Dynamic Programming and Graph Algorithms in Computer Vision
Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting since, by carefully exploiting problem structure, they often provide nontrivial gua...
Uloženo v:
| Vydáno v: | IEEE transactions on pattern analysis and machine intelligence Ročník 33; číslo 4; s. 721 - 740 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Los Alamitos, CA
IEEE
01.04.2011
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0162-8828, 1939-3539, 1939-3539 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting since, by carefully exploiting problem structure, they often provide nontrivial guarantees concerning solution quality. In this paper, we review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo, the mid-level problem of interactive object segmentation, and the high-level problem of model-based recognition. |
|---|---|
| AbstractList | Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting since, by carefully exploiting problem structure, they often provide nontrivial guarantees concerning solution quality. In this paper, we review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo, the mid-level problem of interactive object segmentation, and the high-level problem of model-based recognition. Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting since, by carefully exploiting problem structure, they often provide nontrivial guarantees concerning solution quality. In this paper, we review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo, the mid-level problem of interactive object segmentation, and the high-level problem of model-based recognition.Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting since, by carefully exploiting problem structure, they often provide nontrivial guarantees concerning solution quality. In this paper, we review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo, the mid-level problem of interactive object segmentation, and the high-level problem of model-based recognition. Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting, since by carefully exploiting problem structure they often provide non-trivial guarantees concerning solution quality. In this paper we briefly review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo; the mid-level problem of interactive object segmentation; and the high-level problem of model-based recognition. |
| Author | Zabih, R Felzenszwalb, P F |
| Author_xml | – sequence: 1 givenname: P F surname: Felzenszwalb fullname: Felzenszwalb, P F email: pff@cs.uchicago.edu organization: Dept. of Comput. Sci., Univ. of Chicago, Chicago, IL, USA – sequence: 2 givenname: R surname: Zabih fullname: Zabih, R email: rdz@cs.cornell.edu organization: Dept. of Comput. Sci., Cornell