310 crossref_primary_10_1016_j_bja_2024_10_035 crossref_primary_10_1111_ner_13346 crossref_primary_10_3389_fpsyg_2020_570196 crossref_primary_10_1016_j_heliyon_2024_e39841 crossref_primary_10_1044_2023_JSLHR_22_00596 crossref_primary_10_3389_fnins_2019_00854 crossref_primary_10_1186_s42234_024_00142_9 crossref_primary_10_1111_ner_13458 crossref_primary_10_3389_fpsyt_2024_1337101 crossref_primary_10_1111_nmo_14618 crossref_primary_10_3389_fnins_2022_820665 crossref_primary_10_3389_fneur_2024_1379451 crossref_primary_10_1002_clc_70110 crossref_primary_10_1038_s41598_021_03401_w crossref_primary_10_1016_j_neubiorev_2021_12_020 crossref_primary_10_3390_brainsci10060404 crossref_primary_10_1080_08869634_2022_2055866 crossref_primary_10_1016_j_clinph_2018_09_001 crossref_primary_10_3389_fnins_2019_00227 crossref_primary_10_1111_ejn_16004 crossref_primary_10_3389_fnins_2024_1346634 crossref_primary_10_1016_j_autneu_2021_102894 crossref_primary_10_1186_s13030_024_00311_x crossref_primary_10_1007_s00405_024_09182_y crossref_primary_10_1111_ner_13528 crossref_primary_10_3389_fnhum_2021_699473 crossref_primary_10_3389_fneur_2023_1286919 crossref_primary_10_1002_brb3_70076 crossref_primary_10_1016_j_jneuroling_2024_101225 crossref_primary_10_1111_ner_13521 crossref_primary_10_3389_fneur_2023_1116115 crossref_primary_10_1016_j_brs_2020_03_011 crossref_primary_10_1111_jsr_13927 crossref_primary_10_3389_fnagi_2024_1498176 crossref_primary_10_3389_fncir_2025_1568655 crossref_primary_10_1161_JAHA_123_032269 crossref_primary_10_3389_fnins_2020_00523 crossref_primary_10_1016_j_ijpsycho_2023_08_014 crossref_primary_10_3389_fnhum_2021_785620 crossref_primary_10_12963_csd_250127 crossref_primary_10_3389_fnins_2023_1184051 crossref_primary_10_1016_j_clinph_2019_12_315 crossref_primary_10_1016_j_jdmv_2023_10_001 crossref_primary_10_1080_09638288_2025_2506824 crossref_primary_10_1016_j_brs_2022_11_006 crossref_primary_10_1038_s41398_025_03535_9 crossref_primary_10_1016_j_cortex_2021_04_004 crossref_primary_10_7717_peerj_14447 crossref_primary_10_3389_fnins_2021_767302 crossref_primary_10_1093_eurheartj_ehaf037 crossref_primary_10_1016_j_ynirp_2025_100268 crossref_primary_10_1007_s10286_024_01053_0 crossref_primary_10_1016_j_neubiorev_2021_04_018 crossref_primary_10_1111_psyp_13571 crossref_primary_10_1016_j_autneu_2022_103008 crossref_primary_10_3389_fneur_2024_1429506 crossref_primary_10_3389_fnins_2018_00955 crossref_primary_10_1016_j_jneuroling_2021_100990 crossref_primary_10_1002_smtd_202500124 crossref_primary_10_1016_j_bbr_2022_114164 crossref_primary_10_3389_fnins_2023_1123860 crossref_primary_10_3390_brainsci13030451 crossref_primary_10_1007_s10286_024_01065_w crossref_primary_10_1016_j_arcmed_2025_103324 crossref_primary_10_3390_brainsci15040346 crossref_primary_10_1038_s41398_025_03500_6 crossref_primary_10_1038_s41598_019_47961_4 crossref_primary_10_3389_fnins_2025_1519939 crossref_primary_10_1038_s41582_024_00953_z crossref_primary_10_1186_s42234_022_00094_y crossref_primary_10_2147_NSS_S515809 crossref_primary_10_1016_j_brat_2018_12_009 crossref_primary_10_1016_j_neurom_2022_03_011 crossref_primary_10_1016_j_autneu_2022_102944 crossref_primary_10_1016_j_autneu_2021_102886 crossref_primary_10_1038_s41386_022_01436_9 crossref_primary_10_3389_fnhum_2025_1569472 crossref_primary_10_1152_jn_00447_2022 crossref_primary_10_1371_journal_pone_0254480 crossref_primary_10_1109_RBME_2024_3508713 crossref_primary_10_1136_bmjopen_2023_082906 |
| Cites_doi | 10.1016/S1053-8119(03)00169-1 10.1002/ca.1089 10.1038/sj.npp.1300375 10.1111/ner.12541 10.1002/cne.902110304 10.1097/01.chi.0000132812.44664.2d 10.1212/WNL.59.6_suppl_4.S3 10.1007/s00702-012-0908-6 10.1586/ern.10.95 10.3171/2009.6.FOCUS09126 10.1016/S0006-3223(99)00213-9 10.1126/science.288.5472.1835 10.1016/j.brs.2014.05.003 10.1515/BMT.2008.022 10.1016/S0006-3223(99)00304-2 10.1016/S0006-3223(00)01048-9 10.1016/S0006-3223(99)00159-6 10.1016/j.brs.2014.07.031 10.1093/brain/60.4.389 10.3389/fpsyt.2012.00070 10.1007/s00702-007-0755-z 10.1001/archpsyc.1989.01810030049007 10.1016/j.brs.2014.11.018 10.1097/00001756-199510020-00008 10.1016/j.jad.2012.02.007 10.1016/j.neubiorev.2005.01.004 10.1016/S0893-133X(01)00271-8 10.1001/archpsyc.58.6.545 10.1016/S0022-3956(02)00013-4 10.1007/s00702-014-1299-7 10.1016/S1364-6613(00)01483-2 10.1212/WNL.51.1.48 10.1097/00001756-199703030-00048 10.1016/S0361-9230(01)00527-5 10.1016/j.biopsych.2003.12.004 10.1017/S003329170003806X 10.1007/s003810050021 10.1002/acr.20543 10.1016/j.pscychresns.2014.01.003 10.1111/j.1528-1157.1998.tb01155.x 10.1111/j.1528-1157.1994.tb02482.x 10.1001/jamapsychiatry.2013.143 10.1016/j.neuroimage.2009.06.012 10.3109/00016489.2012.750736 10.1073/pnas.95.22.13290 10.1016/S0278-5846(01)00228-7 10.1006/nimg.2002.1216 10.1016/j.brs.2017.01.118 10.1016/j.biopsych.2005.05.007 10.1006/nimg.2000.0695 10.1016/j.brs.2013.01.011 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/j.brs.2017.12.009 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1876-4754 |
| EndPage | 500 |
| ExternalDocumentID | PMC6487660 29361441 10_1016_j_brs_2017_12_009 S1935861X17310252 |
