A Hybrid Approach for Short-Term Forecasting of Wind Speed

We propose a hybrid method for forecasting the wind speed. The wind speed data is first decomposed into intrinsic mode functions (IMFs) with empirical mode decomposition. Based on the partial autocorrelation factor of the individual IMFs, adaptive methods are then employed for the prediction of IMFs...

Full description

Saved in:
Bibliographic Details
Published in:TheScientificWorld Vol. 2013; no. 2013; pp. 1 - 8
Main Authors: Tatinati, Sivanagaraja, Veluvolu, Kalyana C.
Format: Journal Article
Language:English
Published: Cairo, Egypt Hindawi Publishing Corporation 01.01.2013
John Wiley & Sons, Inc
Wiley
Subjects:
ISSN:2356-6140, 1537-744X, 1537-744X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a hybrid method for forecasting the wind speed. The wind speed data is first decomposed into intrinsic mode functions (IMFs) with empirical mode decomposition. Based on the partial autocorrelation factor of the individual IMFs, adaptive methods are then employed for the prediction of IMFs. Least squares-support vector machines are employed for IMFs with weak correlation factor, and autoregressive model with Kalman filter is employed for IMFs with high correlation factor. Multistep prediction with the proposed hybrid method resulted in improved forecasting. Results with wind speed data show that the proposed method provides better forecasting compared to the existing methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Academic Editors: M. L. Ferrari and D. C. Rakopoulos
ISSN:2356-6140
1537-744X
1537-744X
DOI:10.1155/2013/548370