Univ., Ithaca, NY, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24415968$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20660950$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kt1rFDEUxYNU7Lb11RdBBkHqy6z5_kAQlrWthYp9qL6GTDazmzKTrMmM0P_ebHfb2oJ9Cpf8zsm9uecA7IUYHABvEJwiBNWnq8vZ9_MphpuasBdgghRRNWFE7YEJRBzXUmK5Dw5yvoYQUQbJK7CPIedQMTgBn7_eBNN7W12muEym731YViYsqrNk1qtq1i1j8sOqz5UP1Tz263Fwqfrls4_hCLxsTZfd6915CH6enlzNv9UXP87O57OL2jLOhloJhZzCDsuGsrYRDbREtcQYt4CFQJjaUrZKEm6Eok4y6ixDC0Qbwbhy5BB82fqux6Z3C-vCkEyn18n3Jt3oaLx-fBP8Si_jH00EEkTCYnC8M0jx9-jyoHufres6E1wcs5acivIqooX8-CyJuECYUExEQd8_Qa_jmEL5CC0ZFlghqgr07t_W73u-W0ABPuwAk63p2mSC9fmBoxQxxWXh6JazKeacXKutH8xQtlAm9p1GUG_yoG_zoDd50CUPRTZ9Irtz_q_g7VbgnXP3MGNICq7IX2XXvd4 |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1080_01691864_2018_1455604 crossref_primary_10_1109_TMM_2015_2433213 crossref_primary_10_1137_15M1010257 crossref_primary_10_1371_journal_pone_0167954 crossref_primary_10_1016_j_compmedimag_2017_01_002 crossref_primary_10_1016_j_jvcir_2012_08_002 crossref_primary_10_1007_s12524_018_0773_3 crossref_primary_10_1007_s00521_021_06827_5 crossref_primary_10_1016_j_patrec_2014_03_012 crossref_primary_10_1016_j_image_2019_04_018 crossref_primary_10_1145_2964791_2901479 crossref_primary_10_1016_j_patcog_2019_107024 crossref_primary_10_1016_j_csbj_2017_02_001 crossref_primary_10_1186_s12918_017_0432_2 crossref_primary_10_1049_iet_cvi_2014_0409 crossref_primary_10_1016_j_image_2013_10_005 crossref_primary_10_1109_ACCESS_2015_2451627 crossref_primary_10_3390_app13158836 crossref_primary_10_1007_s11042_024_20162_6 crossref_primary_10_1109_ACCESS_2020_2964840 crossref_primary_10_1587_transinf_2014EDL8078 crossref_primary_10_1007_s41060_022_00360_x crossref_primary_10_1016_j_engappai_2023_106299 crossref_primary_10_1109_JSTARS_2014_2300509 crossref_primary_10_1109_LGRS_2021_3063290 crossref_primary_10_1016_j_compmedimag_2012_09_002 crossref_primary_10_1137_15M101796X crossref_primary_10_1016_j_jvlc_2017_07_002 crossref_primary_10_1007_s00138_015_0686_x crossref_primary_10_1109_TCYB_2016_2646701 crossref_primary_10_1155_2012_814356 crossref_primary_10_1007_s41965_022_00097_3 crossref_primary_10_1016_j_compbiomed_2015_04_006 crossref_primary_10_1016_j_future_2024_05_037 crossref_primary_10_1109_TVCG_2022_3207004 crossref_primary_10_1007_s11128_016_1394_9 crossref_primary_10_1016_j_media_2015_09_005 crossref_primary_10_1016_j_ins_2021_08_075 crossref_primary_10_1007_s11263_019_01161_9 crossref_primary_10_1109_TIP_2012_2186309 crossref_primary_10_1007_s11128_018_2117_1 crossref_primary_10_1109_TMM_2014_2305571 crossref_primary_10_1109_JIOT_2014_2386326 crossref_primary_10_1145_2645860 crossref_primary_10_1016_j_knosys_2019_104971 crossref_primary_10_1109_TMM_2017_2671447 crossref_primary_10_1016_j_compmedimag_2016_07_001 crossref_primary_10_1007_s10032_012_0193_9 crossref_primary_10_1109_TITS_2013_2283813 crossref_primary_10_1007_s10489_025_06322_7 crossref_primary_10_1016_j_patcog_2016_01_013 crossref_primary_10_1109_JSEN_2017_2694385 crossref_primary_10_1016_j_ijplas_2025_104275 crossref_primary_10_1016_j_ins_2015_04_007 crossref_primary_10_1007_s11263_016_0980_8 crossref_primary_10_1007_s11134_017_9546_x crossref_primary_10_1002_fld_4372 crossref_primary_10_1007_s00138_016_0796_0 crossref_primary_10_1016_j_compag_2017_06_003 crossref_primary_10_1016_j_istruc_2025_108760 crossref_primary_10_1016_j_jcss_2012_05_009 crossref_primary_10_1007_s00138_015_0688_8 