| Genre | Controlled Clinical Trial Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P20 GM109040 – fundername: NIMH NIH HHS grantid: K23 MH104849 – fundername: NIMH NIH HHS grantid: R21 MH106775 – fundername: NICHD NIH HHS grantid: P2C HD086844 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1~. 1~5 23N 4.4 457 4G. 4H- 53G 5GY 5VS 7-5 71M 8P~ AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABIVO ABJNI ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFS ACIEU ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPKN AFPUW AFRHN AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EFLBG EJD EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OK1 OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SEL SES SSH SSN SSZ T5K Z5R ~G- ~HD AACTN AADPK AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW LCYCR NCXOZ RIG 9DU AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c567t-19faaedab7570cf94b1fa5823da91dc8a9d40d69284707711708a796dd4a868b3 |
| ISICitedReferencesCount | 276 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432435200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1935-861X 1876-4754 |
| IngestDate | Tue Sep 30 16:26:57 EDT 2025 Wed Oct 01 13:39:46 EDT 2025 Mon Jul 21 06:05:40 EDT 2025 Sat Nov 29 03:06:16 EST 2025 Tue Nov 18 22:12:10 EST 2025 Fri Feb 23 02:27:48 EST 2024 Tue Oct 14 19:36:08 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | fMRI Anterior cingulate cortex (ACC) Ear stimulation Transcutaneous auricular vagus nerve stimulation (taVNS) |
| Language | English |
| License | Copyright © 2017 Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c567t-19faaedab7570cf94b1fa5823da91dc8a9d40d69284707711708a796dd4a868b3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://doaj.org/article/f90718018918440898d3d93d7213614f |
| PMID | 29361441 |
| PQID | 1990851690 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6487660 proquest_miscellaneous_1990851690 pubmed_primary_29361441 crossref_primary_10_1016_j_brs_2017_12_009 crossref_citationtrail_10_1016_j_brs_2017_12_009 elsevier_sciencedirect_doi_10_1016_j_brs_2017_12_009 elsevier_clinicalkey_doi_10_1016_j_brs_2017_12_009 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-05-01 |
| PublicationDateYYYYMMDD | 2018-05-01 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Brain stimulation |
| PublicationTitleAlternate | Brain Stimul |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Penfield, Boldrey (bib28) 1937 Rush, George, Sackeim, Marangell, Husain, Giller (bib36) 2000; 47 Kreuzer, Landgrebe, Husser, Resch, Schecklmann, Geisreiter (bib13) 2012; 3 Peuker, Filler (bib23) 2002; 15 George, Wassermann, Kimbrell, Little, Williams, Danielson (bib50) 1997; 154 Rosenberg, MacMaster, Mirza, Smith, Easter, Banerjee (bib41) 2005; 58 Valdés-Cruz, Magdaleno-Madrigal, Martınez-Vargas, Fernández-Mas, Almazán-Alvarado, Martınez (bib32) 2002; 26 Krahl, Clark, Smith, Browning (bib7) 1998; 39 Handforth, DeGiorgio, Schachter, Uthman, Naritoku, Tecoma (bib2) 1998; 51 McGrath, Kelley, Holtzheimer, Dunlop, Craighead, Franco (bib54) 2013; 70 Kraus, Kiess, Hösl, Terekhin, Kornhuber, Forster (bib19) 2013; 6 Lomarev, Denslow, Nahas, Chae, George, Bohning (bib34) 2002; 36 Nihashi, Kakigi, Kawakami, Hoshiyama, Itomi, Nakanishi (bib29) 2001; 13 Pizzagalli, Pascual-Marqui, Nitschke, Oakes, Larson, Abercrombie (bib45) 2001; 158 Henry (bib6) 2002; 59 George (bib52) 2010; 10 Auer, Pütz, Kraft, Lipinski, Schill, Holsboer (bib39) 2000; 47 Kraus, Hösl, Kiess, Schanze, Kornhuber, Forster (bib18) 2007; 114 Ventureyra (bib11) 2000; 16 Bush, Luu, Posner (bib37) 2000; 4 George, Wassermann, Williams, Callahan, Ketter, Basser (bib49) 1995; 6 Kalia, Sullivan (bib4) 1982; 211 Capone, Assenza, Di Pino, Musumeci, Ranieri, Florio (bib12) 2015; 122 Badran, Glusman, Badran, Austelle, DeVries, Borckhardt (bib25) 2017; 10 Nihashi, Kakigi, Okada, Sadato, Kashikura, Kajita (bib30) 2002; 17 Carpenter, Tyrka, McDougle, Malison, Owens, Nemeroff (bib10) 2004; 29 Keren, Lozar, Harris, Morgan, Eckert (bib55) 2009; 47 Kreuzer, Landgrebe, Resch, Husser, Schecklmann, Geisreiter (bib14) 2014; 7 Dong, Debonnel (bib8) 2009; 34 Maldjian, Laurienti, Kraft, Burdette (bib27) 2003; 19 Öngür, Drevets, Price (bib44) 1998; 95 (bib3) 1993 Rosenberg, Mirza, Russell, Tang, Smith, Banerjee (bib40) 2004; 43 Sackeim, Rush, George, Marangell, Husain, Nahas (bib35) 2001; 25 Hawker, Mian, Kendzerska, French (bib26) 2011; 63 Bench, Friston, Brown, Scott, Frackowiak, Dolan (bib48) 1992; 22 Yakunina, Kim, Nam (bib22) 2017 Apr 1; 20 Conway, Chibnall, Gangwani, Mintun, Price, Hershey (bib53) 2012; 139 Van Bockstaele, Peoples, Valentino (bib5) 1999; 46 Clancy, Mary, Witte, Greenwood, Deuchars, Deuchars (bib15) 2014; 7 Cotter, Pariante, Everall (bib43) 2001; 55 Conway, Chibnall, Cumming, Mintun, Gebara, Perantie (bib9) 2014; 221 Hein, Nowak, Kiess, Biermann, Bayerlein, Kornhuber (bib17) 2013; 120 Ben-Menachem, Mañon-Espaillat, Ristanovic, Wilder, Stefan, Mirza (bib1) 1994; 35 Lehtimaki, Hyvarinen, Ylikoski, Bergholm, Makela, Aarnisalo (bib16) 2013; 133 Mayberg, Brannan, Mahurin, Jerabek, Brickman, Tekell (bib46) 1997; 8 Lulic, Ahmadian, Baaj, Benbadis, Vale (bib31) 2009; 27 MacDonald, Cohen, Stenger, Carter (bib38) 2000; 288 Baxter, Schwartz, Phelps, Mazziotta, Guze, Selin (bib47) 1989; 46 Frangos, Ellrich, Komisaruk (bib20) 2015; 8 Cotter, Mackay, Landau, Kerwin, Everall (bib42) 2001; 58 George, Nahas, Molloy, Speer, Oliver, Li (bib51) 2000; 48 Groves, Brown (bib33) 2005; 29 Dietrich, Smith, Scherzinger, Hofmann-Preiß, Freitag, Eisenkolb (bib21) 2008; 53 Mu, Bohning, Nahas, Walker, Anderson, Johnson (bib24) 2004; 55 Badran (10.1016/j.brs.2017.12.009_bib25) 2017; 10 Pizzagalli (10.1016/j.brs.2017.12.009_bib45) 2001; 158 Hein (10.1016/j.brs.2017.12.009_bib17) 2013; 120 Penfield (10.1016/j.brs.2017.12.009_bib28) 1937 Mayberg (10.1016/j.brs.2017.12.009_bib46) 1997; 8 Kreuzer (10.1016/j.brs.2017.12.009_bib14) 2014; 7 MacDonald (10.1016/j.brs.2017.12.009_bib38) 2000; 288 Lomarev (10.1016/j.brs.2017.12.009_bib34) 2002; 36 Handforth (10.1016/j.brs.2017.12.009_bib2) 1998; 51 Valdés-Cruz (10.1016/j.brs.2017.12.009_bib32) 2002; 26 Kalia (10.1016/j.brs.2017.12.009_bib4) 1982; 211 Carpenter (10.1016/j.brs.2017.12.009_bib10) 2004; 29 Kreuzer (10.1016/j.brs.2017.12.009_bib13) 2012; 3 Ben-Menachem (10.1016/j.brs.2017.12.009_bib1) 1994; 35 Rush (10.1016/j.brs.2017.12.009_bib36) 2000; 47 Conway (10.1016/j.brs.2017.12.009_bib53) 2012; 139 Kraus (10.1016/j.brs.2017.12.009_bib19) 2013; 6 Dong (10.1016/j.brs.2017.12.009_bib8) 2009; 34 Dietrich (10.1016/j.brs.2017.12.009_bib21) 2008; 53 Bench (10.1016/j.brs.2017.12.009_bib48) 1992; 22 Nihashi (10.1016/j.brs.2017.12.009_bib29) 2001; 13 Hawker (10.1016/j.brs.2017.12.009_bib26) 2011; 63 Van Bockstaele (10.1016/j.brs.2017.12.009_bib5) 1999; 46 George (10.1016/j.brs.2017.12.009_bib50) 1997; 154 Auer (10.1016/j.brs.2017.12.009_bib39) 2000; 47 Conway (10.1016/j.brs.2017.12.009_bib9) 2014; 221 Kraus (10.1016/j.brs.2017.12.009_bib18) 2007; 114 Rosenberg (10.1016/j.brs.2017.12.009_bib41) 2005; 58 Mu (10.1016/j.brs.2017.12.009_bib24) 2004; 55 Lulic (10.1016/j.brs.2017.12.009_bib31) 2009; 27 (10.1016/j.brs.2017.12.009_bib3) 1993 George (10.1016/j.brs.2017.12.009_bib52) 2010; 10 Capone (10.1016/j.brs.2017.12.009_bib12) 2015; 122 Bush (10.1016/j.brs.2017.12.009_bib37) 2000; 4 Keren (10.1016/j.brs.2017.12.009_bib55) 2009; 47 Frangos (10.1016/j.brs.2017.12.009_bib20) 2015; 8 George (10.1016/j.brs.2017.12.009_bib51) 2000; 48 Cotter (10.1016/j.brs.2017.12.009_bib43) 2001; 55 Krahl (10.1016/j.brs.2017.12.009_bib7) 1998; 39 Lehtimaki (10.1016/j.brs.2017.12.009_bib16) 2013; 133 Sackeim (10.1016/j.brs.2017.12.009_bib35) 2001; 25 Henry (10.1016/j.brs.2017.12.009_bib6) 2002; 59 Rosenberg (10.1016/j.brs.2017.12.009_bib40) 2004; 43 Groves (10.1016/j.brs.2017.12.009_bib33) 2005; 29 Öngür (10.1016/j.brs.2017.12.009_bib44) 1998; 95 Peuker (10.1016/j.brs.2017.12.009_bib23) 2002; 15 Baxter (10.1016/j.brs.2017.12.009_bib47) 1989; 46 Yakunina (10.1016/j.brs.2017.12.009_bib22) 2017; 20 Ventureyra (10.1016/j.brs.2017.12.009_bib11) 2000; 16 Maldjian (10.1016/j.brs.2017.12.009_bib27) 2003; 19 McGrath (10.1016/j.brs.2017.12.009_bib54) 2013; 70 George (10.1016/j.brs.2017.12.009_bib49) 1995; 6 Clancy (10.1016/j.brs.2017.12.009_bib15) 2014; 7 Nihashi (10.1016/j.brs.2017.12.009_bib30) 2002; 17 Cotter (10.1016/j.brs.2017.12.009_bib42) 2001; 58 29895444 - Brain Stimul. 2018 Jul - Aug;11(4):947-948 29661599 - Brain Stimul. 2018 Jul - Aug;11(4):945-946 |
| References_xml | – volume: 122 start-page: 679 year: 2015 end-page: 685 ident: bib12 article-title: The effect of transcutaneous vagus nerve stimulation on cortical excitability publication-title: J Neural Transm (Vienna) – volume: 8 start-page: 624 year: 2015 end-page: 636 ident: bib20 article-title: Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans publication-title: Brain Stimul – volume: 10 start-page: 378 year: 2017 ident: bib25 article-title: The physiological and neurobiological effects of transcutaneous auricular vagus nerve stimulation (taVNS) publication-title: Brain Stimul – volume: 3 start-page: 70 year: 2012 ident: bib13 article-title: Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study publication-title: Front Psychiatr – volume: 13 start-page: 295 year: 2001 end-page: 304 ident: bib29 article-title: Representation of the ear in human primary somatosensory cortex publication-title: Neuroimage – volume: 6 start-page: 798 year: 2013 end-page: 804 ident: bib19 article-title: CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal–a pilot study publication-title: Brain Stimul – volume: 53 start-page: 104 year: 2008 end-page: 111 ident: bib21 article-title: A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI/Funktionelle Magnetresonanztomographie zeigt Aktivierungen des Hirnstamms und weiterer zerebraler Strukturen unter transkutaner Vagusnervstimulation publication-title: Biomed Tech/Biomed Eng – volume: 58 start-page: 700 year: 2005 end-page: 704 ident: bib41 article-title: Reduced anterior cingulate glutamate in pediatric major depression: a magnetic resonance spectroscopy study publication-title: Biol Psychiatr – volume: 29 start-page: 777 year: 2004 ident: bib10 article-title: Cerebrospinal fluid corticotropin-releasing factor and perceived early-life stress in depressed patients and healthy control subjects publication-title: Neuropsychopharmacology – volume: 139 start-page: 283 year: 2012 end-page: 290 ident: bib53 article-title: Pretreatment cerebral metabolic activity correlates with antidepressant efficacy of vagus nerve stimulation in treatment-resistant major depression: a potential marker for response? publication-title: J Affect Disord – volume: 221 start-page: 231 year: 2014 end-page: 239 ident: bib9 article-title: Antidepressant response to aripiprazole augmentation associated with enhanced FDOPA utilization in striatum: a preliminary PET study publication-title: Psychiatr Res – volume: 120 start-page: 821 year: 2013 end-page: 827 ident: bib17 article-title: Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study publication-title: J Neural Transm – volume: 158 start-page: 405 year: 2001 end-page: 415 ident: bib45 article-title: Anterior cingulate activity as a predictor of degree of treatment response in major depression: evidence from brain electrical tomography analysis publication-title: JAMA Psychiatr – volume: 43 start-page: 1146 year: 2004 end-page: 1153 ident: bib40 article-title: Reduced anterior cingulate glutamatergic concentrations in childhood OCD and major depression versus healthy controls publication-title: J Am Acad Child Adolesc Psychiatr – volume: 4 start-page: 215 year: 2000 end-page: 222 ident: bib37 article-title: Cognitive and emotional influences in anterior cingulate cortex publication-title: Trends Cognit Sci – volume: 35 start-page: 616 year: 1994 end-page: 626 ident: bib1 article-title: Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures publication-title: Epilepsia – volume: 51 start-page: 48 year: 1998 end-page: 55 ident: bib2 article-title: Vagus nerve stimulation therapy for partial-onset seizures a randomized active-control trial publication-title: Neurology – volume: 48 start-page: 962 year: 2000 end-page: 970 ident: bib51 article-title: A controlled trial of daily left prefrontal cortex TMS for treating depression publication-title: Biol Psychiatr – volume: 7 start-page: 740 year: 2014 end-page: 747 ident: bib14 article-title: Feasibility, safety and efficacy of transcutaneous vagus nerve stimulation in chronic tinnitus: an open pilot study publication-title: Brain Stimul – volume: 288 start-page: 1835 year: 2000 end-page: 1838 ident: bib38 article-title: Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control publication-title: Science – volume: 58 start-page: 545 year: 2001 end-page: 553 ident: bib42 article-title: Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder publication-title: Arch Gen Psychiatr – volume: 95 start-page: 13290 year: 1998 end-page: 13295 ident: bib44 article-title: Glial reduction in the subgenual prefrontal cortex in mood disorders publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: 1057 year: 1997 end-page: 1061 ident: bib46 article-title: Cingulate function in depression: a potential predictor of treatment response publication-title: Neuroreport – volume: 16 start-page: 101 year: 2000 end-page: 102 ident: bib11 article-title: Transcutaneous vagus nerve stimulation for partial onset seizure therapy publication-title: Child's Nerv Syst – volume: 25 start-page: 713 year: 2001 end-page: 728 ident: bib35 article-title: Vagus nerve stimulation (VNS™) for treatment-resistant depression: efficacy, side effects, and predictors of outcome publication-title: Neuropsychopharmacology – volume: 46 start-page: 1352 year: 1999 end-page: 1363 ident: bib5 article-title: Anatomic basis for differential regulation of the rostrolateral peri–locus coeruleus region by limbic afferents publication-title: Biol Psychiatr – volume: 26 start-page: 113 year: 2002 end-page: 118 ident: bib32 article-title: Chronic stimulation of the cat vagus nerve: effect on sleep and behavior publication-title: Prog Neuropsychopharmacol Biol Psychiatr – volume: 59 start-page: S3 year: 2002 end-page: S14 ident: bib6 article-title: Therapeutic mechanisms of vagus nerve stimulation publication-title: Neurology – volume: 15 start-page: 35 year: 2002 end-page: 37 ident: bib23 article-title: The nerve supply of the human auricle publication-title: Clin Anat – volume: 20 start-page: 290 year: 2017 Apr 1 end-page: 300 ident: bib22 article-title: Optimization of transcutaneous vagus nerve stimulation using functional MRI publication-title: Neuromodulation Technol Neural Interface – volume: 17 start-page: 1217 year: 2002 end-page: 1226 ident: bib30 article-title: Functional magnetic resonance imaging evidence for a representation of the ear in human primary somatosensory cortex: comparison with magnetoencephalography study publication-title: Neuroimage – volume: 46 start-page: 243 year: 1989 end-page: 250 ident: bib47 article-title: Reduction of prefrontal cortex glucose metabolism common to three types of depression publication-title: Arch Gen Psychiatr – volume: 19 start-page: 1233 year: 2003 end-page: 1239 ident: bib27 article-title: An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets publication-title: Neuroimage – volume: 211 start-page: 248 year: 1982 end-page: 264 ident: bib4 article-title: Brainstem projections of sensory and motor components