crossref_primary_10_1109_TIP_2017_2750404 crossref_primary_10_1002_nbm_4344 crossref_primary_10_1007_s00521_013_1358_2 crossref_primary_10_1007_s00779_015_0844_1 crossref_primary_10_1016_j_ins_2017_02_018 crossref_primary_10_1109_TIT_2019_2916805 crossref_primary_10_1016_j_ijleo_2018_01_021 crossref_primary_10_1016_j_cviu_2013_07_004 crossref_primary_10_1177_1748301815618299 crossref_primary_10_1016_j_imavis_2016_07_003 crossref_primary_10_12677_AIRR_2014_34009 crossref_primary_10_1016_j_jvcir_2016_03_028 crossref_primary_10_1109_TMI_2015_2444815 crossref_primary_10_1109_TIP_2017_2686601 crossref_primary_10_3390_pr8091168 |
| Cites_doi | 10.21236/AD0786720 10.1109/ICCV.2001.937685 10.1016/0020-0190(90)90109-B 10.1017/CBO9780511804441 10.1162/089976602760128072 10.1016/0166-218X(95)00103-X 10.1016/S0004-3702(83)80006-X 10.1109/ICCV.1999.791245 10.1109/34.485529 10.1145/362588.362594 10.1109/TPAMI.2009.131 10.1109/34.476006 10.1007/s11263-006-7934-5 10.1109/34.969114 10.1109/34.868688 10.1109/CVPR.2005.334 10.1007/0-387-28831-7_5 10.1109/CVPR.2009.5206689 10.1038/317314a0 10.1109/CVPR.2005.130 10.1007/BF00133570 10.1109/TPAMI.2007.1031 10.1109/34.993558 10.1109/5.18626 10.1137/S0097539792225297 10.1109/CVPR.1998.698598 10.1109/ICCV.1999.791261 10.1007/BF02612354 10.1145/585265.585268 10.1023/B:VISI.0000042934.15159.49 10.1109/ICCV.2003.1238389 10.1109/34.598226 10.1117/12.280874 10.1109/TPAMI.2007.70844 10.1145/502090.502096 10.1109/CVPR.2008.4587444 10.1109/ICCV.2005.81 10.7551/mitpress/7132.001.0001 10.1007/BFb0055670 10.1109/34.977562 10.1002/net.3230150206 10.1109/TPAMI.2003.1233908 10.1109/TPAMI.2006.193 10.1613/jair.2187 10.1002/9781118186435 10.1016/0004-3702(81)90024-2 10.1109/TPAMI.1984.4767596 10.1109/ICCV.2005.14 10.1111/j.2517-6161.1989.tb01764.x 10.1109/TIT.2005.856938 10.1016/S0166-218X(01)00341-9 10.1109/T-C.1973.223602 10.1109/34.57681 10.1145/335305.335397 10.1109/TPAMI.2003.1159951 10.1109/CVPR.1998.698673 10.1109/CVPR.2005.362 10.1007/BF01386390 10.1109/TPAMI.2005.35 10.1109/TPAMI.2004.1273918 10.1145/990308.990313 10.1109/TPAMI.2004.54 10.1145/882262.882264 10.1109/TPAMI.1985.4767639 10.1109/ICCV.2001.937505 10.1145/1015706.1015720 10.1023/A:1014573219977 10.1007/BF00054836 10.1145/218380.218442 10.1109/ICCV.2003.1238463 10.1145/1015706.1015718 10.1109/TPAMI.2004.1262177 10.1109/34.368194 10.1016/S0166-218X(01)00338-9 10.1109/CCV.1988.590008 10.1109/ICCV.1998.710763 10.1109/TPAMI.2003.1217603 10.1016/S0042-6989(98)00043-1 10.1515/9780691273457 10.1109/TPAMI.2009.143 10.1109/34.954599 10.1016/0020-0190(77)90002-3 10.1006/cviu.2000.0842 10.7551/mitpress/1090.001.0001 10.1109/TPAMI.2004.60 10.1109/TPAMI.2008.217 10.1063/1.1699114 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2011 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2011 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 5PM |
| DOI | 10.1109/TPAMI.2010.135 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database Technology Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 1939-3539 |
| EndPage | 740 |
| ExternalDocumentID | PMC3717380 2270936461 20660950 24415968 10_1109_TPAMI_2010_135 5518769 |
| Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Review Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCRR NIH HHS grantid: P41RR023953 – fundername: NIBIB NIH HHS grantid: R21EB008138 – fundername: NCRR NIH HHS grantid: P41 RR023953 – fundername: NIBIB NIH HHS grantid: R21 EB008138 – fundername: National Center for Research Resources : NCRR grantid: P41 RR023953 || RR – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R21 EB008138 || EB |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION IQODW RIG AAYOK CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 5PM |
| ID | FETCH-LOGICAL-c565t-9791e92e28b45fb7b0c39f3aaed0c56124c9f3f9836a794e854ec51d14b7569e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 126 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000287370400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Tue Sep 30 16:53:48 EDT 2025 Sat Sep 27 17:52:34 EDT 2025 Wed Oct 01 17:27:42 EDT 2025 Sun Nov 30 05:26:51 EST 2025 Thu Apr 03 07:00:55 EDT 2025 Mon Jul 21 09:14:02 EDT 2025 Sat Nov 29 08:08:07 EST 2025 Tue Nov 18 21:39:56 EST 2025 Tue Aug 26 17:18:00 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Computer vision Stereo image processing Image interpretation Combinatorial problem computing methodologies Modeling Optimization Image segmentation Combinatorial algorithms Scene analysis vision and scene understanding Problem solving Discrete programming Stereopsis Artificial intelligence |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c565t-9791e92e28b45fb7b0c39f3aaed0c56124c9f3f9836a794e854ec51d14b7569e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Review-3 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3717380 |
| PMID | 20660950 |
| PQID | 852729149 |
| PQPubID | 85458 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_1671234237 proquest_journals_852729149 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3717380 pubmed_primary_20660950 pascalfrancis_primary_24415968 crossref_citationtrail_10_1109_TPAMI_2010_135 crossref_primary_10_1109_TPAMI_2010_135 proquest_miscellaneous_864785414 ieee_primary_5518769 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-04-01 |
| PublicationDateYYYYMMDD | 2011-04-01 |
| PublicationDate_xml | – month: 04 year: 2011 text: 2011-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Los Alamitos, CA |
| PublicationPlace_xml | – name: Los Alamitos, CA – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2011 |
| Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 Dellaert (ref30) 2001 ref56 ref59 ref58 Korte (ref68) 2005 ref53 ref52 ref55 Kleinberg (ref60) 2005 ref54 Papadimitriou (ref80) 1982 Tikhonov (ref98) 1977 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref7 ref9 ref4 ref3 ref6 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref32 ref39 Baker (ref5) Roy (ref89) 1999; 1 Veksler (ref100) 1999 ref26 Cormen (ref24) 1989 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Bellman (ref8) 1957 ref13 ref12 ref15 ref14 ref97 ref96 ref11 ref99 ref10 Garey (ref38) 1979 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref90 ref86 ref85 ref88 ref87 Satoru (ref91) 2001; 48 ref82 ref81 ref84 ref79 ref78 ref75 Felzenszwalb (ref33) 2004 ref74 ref77 ref76 ref103 ref2 Krause (ref69) 2008; 9 ref1 ref71 ref70 ref73 ref72 Weiss (ref102) ref67 ref64 ref63 ref66 ref65 Cook (ref23) 1998 Press (ref83) 1992 ref62 ref61 |