of the vagus nerve in the rat publication-title: JComp Neurol – volume: 36 start-page: 219 year: 2002 end-page: 227 ident: bib34 article-title: Vagus nerve stimulation (VNS) synchronized BOLD fMRI suggests that VNS in depressed adults has frequency/dose dependent effects publication-title: J Psychiatr Res – volume: 154 start-page: 1752 year: 1997 end-page: 1756 ident: bib50 article-title: Mood improvement following daily left prefrontal repetitive transcranial magnetic stimulation in patients with depression: a placebo-controlled crossover trial publication-title: JAMA Psychiatr – volume: 34 start-page: 272 year: 2009 ident: bib8 article-title: Enhancement of the function of rat serotonin and norepinephrine neurons by sustained vagus nerve stimulation publication-title: J Psychiatr Neurosci – volume: 29 start-page: 493 year: 2005 end-page: 500 ident: bib33 article-title: Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects publication-title: Neurosci Biobehav Rev – volume: 70 start-page: 821 year: 2013 end-page: 829 ident: bib54 article-title: Toward a neuroimaging treatment selection biomarker for major depressive disorder publication-title: JAMA Psychiatr – volume: 6 start-page: 1853 year: 1995 end-page: 1856 ident: bib49 article-title: Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression publication-title: Neuroreport – volume: 114 start-page: 1485 year: 2007 end-page: 1493 ident: bib18 article-title: BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation publication-title: J Neural Transm – volume: 47 start-page: 276 year: 2000 end-page: 286 ident: bib36 article-title: Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study publication-title: Biol Psychiatr – volume: 39 start-page: 709 year: 1998 end-page: 714 ident: bib7 article-title: Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation publication-title: Epilepsia – volume: 22 start-page: 607 year: 1992 end-page: 615 ident: bib48 article-title: The anatomy of melancholia–focal abnormalities of cerebral blood flow in major depression publication-title: Psychol Med – volume: 133 start-page: 378 year: 2013 end-page: 382 ident: bib16 article-title: Transcutaneous vagus nerve stimulation in tinnitus: a pilot study publication-title: Acta Otolaryngol – year: 1993 ident: bib3 publication-title: The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc – volume: 7 start-page: 871 year: 2014 end-page: 877 ident: bib15 article-title: Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity publication-title: Brain Stimul – volume: 47 start-page: 305 year: 2000 end-page: 313 ident: bib39 article-title: Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study publication-title: Biol Psychiatr – volume: 47 start-page: 1261 year: 2009 end-page: 1267 ident: bib55 article-title: In vivo mapping of the human locus coeruleus publication-title: Neuroimage – year: 1937 ident: bib28 article-title: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation publication-title: Brain J Neurol – volume: 10 start-page: 1761 year: 2010 end-page: 1772 ident: bib52 article-title: Transcranial magnetic stimulation for the treatment of depression publication-title: Expert Rev Neurother – volume: 27 start-page: E5 year: 2009 ident: bib31 article-title: Vagus nerve stimulation publication-title: Neurosurg Focus – volume: 55 start-page: 585 year: 2001 end-page: 595 ident: bib43 article-title: Glial cell abnormalities in major psychiatric disorders: the evidence and implications publication-title: Brain Res Bull – volume: 63 start-page: S240 year: 2011 end-page: S252 ident: bib26 article-title: Measures of adult pain: visual analog scale for pain (VAS Pain), numeric rating scale for pain (NRS Pain), McGill pain questionnaire (MPQ), short-form McGill pain questionnaire (SF-MPQ), chronic pain grade scale (CPGS), short Form-36 bodily pain scale (SF-36 BPS), and measure of intermittent and constant osteoarthritis pain (ICOAP) publication-title: Arthritis Care Res – volume: 55 start-page: 816 year: 2004 end-page: 825 ident: bib24 article-title: Acute vagus nerve stimulation using different pulse widths produces varying brain effects publication-title: Biol Psychiatr – volume: 19 start-page: 1233 issue: 3 year: 2003 ident: 10.1016/j.brs.2017.12.009_bib27 article-title: An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00169-1 – volume: 15 start-page: 35 issue: 1 year: 2002 ident: 10.1016/j.brs.2017.12.009_bib23 article-title: The nerve supply of the human auricle publication-title: Clin Anat doi: 10.1002/ca.1089 – volume: 29 start-page: 777 issue: 4 year: 2004 ident: 10.1016/j.brs.2017.12.009_bib10 article-title: Cerebrospinal fluid corticotropin-releasing factor and perceived early-life stress in depressed patients and healthy control subjects publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1300375 – volume: 20 start-page: 290 issue: 3 year: 2017 ident: 10.1016/j.brs.2017.12.009_bib22 article-title: Optimization of transcutaneous vagus nerve stimulation using functional MRI publication-title: Neuromodulation Technol Neural Interface doi: 10.1111/ner.12541 – volume: 211 start-page: 248 issue: 3 year: 1982 ident: 10.1016/j.brs.2017.12.009_bib4 article-title: Brainstem projections of sensory and motor components of the vagus nerve in the rat publication-title: JComp Neurol doi: 10.1002/cne.902110304 – volume: 43 start-page: 1146 issue: 9 year: 2004 ident: 10.1016/j.brs.2017.12.009_bib40 article-title: Reduced anterior cingulate glutamatergic concentrations in childhood OCD and major depression versus healthy controls publication-title: J Am Acad Child Adolesc Psychiatr doi: 10.1097/01.chi.0000132812.44664.2d – volume: 59 start-page: S3 issue: 6 suppl 4 year: 2002 ident: 10.1016/j.brs.2017.12.009_bib6 article-title: Therapeutic mechanisms of vagus nerve stimulation publication-title: Neurology doi: 10.1212/WNL.59.6_suppl_4.S3 – volume: 120 start-page: 821 issue: 5 year: 2013 ident: 10.1016/j.brs.2017.12.009_bib17 article-title: Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study publication-title: J Neural Transm doi: 10.1007/s00702-012-0908-6 – volume: 10 start-page: 1761 issue: 11 year: 2010 ident: 10.1016/j.brs.2017.12.009_bib52 article-title: Transcranial magnetic stimulation for the treatment of depression publication-title: Expert Rev Neurother doi: 10.1586/ern.10.95 – volume: 27 start-page: E5 issue: 3 year: 2009 ident: 10.1016/j.brs.2017.12.009_bib31 article-title: Vagus nerve stimulation publication-title: Neurosurg Focus doi: 10.3171/2009.6.FOCUS09126 – volume: 46 start-page: 1352 issue: 10 year: 1999 ident: 10.1016/j.brs.2017.12.009_bib5 article-title: Anatomic basis for differential regulation of the rostrolateral peri–locus coeruleus region by limbic afferents publication-title: Biol Psychiatr doi: 10.1016/S0006-3223(99)00213-9 – volume: 288 start-page: 1835 issue: 5472 year: 2000 ident: 10.1016/j.brs.2017.12.009_bib38 article-title: Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control publication-title: Science doi: 10.1126/science.288.5472.1835 – volume: 7 start-page: 740 issue: 5 year: 2014 ident: 10.1016/j.brs.2017.12.009_bib14 article-title: Feasibility, safety and efficacy of transcutaneous vagus nerve stimulation in chronic tinnitus: an open pilot study publication-title: Brain Stimul doi: 10.1016/j.brs.2014.05.003 – volume: 53 start-page: 104 issue: 3 year: 2008 ident: 10.1016/j.brs.2017.12.009_bib21 publication-title: Biomed Tech/Biomed Eng doi: 10.1515/BMT.2008.022 – volume: 47 start-page: 276 issue: 4 year: 2000 ident: 10.1016/j.brs.2017.12.009_bib36 article-title: Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study publication-title: Biol Psychiatr doi: 10.1016/S0006-3223(99)00304-2 – volume: 48 start-page: 962 issue: 10 year: 2000 ident: 10.1016/j.brs.2017.12.009_bib51 article-title: A controlled trial of daily left prefrontal cortex TMS for treating depression publication-title: Biol Psychiatr doi: 10.1016/S0006-3223(00)01048-9 – volume: 47 start-page: 305 issue: 4 year: 2000 ident: 10.1016/j.brs.2017.12.009_bib39 article-title: Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study publication-title: Biol Psychiatr doi: 10.1016/S0006-3223(99)00159-6 – volume: 7 start-page: 871 issue: 6 year: 2014 ident: 10.1016/j.brs.2017.12.009_bib15 article-title: Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity publication-title: Brain Stimul doi: 10.1016/j.brs.2014.07.031 – year: 1937 ident: 10.1016/j.brs.2017.12.009_bib28 article-title: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation publication-title: Brain J Neurol doi: 10.1093/brain/60.4.389 – volume: 3 start-page: 70 year: 2012 ident: 10.1016/j.brs.2017.12.009_bib13 article-title: Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study publication-title: Front Psychiatr doi: 10.3389/fpsyt.2012.00070 – volume: 114 start-page: 1485 issue: 11 year: 2007 ident: 10.1016/j.brs.2017.12.009_bib18 article-title: BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation publication-title: J Neural Transm doi: 10.1007/s00702-007-0755-z – volume: 46 start-page: 243 issue: 3 year: 1989 ident: 10.1016/j.brs.2017.12.009_bib47 article-title: Reduction of prefrontal cortex glucose metabolism common to three types of depression publication-title: Arch Gen Psychiatr doi: 10.1001/archpsyc.1989.01810030049007 – volume: 8 start-page: 624 issue: 3 year: 2015 ident: 10.1016/j.brs.2017.12.009_bib20 article-title: Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans publication-title: Brain Stimul doi: 10.1016/j.brs.2014.11.018 – volume: 6 start-page: 1853 issue: 14 year: 1995 ident: 10.1016/j.brs.2017.12.009_bib49 article-title: Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression publication-title: Neuroreport doi: 10.1097/00001756-199510020-00008 – volume: 139 start-page: 283 issue: 3 year: 2012 ident: 10.1016/j.brs.2017.12.009_bib53 article-title: Pretreatment cerebral metabolic activity correlates with antidepressant efficacy of vagus nerve stimulation in treatment-resistant major depression: a potential marker for response? publication-title: J Affect Disord doi: 10.1016/j.jad.2012.02.007 – volume: 29 start-page: 493 issue: 3 year: 2005 ident: 10.1016/j.brs.2017.12.009_bib33 article-title: Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2005.01.004 – volume: 25 start-page: 713 issue: 5 year: 2001 ident: 