| References_xml | – ident: ref46 doi: 10.21236/AD0786720 – ident: ref29 doi: 10.1109/ICCV.2001.937685 – volume: 9 start-page: 235 year: 2008 ident: ref69 article-title: Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies publication-title: J. Machine Learning Research – year: 2001 ident: ref30 article-title: Monte Carlo EM for Data-Association and Its Applications in Computer Vision – volume-title: Technical Report TR2004-1963 year: 2004 ident: ref33 article-title: Distance Transforms of Sampled Functions – volume-title: Dynamic Programming year: 1957 ident: ref8 – ident: ref74 doi: 10.1016/0020-0190(90)90109-B – ident: ref13 doi: 10.1017/CBO9780511804441 – ident: ref26 doi: 10.1162/089976602760128072 – ident: ref22 doi: 10.1016/0166-218X(95)00103-X – ident: ref55 doi: 10.1016/S0004-3702(83)80006-X – ident: ref19 doi: 10.1109/ICCV.1999.791245 – ident: ref4 doi: 10.1109/34.485529 – ident: ref77 doi: 10.1145/362588.362594 – ident: ref103 doi: 10.1109/TPAMI.2009.131 – ident: ref40 doi: 10.1109/34.476006 – ident: ref14 doi: 10.1007/s11263-006-7934-5 – ident: ref20 doi: 10.1109/34.969114 – volume-title: Numerical Recipes in C year: 1992 ident: ref83 – ident: ref96 doi: 10.1109/34.868688 – ident: ref99 doi: 10.1109/CVPR.2005.334 – year: 1999 ident: ref100 article-title: Efficient Graph-Based Energy Minimization Methods in Computer Vision – ident: ref17 doi: 10.1007/0-387-28831-7_5 – ident: ref49 doi: 10.1109/CVPR.2009.5206689 – ident: ref82 doi: 10.1038/317314a0 – ident: ref88 doi: 10.1109/CVPR.2005.130 – ident: ref56 doi: 10.1007/BF00133570 – ident: ref66 doi: 10.1109/TPAMI.2007.1031 – ident: ref9 doi: 10.1109/34.993558 – ident: ref84 doi: 10.1109/5.18626 – ident: ref28 doi: 10.1137/S0097539792225297 – ident: ref51 doi: 10.1109/CVPR.1998.698598 – ident: ref10 doi: 10.1109/ICCV.1999.791261 – ident: ref44 doi: 10.1007/BF02612354 – ident: ref59 doi: 10.1145/585265.585268 – ident: ref34 doi: 10.1023/B:VISI.0000042934.15159.49 – ident: ref58 doi: 10.1109/ICCV.2003.1238389 – ident: ref81 doi: 10.1109/34.598226 – ident: ref86 doi: 10.1117/12.280874 – volume-title: Algorithm Design year: 2005 ident: ref60 – ident: ref97 doi: 10.1109/TPAMI.2007.70844 – volume: 48 start-page: 761 issue: 4 year: 2001 ident: ref91 article-title: A Combinatorial, Strongly Polynomial Algorithm for Minimizing Submodular Functions publication-title: J. ACM doi: 10.1145/502090.502096 – ident: ref93 doi: 10.1109/CVPR.2008.4587444 – ident: ref63 doi: 10.1109/ICCV.2005.81 – ident: ref11 doi: 10.7551/mitpress/7132.001.0001 – volume-title: Proc. Conf. Uncertainty in Artificial Intelligence ident: ref102 article-title: Map Estimation, Linear Programming and Belief Propagation with Convex Free Energies – ident: ref50 doi: 10.1007/BFb0055670 – ident: ref85 doi: 10.1109/34.977562 – volume: 1 start-page: 1 issue: 2 year: 1999 ident: ref89 article-title: Stereo without Epipolar Lines: A Maximum Flow Formulation publication-title: Int’l J. Computer Vision – ident: ref27 doi: 10.1002/net.3230150206 – start-page: 631 volume-title: Proc. Int’l Joint Conf. Artificial Intelligence ident: ref5 article-title: Depth from Edge and Intensity Based Stereo – ident: ref52 doi: 10.1109/TPAMI.2003.1233908 – ident: ref65 doi: 10.1109/TPAMI.2006.193 – ident: ref35 doi: 10.1613/jair.2187 – ident: ref45 doi: 10.1002/9781118186435 – ident: ref48 doi: 10.1016/0004-3702(81)90024-2 – ident: ref41 doi: 10.1109/TPAMI.1984.4767596 – ident: ref67 doi: 10.1109/ICCV.2005.14 – ident: ref42 doi: 10.1111/j.2517-6161.1989.tb01764.x – ident: ref101 doi: 10.1109/TIT.2005.856938 – ident: ref12 doi: 10.1016/S0166-218X(01)00341-9 – ident: ref36 doi: 10.1109/T-C.1973.223602 – ident: ref3 doi: 10.1109/34.57681 – ident: ref43 doi: 10.1145/335305.335397 – ident: ref94 doi: 10.1109/TPAMI.2003.1159951 – ident: ref18 doi: 10.1109/CVPR.1998.698673 – volume-title: Solutions of Ill-Posed Problems year: 1977 ident: ref98 – ident: ref73 doi: 10.1109/CVPR.2005.362 – ident: ref31 doi: 10.1007/BF01386390 – ident: ref32 doi: 10.1109/TPAMI.2005.35 – ident: ref75 doi: 10.1109/TPAMI.2004.1273918 – ident: ref54 doi: 10.1145/990308.990313 – ident: ref72 doi: 10.1109/TPAMI.2004.54 – volume-title: Combinatorial Optimization year: 1998 ident: ref23 – ident: ref70 doi: 10.1145/882262.882264 – volume-title: Combinatorial Optimization: Theory and Algorithms year: 2005 ident: ref68 – ident: ref79 doi: 10.1109/TPAMI.1985.4767639 – ident: ref15 doi: 10.1109/ICCV.2001.937505 – ident: ref87 doi: 10.1145/1015706.1015720 – ident: ref92 doi: 10.1023/A:1014573219977 – ident: ref6 doi: 10.1007/BF00054836 – volume-title: Introduction to Algorithms year: 1989 ident: ref24 – volume-title: Combinatorial Optimization: Algorithms and Complexity year: 1982 ident: ref80 – ident: ref78 doi: 10.1145/218380.218442 – volume-title: Computers and Intractability year: 1979 ident: ref38 – ident: ref57 doi: 10.1109/ICCV.2003.1238463 – ident: ref1 doi: 10.1145/1015706.1015718 – ident: ref64 doi: 10.1109/TPAMI.2004.1262177 – ident: ref39 doi: 10.1109/34.368194 – ident: ref2 doi: 10.1016/S0166-218X(01)00338-9 – ident: ref95 doi: 10.1109/CCV.1988.590008 – ident: ref90 doi: 10.1109/ICCV.1998.710763 – ident: ref21 doi: 10.1109/TPAMI.2003.1217603 – ident: ref7 doi: 10.1016/S0042-6989(98)00043-1 – ident: ref37 doi: 10.1515/9780691273457 – ident: ref71 doi: 10.1109/TPAMI.2009.143 – ident: ref53 doi: 10.1109/34.954599 – ident: ref61 doi: 10.1016/0020-0190(77)90002-3 – ident: ref25 doi: 10.1006/cviu.2000.0842 – ident: ref47 doi: 10.7551/mitpress/1090.001.0001 – ident: ref16 doi: 10.1109/TPAMI.2004.60 – ident: ref62 doi: 10.1109/TPAMI.2008.217 – ident: ref76 doi: 10.1063/1.1699114 |
| SSID | ssj0014503 |
| Score | 2.4450052 |
| SecondaryResourceType | review_article |
| Snippet | Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems.... |
| SourceID | pubmedcentral proquest pubmed pascalfrancis crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 721 |