10.1016/j.brs.2017.12.009_bib35 article-title: Vagus nerve stimulation (VNS™) for treatment-resistant depression: efficacy, side effects, and predictors of outcome publication-title: Neuropsychopharmacology doi: 10.1016/S0893-133X(01)00271-8 – volume: 58 start-page: 545 issue: 6 year: 2001 ident: 10.1016/j.brs.2017.12.009_bib42 article-title: Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder publication-title: Arch Gen Psychiatr doi: 10.1001/archpsyc.58.6.545 – volume: 36 start-page: 219 issue: 4 year: 2002 ident: 10.1016/j.brs.2017.12.009_bib34 article-title: Vagus nerve stimulation (VNS) synchronized BOLD fMRI suggests that VNS in depressed adults has frequency/dose dependent effects publication-title: J Psychiatr Res doi: 10.1016/S0022-3956(02)00013-4 – volume: 122 start-page: 679 issue: 5 year: 2015 ident: 10.1016/j.brs.2017.12.009_bib12 article-title: The effect of transcutaneous vagus nerve stimulation on cortical excitability publication-title: J Neural Transm (Vienna) doi: 10.1007/s00702-014-1299-7 – volume: 4 start-page: 215 issue: 6 year: 2000 ident: 10.1016/j.brs.2017.12.009_bib37 article-title: Cognitive and emotional influences in anterior cingulate cortex publication-title: Trends Cognit Sci doi: 10.1016/S1364-6613(00)01483-2 – volume: 51 start-page: 48 issue: 1 year: 1998 ident: 10.1016/j.brs.2017.12.009_bib2 article-title: Vagus nerve stimulation therapy for partial-onset seizures a randomized active-control trial publication-title: Neurology doi: 10.1212/WNL.51.1.48 – volume: 34 start-page: 272 issue: 4 year: 2009 ident: 10.1016/j.brs.2017.12.009_bib8 article-title: Enhancement of the function of rat serotonin and norepinephrine neurons by sustained vagus nerve stimulation publication-title: J Psychiatr Neurosci – volume: 8 start-page: 1057 issue: 4 year: 1997 ident: 10.1016/j.brs.2017.12.009_bib46 article-title: Cingulate function in depression: a potential predictor of treatment response publication-title: Neuroreport doi: 10.1097/00001756-199703030-00048 – volume: 55 start-page: 585 issue: 5 year: 2001 ident: 10.1016/j.brs.2017.12.009_bib43 article-title: Glial cell abnormalities in major psychiatric disorders: the evidence and implications publication-title: Brain Res Bull doi: 10.1016/S0361-9230(01)00527-5 – volume: 55 start-page: 816 issue: 8 year: 2004 ident: 10.1016/j.brs.2017.12.009_bib24 article-title: Acute vagus nerve stimulation using different pulse widths produces varying brain effects publication-title: Biol Psychiatr doi: 10.1016/j.biopsych.2003.12.004 – volume: 22 start-page: 607 issue: 03 year: 1992 ident: 10.1016/j.brs.2017.12.009_bib48 article-title: The anatomy of melancholia–focal abnormalities of cerebral blood flow in major depression publication-title: Psychol Med doi: 10.1017/S003329170003806X – volume: 16 start-page: 101 issue: 2 year: 2000 ident: 10.1016/j.brs.2017.12.009_bib11 article-title: Transcutaneous vagus nerve stimulation for partial onset seizure therapy publication-title: Child's Nerv Syst doi: 10.1007/s003810050021 – volume: 63 start-page: S240 issue: Suppl 11 year: 2011 ident: 10.1016/j.brs.2017.12.009_bib26 publication-title: Arthritis Care Res doi: 10.1002/acr.20543 – volume: 221 start-page: 231 issue: 3 year: 2014 ident: 10.1016/j.brs.2017.12.009_bib9 article-title: Antidepressant response to aripiprazole augmentation associated with enhanced FDOPA utilization in striatum: a preliminary PET study publication-title: Psychiatr Res doi: 10.1016/j.pscychresns.2014.01.003 – volume: 39 start-page: 709 issue: 7 year: 1998 ident: 10.1016/j.brs.2017.12.009_bib7 article-title: Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation publication-title: Epilepsia doi: 10.1111/j.1528-1157.1998.tb01155.x – volume: 35 start-page: 616 issue: 3 year: 1994 ident: 10.1016/j.brs.2017.12.009_bib1 article-title: Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures publication-title: Epilepsia doi: 10.1111/j.1528-1157.1994.tb02482.x – volume: 70 start-page: 821 issue: 8 year: 2013 ident: 10.1016/j.brs.2017.12.009_bib54 article-title: Toward a neuroimaging treatment selection biomarker for major depressive disorder publication-title: JAMA Psychiatr doi: 10.1001/jamapsychiatry.2013.143 – volume: 47 start-page: 1261 issue: 4 year: 2009 ident: 10.1016/j.brs.2017.12.009_bib55 article-title: In vivo mapping of the human locus coeruleus publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.06.012 – volume: 133 start-page: 378 issue: 4 year: 2013 ident: 10.1016/j.brs.2017.12.009_bib16 article-title: Transcutaneous vagus nerve stimulation in tinnitus: a pilot study publication-title: Acta Otolaryngol doi: 10.3109/00016489.2012.750736 – volume: 95 start-page: 13290 issue: 22 year: 1998 ident: 10.1016/j.brs.2017.12.009_bib44 article-title: Glial reduction in the subgenual prefrontal cortex in mood disorders publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.22.13290 – volume: 26 start-page: 113 issue: 1 year: 2002 ident: 10.1016/j.brs.2017.12.009_bib32 article-title: Chronic stimulation of the cat vagus nerve: effect on sleep and behavior publication-title: Prog Neuropsychopharmacol Biol Psychiatr doi: 10.1016/S0278-5846(01)00228-7 – volume: 154 start-page: 1752 issue: 12 year: 1997 ident: 10.1016/j.brs.2017.12.009_bib50 article-title: Mood improvement following daily left prefrontal repetitive transcranial magnetic stimulation in patients with depression: a placebo-controlled crossover trial publication-title: JAMA Psychiatr – year: 1993 ident: 10.1016/j.brs.2017.12.009_bib3 – volume: 17 start-page: 1217 issue: 3 year: 2002 ident: 10.1016/j.brs.2017.12.009_bib30 article-title: Functional magnetic resonance imaging evidence for a representation of the ear in human primary somatosensory cortex: comparison with magnetoencephalography study publication-title: Neuroimage doi: 10.1006/nimg.2002.1216 – volume: 10 start-page: 378 issue: 2 year: 2017 ident: 10.1016/j.brs.2017.12.009_bib25 article-title: The physiological and neurobiological effects of transcutaneous auricular vagus nerve stimulation (taVNS) publication-title: Brain Stimul doi: 10.1016/j.brs.2017.01.118 – volume: 58 start-page: 700 issue: 9 year: 2005 ident: 10.1016/j.brs.2017.12.009_bib41 article-title: Reduced anterior cingulate glutamate in pediatric major depression: a magnetic resonance spectroscopy study publication-title: Biol Psychiatr doi: 10.1016/j.biopsych.2005.05.007 – volume: 13 start-page: 295 issue: 2 year: 2001 ident: 10.1016/j.brs.2017.12.009_bib29 article-title: Representation of the ear in human primary somatosensory cortex publication-title: Neuroimage doi: 10.1006/nimg.2000.0695 – volume: 158 start-page: 405 issue: 3 year: 2001 ident: 10.1016/j.brs.2017.12.009_bib45 article-title: Anterior cingulate activity as a predictor of degree of treatment response in major depression: evidence from brain electrical tomography analysis publication-title: JAMA Psychiatr – volume: 6 start-page: 798 issue: 5 year: 2013 ident: 10.1016/j.brs.2017.12.009_bib19 article-title: CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal–a pilot study publication-title: Brain Stimul doi: 10.1016/j.brs.2013.01.011 – reference: 29895444 - Brain Stimul. 2018 Jul - Aug;11(4):947-948 – reference: 29661599 - Brain Stimul. 2018 Jul - Aug;11(4):945-946 |
| SSID | ssj0059987 |
| Score | 2.5935116 |
| Snippet | Electrical stimulation of the auricular branch of the vagus nerve (ABVN) via transcutaneous auricular vagus nerve stimulation (taVNS) may influence afferent... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 492 |
| SubjectTerms | Adolescent Adult Anterior cingulate cortex (ACC) Brain - physiology Cross-Over Studies Ear stimulation Female fMRI Functional Neuroimaging Healthy Volunteers Humans Magnetic Resonance Imaging - methods Male Middle Aged Single-Blind Method Transcutaneous auricular vagus nerve stimulation (taVNS) Transcutaneous Electric Nerve Stimulation - methods Vagus Nerve - physiology Vagus Nerve Stimulation - methods Young Adult |
| Title | Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: A concurrent taVNS/fMRI study and review |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1935861X17310252 https://dx.doi.org/10.1016/j.brs.2017.12.009 https://www.ncbi.nlm.nih.gov/pubmed/29361441 https://www.proquest.com/docview/1990851690 https://pubmed.ncbi.nlm.nih.gov/PMC6487660 |
| Volume | 11 |
| WOSCitedRecordID | wos000432435200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1876-4754 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0059987 issn: 1935-861X databaseCode: AIEXJ dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwMvCBiXcpmMhBBQdUvSOHZ4K2gTm7YysQJ9i5zb2qlLpzYr2y_if_FLOMd2Lu3EuEi8RFV9SdrzxT4-_vwdQl7YXuJ7HOXxGIZuXJZ0QhmxjuMmXPIolF2mk03wfl8Mh_5ho_GjOAuzmPAsExcX_tl_NTV8B8bGo7N_Ye6yU_gCPoPR4Qpmh-sfGV7JbaiAhR7X6pSNHGem6BwcwgSpr0pSSPFQF_IYlVqR_tiGl_7UJPVC_zOXX_pHGDxYjGVbZ83RRylr1QzRALqHbvRhd1hnR0b7yfSwkx582tV6tprVXm1LlApLcpzVO67irPFMR2rfyfkInvfrZumBT7_FmhK9Pz2GwWpQlhyM89EUdXSx8OMECSjtvbJ0X2Lw1rwMuMCfF01NDMQWFeNQB-aKwzlL3FFwTVlHeCojTzXY2zVQd2sjt6tT8hkngCn51Kvziw51nGyGM5R6t7kKJVt-NZmWFMcjvD3e3ebgQTsM3IQ1hzNfNMlab3d7uFf4CwwWvFxzH_TjFnvvioW4cqNfeU9XV0erJN-a1zS4Q26b5Q7taZjeJY0ku0fWe5nMp6eX9CU9LHB6uU6-ryKXGuTSaUqXkUtL5FKFXKqQS2vIoa8U6l5TQC2tULtUBbsdJVSj9i3t0QqzVLXeQsRShVgKiKUasffJ553twfsPHZNHpBMxj-cd20-lTGIZcsatKPXd0E4lE043lr4dR0L6sWvFno-emsU55mISkvteHLtSeCLsPiDNbJoljwhNu0nkuSIMYSxzGfNC7sZO15epG1sijXiLWIV9gsiI7GOul0lQsClPAjBpgCYNbCcAk7bIm7LJmVaYua6yUxg9KI5Ow2QfAD6va-SWjYxfrf3l3zV7XqAqgDkHNxK1jQMbXFihNthb5KFGWfnosHzAGJPdInwJf2UF1LNfLsnGI6VrD38s9zzr8b_8xifkVjUwPCXNfHaePCM3o0U-ns82yA0-FBvmxfsJnYMisg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neurophysiologic+effects+of+transcutaneous+auricular+vagus+nerve+stimulation+%28taVNS%29+via+electrical+stimulation+of+the+tragus%3A+A+concurrent+taVNS%2FfMRI+study+and+review&rft.jtitle=Brain+stimulation&rft.au=Badran%2C+Bashar+W.&rft.au=Dowdle%2C+Logan+T.&rft.au=Mithoefer%2C+Oliver+J.&rft.au=LaBate%2C+Nicholas+T.&rft.date=2018-05-01&rft.pub=Elsevier+Inc&rft.issn=1935-861X&rft.volume=11&rft.issue=3&rft.spage=492&rft.epage=500&rft_id=info:doi/10.1016%2Fj.brs.2017.12.009&rft.externalDocID=S1935861X17310252 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-861X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-861X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-861X&client=summon |