| SubjectTerms | Algorithmics. Computability. Computer arithmetics Algorithms Application software Applied sciences Artificial intelligence Combinatorial algorithms Computer science Computer science; control theory; systems Computer Simulation Computer vision computing methodologies Dynamic programming Exact sciences and technology Graphs Image Enhancement - methods Image Processing, Computer-Assisted - methods Information retrieval. Graph Intelligence Interactive Layout Object segmentation Optimization Optimization methods Pattern analysis Pattern recognition. Digital image processing. Computational geometry Probability Stereo vision Theoretical computing Vision vision and scene understanding Vision, Ocular - physiology |
| Title | Dynamic Programming and Graph Algorithms in Computer Vision |
| URI | https://ieeexplore.ieee.org/document/5518769 https://www.ncbi.nlm.nih.gov/pubmed/20660950 https://www.proquest.com/docview/852729149 https://www.proquest.com/docview/1671234237 https://www.proquest.com/docview/864785414 https://pubmed.ncbi.nlm.nih.gov/PMC3717380 |
| Volume | 33 |
| WOSCitedRecordID | wos000287370400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-3539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21FQc40NLyEVpWRkLiQmgSO3YsTqtCgQPVHgraWxQ7TrtSm0Wb3f7-ztjZtIvaA7ckHjmyxyPP2DPvAXxIRZNRkXUstbGx4NbG6Bw5VIhWvNLaSmM82YQ6OyumUz3Zgk9DLYxzziefuc_06O_y67ld0VHZMaGHKam3YVspGWq1hhsDkXsWZPRg0MIxjOgBGtNEH59Pxr9-hiyulBNVDUGYo2uRbOxFnlyFUiOrDmenCbQWD_md_6ZP3tuPTnf_byR78Lz3O9k4LJQXsOXafdhdczqw3sT34dk9gMID-PI1ENazSUjjusavrGpr9p1wrtn46mK-mC0vrzs2a9nQ2R9fr_4Sfp9-Oz_5Efd0C7FFr24Za6VTpzOXFUbkjVEmsVw3vKpcnVgi0RQWXxtdcFmhFbsiF87maZ0Ko3KpHX8FO-28dW-A8Zrn0nDqTQmC_26axNQok9XO5UJGEK8nvrQ9FjlRYlyVPiZJdOl1VpLOStRZBB8H-b8BheNRyQOa7UGqn-gIRht6Hdoziie1LCI4XCu67K24K4s8w9gDY8gI3g-taH50p1K1br7qylQq3PsptygC9ohMQfW8RLceweuwcu5-36_ECNTGmhoECP17s6WdXXoUcE75E0Xy9uEBH8LTcPpNOUZHsLNcrNw7eGJvlrNuMUIDmhYjb0C3AAEW9A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6NDQl4YLDBCBvDSEi8kC2JHTsWT9VgbGKr-lDQ3qzYcVilLZ2alt-Pz07DOm0PvCXxyZF9PvnOvvs-gI8pqzMsso651CZm1JjYOUfWKUQKWkppuNaebEIMh8XFhRytwee-FsZa65PP7AE--rv8amoWeFR2iOhhgstHsJEzliWhWqu_M2C550F2PoyzcRdIdBCNaSIPx6PB-WnI40opktUgiLlzLpKV3cjTq2ByZNm6-akDscV9nufdBMpbO9Lx5v-N5QU87zxPMghL5SWs2WYLNpesDqQz8i14dguicBu-fA2U9WQUErmu3VdSNhX5jkjXZHD1ezqbzC-vWzJpSN_ZL1-x_gp-Hn8bH53EHeFCbJxfN4-lkKmVmc0KzfJaC50YKmtalrZKDNJoMuNea1lQXjo7tkXOrMnTKmVa5Fxa-hrWm2lj3wChFc25ptibYAgAXteJrpxMVlmbMx5BvJx4ZTo0ciTFuFI-Kkmk8jpTqDPldBbBp17-JuBwPCi5jbPdS3UTHcH-il779gwjSsmLCHaXiladHbeqyDMXfbgoMoIPfaszQLxVKRs7XbQq5cLt_phdFAF5QKbAil4kXI9gJ6ycf7_vVmIEYmVN9QKI_73a0kwuPQ44xQyKInl7_4Dfw5OT8fmZOjsd_tiFp-EsHDOO9mB9PlvYd_DY_JlP2tm-N6O_CTsZUw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Programming+and+Graph+Algorithms+in+Computer+Vision&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Felzenszwalb%2C+Pedro+F&rft.au=Zabih%2C+Ramin&rft.date=2011-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=33&rft.issue=4&rft.spage=721&rft_id=info:doi/10.1109%2FTPAMI.2010.135&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2270936461 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |