Dynamic Programming and Graph Algorithms in Computer Vision

Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting since, by carefully exploiting problem structure, they often provide nontrivial gua...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 33; číslo 4; s. 721 - 740
Hlavní autoři: Felzenszwalb, P F, Zabih, R
Médium: Journal Article
Jazyk:angličtina
Vydáno: Los Alamitos, CA IEEE 01.04.2011
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting since, by carefully exploiting problem structure, they often provide nontrivial guarantees concerning solution quality. In this paper, we review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo, the mid-level problem of interactive object segmentation, and the high-level problem of model-based recognition.
AbstractList Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting since, by carefully exploiting problem structure, they often provide nontrivial guarantees concerning solution quality. In this paper, we review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo, the mid-level problem of interactive object segmentation, and the high-level problem of model-based recognition.
Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting since, by carefully exploiting problem structure, they often provide nontrivial guarantees concerning solution quality. In this paper, we review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo, the mid-level problem of interactive object segmentation, and the high-level problem of model-based recognition.Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting since, by carefully exploiting problem structure, they often provide nontrivial guarantees concerning solution quality. In this paper, we review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo, the mid-level problem of interactive object segmentation, and the high-level problem of model-based recognition.
Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting, since by carefully exploiting problem structure they often provide non-trivial guarantees concerning solution quality. In this paper we briefly review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo; the mid-level problem of interactive object segmentation; and the high-level problem of model-based recognition.
Author Zabih, R
Felzenszwalb, P F
Author_xml – sequence: 1
  givenname: P F
  surname: Felzenszwalb
  fullname: Felzenszwalb, P F
  email: pff@cs.uchicago.edu
  organization: Dept. of Comput. Sci., Univ. of Chicago, Chicago, IL, USA
– sequence: 2
  givenname: R
  surname: Zabih
  fullname: Zabih, R
  email: rdz@cs.cornell.edu
  organization: Dept. of Comput. Sci., Cornell Univ., Ithaca, NY, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24415968$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20660950$$D View this record in MEDLINE/PubMed
BookMark eNp9kt1rFDEUxYNU7Lb11RdBBkHqy6z5_kAQlrWthYp9qL6GTDazmzKTrMmM0P_ebHfb2oJ9Cpf8zsm9uecA7IUYHABvEJwiBNWnq8vZ9_MphpuasBdgghRRNWFE7YEJRBzXUmK5Dw5yvoYQUQbJK7CPIedQMTgBn7_eBNN7W12muEym731YViYsqrNk1qtq1i1j8sOqz5UP1Tz263Fwqfrls4_hCLxsTZfd6915CH6enlzNv9UXP87O57OL2jLOhloJhZzCDsuGsrYRDbREtcQYt4CFQJjaUrZKEm6Eok4y6ixDC0Qbwbhy5BB82fqux6Z3C-vCkEyn18n3Jt3oaLx-fBP8Si_jH00EEkTCYnC8M0jx9-jyoHufres6E1wcs5acivIqooX8-CyJuECYUExEQd8_Qa_jmEL5CC0ZFlghqgr07t_W73u-W0ABPuwAk63p2mSC9fmBoxQxxWXh6JazKeacXKutH8xQtlAm9p1GUG_yoG_zoDd50CUPRTZ9Irtz_q_g7VbgnXP3MGNICq7IX2XXvd4
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1080_01691864_2018_1455604
crossref_primary_10_1109_TMM_2015_2433213
crossref_primary_10_1137_15M1010257
crossref_primary_10_1371_journal_pone_0167954
crossref_primary_10_1016_j_compmedimag_2017_01_002
crossref_primary_10_1016_j_jvcir_2012_08_002
crossref_primary_10_1007_s12524_018_0773_3
crossref_primary_10_1007_s00521_021_06827_5
crossref_primary_10_1016_j_patrec_2014_03_012
crossref_primary_10_1016_j_image_2019_04_018
crossref_primary_10_1145_2964791_2901479
crossref_primary_10_1016_j_patcog_2019_107024
crossref_primary_10_1016_j_csbj_2017_02_001
crossref_primary_10_1186_s12918_017_0432_2
crossref_primary_10_1049_iet_cvi_2014_0409
crossref_primary_10_1016_j_image_2013_10_005
crossref_primary_10_1109_ACCESS_2015_2451627
crossref_primary_10_3390_app13158836
crossref_primary_10_1007_s11042_024_20162_6
crossref_primary_10_1109_ACCESS_2020_2964840
crossref_primary_10_1587_transinf_2014EDL8078
crossref_primary_10_1007_s41060_022_00360_x
crossref_primary_10_1016_j_engappai_2023_106299
crossref_primary_10_1109_JSTARS_2014_2300509
crossref_primary_10_1109_LGRS_2021_3063290
crossref_primary_10_1016_j_compmedimag_2012_09_002
crossref_primary_10_1137_15M101796X
crossref_primary_10_1016_j_jvlc_2017_07_002
crossref_primary_10_1007_s00138_015_0686_x
crossref_primary_10_1109_TCYB_2016_2646701
crossref_primary_10_1155_2012_814356
crossref_primary_10_1007_s41965_022_00097_3
crossref_primary_10_1016_j_compbiomed_2015_04_006
crossref_primary_10_1016_j_future_2024_05_037
crossref_primary_10_1109_TVCG_2022_3207004
crossref_primary_10_1007_s11128_016_1394_9
crossref_primary_10_1016_j_media_2015_09_005
crossref_primary_10_1016_j_ins_2021_08_075
crossref_primary_10_1007_s11263_019_01161_9
crossref_primary_10_1109_TIP_2012_2186309
crossref_primary_10_1007_s11128_018_2117_1
crossref_primary_10_1109_TMM_2014_2305571
crossref_primary_10_1109_JIOT_2014_2386326
crossref_primary_10_1145_2645860
crossref_primary_10_1016_j_knosys_2019_104971
crossref_primary_10_1109_TMM_2017_2671447
crossref_primary_10_1016_j_compmedimag_2016_07_001
crossref_primary_10_1007_s10032_012_0193_9
crossref_primary_10_1109_TITS_2013_2283813
crossref_primary_10_1007_s10489_025_06322_7
crossref_primary_10_1016_j_patcog_2016_01_013
crossref_primary_10_1109_JSEN_2017_2694385
crossref_primary_10_1016_j_ijplas_2025_104275
crossref_primary_10_1016_j_ins_2015_04_007
crossref_primary_10_1007_s11263_016_0980_8
crossref_primary_10_1007_s11134_017_9546_x
crossref_primary_10_1002_fld_4372
crossref_primary_10_1007_s00138_016_0796_0
crossref_primary_10_1016_j_compag_2017_06_003
crossref_primary_10_1016_j_istruc_2025_108760
crossref_primary_10_1016_j_jcss_2012_05_009
crossref_primary_10_1007_s00138_015_0688_8
crossref_primary_10_1109_TIP_2017_2750404
crossref_primary_10_1002_nbm_4344
crossref_primary_10_1007_s00521_013_1358_2
crossref_primary_10_1007_s00779_015_0844_1
crossref_primary_10_1016_j_ins_2017_02_018
crossref_primary_10_1109_TIT_2019_2916805
crossref_primary_10_1016_j_ijleo_2018_01_021
crossref_primary_10_1016_j_cviu_2013_07_004
crossref_primary_10_1177_1748301815618299
crossref_primary_10_1016_j_imavis_2016_07_003
crossref_primary_10_12677_AIRR_2014_34009
crossref_primary_10_1016_j_jvcir_2016_03_028
crossref_primary_10_1109_TMI_2015_2444815
crossref_primary_10_1109_TIP_2017_2686601
crossref_primary_10_3390_pr8091168
Cites_doi 10.21236/AD0786720
10.1109/ICCV.2001.937685
10.1016/0020-0190(90)90109-B
10.1017/CBO9780511804441
10.1162/089976602760128072
10.1016/0166-218X(95)00103-X
10.1016/S0004-3702(83)80006-X
10.1109/ICCV.1999.791245
10.1109/34.485529
10.1145/362588.362594
10.1109/TPAMI.2009.131
10.1109/34.476006
10.1007/s11263-006-7934-5
10.1109/34.969114
10.1109/34.868688
10.1109/CVPR.2005.334
10.1007/0-387-28831-7_5
10.1109/CVPR.2009.5206689
10.1038/317314a0
10.1109/CVPR.2005.130
10.1007/BF00133570
10.1109/TPAMI.2007.1031
10.1109/34.993558
10.1109/5.18626
10.1137/S0097539792225297
10.1109/CVPR.1998.698598
10.1109/ICCV.1999.791261
10.1007/BF02612354
10.1145/585265.585268
10.1023/B:VISI.0000042934.15159.49
10.1109/ICCV.2003.1238389
10.1109/34.598226
10.1117/12.280874
10.1109/TPAMI.2007.70844
10.1145/502090.502096
10.1109/CVPR.2008.4587444
10.1109/ICCV.2005.81
10.7551/mitpress/7132.001.0001
10.1007/BFb0055670
10.1109/34.977562
10.1002/net.3230150206
10.1109/TPAMI.2003.1233908
10.1109/TPAMI.2006.193
10.1613/jair.2187
10.1002/9781118186435
10.1016/0004-3702(81)90024-2
10.1109/TPAMI.1984.4767596
10.1109/ICCV.2005.14
10.1111/j.2517-6161.1989.tb01764.x
10.1109/TIT.2005.856938
10.1016/S0166-218X(01)00341-9
10.1109/T-C.1973.223602
10.1109/34.57681
10.1145/335305.335397
10.1109/TPAMI.2003.1159951
10.1109/CVPR.1998.698673
10.1109/CVPR.2005.362
10.1007/BF01386390
10.1109/TPAMI.2005.35
10.1109/TPAMI.2004.1273918
10.1145/990308.990313
10.1109/TPAMI.2004.54
10.1145/882262.882264
10.1109/TPAMI.1985.4767639
10.1109/ICCV.2001.937505
10.1145/1015706.1015720
10.1023/A:1014573219977
10.1007/BF00054836
10.1145/218380.218442
10.1109/ICCV.2003.1238463
10.1145/1015706.1015718
10.1109/TPAMI.2004.1262177
10.1109/34.368194
10.1016/S0166-218X(01)00338-9
10.1109/CCV.1988.590008
10.1109/ICCV.1998.710763
10.1109/TPAMI.2003.1217603
10.1016/S0042-6989(98)00043-1
10.1515/9780691273457
10.1109/TPAMI.2009.143
10.1109/34.954599
10.1016/0020-0190(77)90002-3
10.1006/cviu.2000.0842
10.7551/mitpress/1090.001.0001
10.1109/TPAMI.2004.60
10.1109/TPAMI.2008.217
10.1063/1.1699114
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
5PM
DOI 10.1109/TPAMI.2010.135
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE
Technology Research Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1939-3539
EndPage 740
ExternalDocumentID PMC3717380
2270936461
20660950
24415968
10_1109_TPAMI_2010_135
5518769
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Review
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: P41RR023953
– fundername: NIBIB NIH HHS
  grantid: R21EB008138
– fundername: NCRR NIH HHS
  grantid: P41 RR023953
– fundername: NIBIB NIH HHS
  grantid: R21 EB008138
– fundername: National Center for Research Resources : NCRR
  grantid: P41 RR023953 || RR
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R21 EB008138 || EB
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
IQODW
RIG
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
5PM
ID FETCH-LOGICAL-c565t-9791e92e28b45fb7b0c39f3aaed0c56124c9f3f9836a794e854ec51d14b7569e3
IEDL.DBID RIE
ISICitedReferencesCount 126
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000287370400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Tue Sep 30 16:53:48 EDT 2025
Sat Sep 27 17:52:34 EDT 2025
Wed Oct 01 17:27:42 EDT 2025
Sun Nov 30 05:26:51 EST 2025
Thu Apr 03 07:00:55 EDT 2025
Mon Jul 21 09:14:02 EDT 2025
Sat Nov 29 08:08:07 EST 2025
Tue Nov 18 21:39:56 EST 2025
Tue Aug 26 17:18:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Computer vision
Stereo image processing
Image interpretation
Combinatorial problem
computing methodologies
Modeling
Optimization
Image segmentation
Combinatorial algorithms
Scene analysis
vision and scene understanding
Problem solving
Discrete programming
Stereopsis
Artificial intelligence
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c565t-9791e92e28b45fb7b0c39f3aaed0c56124c9f3f9836a794e854ec51d14b7569e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Review-3
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3717380
PMID 20660950
PQID 852729149
PQPubID 85458
PageCount 20
ParticipantIDs proquest_miscellaneous_1671234237
proquest_journals_852729149
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3717380
pubmed_primary_20660950
pascalfrancis_primary_24415968
crossref_citationtrail_10_1109_TPAMI_2010_135
crossref_primary_10_1109_TPAMI_2010_135
proquest_miscellaneous_864785414
ieee_primary_5518769
PublicationCentury 2000
PublicationDate 2011-04-01
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2011
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
Dellaert (ref30) 2001
ref56
ref59
ref58
Korte (ref68) 2005
ref53
ref52
ref55
Kleinberg (ref60) 2005
ref54
Papadimitriou (ref80) 1982
Tikhonov (ref98) 1977
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref7
ref9
ref4
ref3
ref6
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref32
ref39
Baker (ref5)
Roy (ref89) 1999; 1
Veksler (ref100) 1999
ref26
Cormen (ref24) 1989
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Bellman (ref8) 1957
ref13
ref12
ref15
ref14
ref97
ref96
ref11
ref99
ref10
Garey (ref38) 1979
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref90
ref86
ref85
ref88
ref87
Satoru (ref91) 2001; 48
ref82
ref81
ref84
ref79
ref78
ref75
Felzenszwalb (ref33) 2004
ref74
ref77
ref76
ref103
ref2
Krause (ref69) 2008; 9
ref1
ref71
ref70
ref73
ref72
Weiss (ref102)
ref67
ref64
ref63
ref66
ref65
Cook (ref23) 1998
Press (ref83) 1992
ref62
ref61
References_xml – ident: ref46
  doi: 10.21236/AD0786720
– ident: ref29
  doi: 10.1109/ICCV.2001.937685
– volume: 9
  start-page: 235
  year: 2008
  ident: ref69
  article-title: Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies
  publication-title: J. Machine Learning Research
– year: 2001
  ident: ref30
  article-title: Monte Carlo EM for Data-Association and Its Applications in Computer Vision
– volume-title: Technical Report TR2004-1963
  year: 2004
  ident: ref33
  article-title: Distance Transforms of Sampled Functions
– volume-title: Dynamic Programming
  year: 1957
  ident: ref8
– ident: ref74
  doi: 10.1016/0020-0190(90)90109-B
– ident: ref13
  doi: 10.1017/CBO9780511804441
– ident: ref26
  doi: 10.1162/089976602760128072
– ident: ref22
  doi: 10.1016/0166-218X(95)00103-X
– ident: ref55
  doi: 10.1016/S0004-3702(83)80006-X
– ident: ref19
  doi: 10.1109/ICCV.1999.791245
– ident: ref4
  doi: 10.1109/34.485529
– ident: ref77
  doi: 10.1145/362588.362594
– ident: ref103
  doi: 10.1109/TPAMI.2009.131
– ident: ref40
  doi: 10.1109/34.476006
– ident: ref14
  doi: 10.1007/s11263-006-7934-5
– ident: ref20
  doi: 10.1109/34.969114
– volume-title: Numerical Recipes in C
  year: 1992
  ident: ref83
– ident: ref96
  doi: 10.1109/34.868688
– ident: ref99
  doi: 10.1109/CVPR.2005.334
– year: 1999
  ident: ref100
  article-title: Efficient Graph-Based Energy Minimization Methods in Computer Vision
– ident: ref17
  doi: 10.1007/0-387-28831-7_5
– ident: ref49
  doi: 10.1109/CVPR.2009.5206689
– ident: ref82
  doi: 10.1038/317314a0
– ident: ref88
  doi: 10.1109/CVPR.2005.130
– ident: ref56
  doi: 10.1007/BF00133570
– ident: ref66
  doi: 10.1109/TPAMI.2007.1031
– ident: ref9
  doi: 10.1109/34.993558
– ident: ref84
  doi: 10.1109/5.18626
– ident: ref28
  doi: 10.1137/S0097539792225297
– ident: ref51
  doi: 10.1109/CVPR.1998.698598
– ident: ref10
  doi: 10.1109/ICCV.1999.791261
– ident: ref44
  doi: 10.1007/BF02612354
– ident: ref59
  doi: 10.1145/585265.585268
– ident: ref34
  doi: 10.1023/B:VISI.0000042934.15159.49
– ident: ref58
  doi: 10.1109/ICCV.2003.1238389
– ident: ref81
  doi: 10.1109/34.598226
– ident: ref86
  doi: 10.1117/12.280874
– volume-title: Algorithm Design
  year: 2005
  ident: ref60
– ident: ref97
  doi: 10.1109/TPAMI.2007.70844
– volume: 48
  start-page: 761
  issue: 4
  year: 2001
  ident: ref91
  article-title: A Combinatorial, Strongly Polynomial Algorithm for Minimizing Submodular Functions
  publication-title: J. ACM
  doi: 10.1145/502090.502096
– ident: ref93
  doi: 10.1109/CVPR.2008.4587444
– ident: ref63
  doi: 10.1109/ICCV.2005.81
– ident: ref11
  doi: 10.7551/mitpress/7132.001.0001
– volume-title: Proc. Conf. Uncertainty in Artificial Intelligence
  ident: ref102
  article-title: Map Estimation, Linear Programming and Belief Propagation with Convex Free Energies
– ident: ref50
  doi: 10.1007/BFb0055670
– ident: ref85
  doi: 10.1109/34.977562
– volume: 1
  start-page: 1
  issue: 2
  year: 1999
  ident: ref89
  article-title: Stereo without Epipolar Lines: A Maximum Flow Formulation
  publication-title: Int’l J. Computer Vision
– ident: ref27
  doi: 10.1002/net.3230150206
– start-page: 631
  volume-title: Proc. Int’l Joint Conf. Artificial Intelligence
  ident: ref5
  article-title: Depth from Edge and Intensity Based Stereo
– ident: ref52
  doi: 10.1109/TPAMI.2003.1233908
– ident: ref65
  doi: 10.1109/TPAMI.2006.193
– ident: ref35
  doi: 10.1613/jair.2187
– ident: ref45
  doi: 10.1002/9781118186435
– ident: ref48
  doi: 10.1016/0004-3702(81)90024-2
– ident: ref41
  doi: 10.1109/TPAMI.1984.4767596
– ident: ref67
  doi: 10.1109/ICCV.2005.14
– ident: ref42
  doi: 10.1111/j.2517-6161.1989.tb01764.x
– ident: ref101
  doi: 10.1109/TIT.2005.856938
– ident: ref12
  doi: 10.1016/S0166-218X(01)00341-9
– ident: ref36
  doi: 10.1109/T-C.1973.223602
– ident: ref3
  doi: 10.1109/34.57681
– ident: ref43
  doi: 10.1145/335305.335397
– ident: ref94
  doi: 10.1109/TPAMI.2003.1159951
– ident: ref18
  doi: 10.1109/CVPR.1998.698673
– volume-title: Solutions of Ill-Posed Problems
  year: 1977
  ident: ref98
– ident: ref73
  doi: 10.1109/CVPR.2005.362
– ident: ref31
  doi: 10.1007/BF01386390
– ident: ref32
  doi: 10.1109/TPAMI.2005.35
– ident: ref75
  doi: 10.1109/TPAMI.2004.1273918
– ident: ref54
  doi: 10.1145/990308.990313
– ident: ref72
  doi: 10.1109/TPAMI.2004.54
– volume-title: Combinatorial Optimization
  year: 1998
  ident: ref23
– ident: ref70
  doi: 10.1145/882262.882264
– volume-title: Combinatorial Optimization: Theory and Algorithms
  year: 2005
  ident: ref68
– ident: ref79
  doi: 10.1109/TPAMI.1985.4767639
– ident: ref15
  doi: 10.1109/ICCV.2001.937505
– ident: ref87
  doi: 10.1145/1015706.1015720
– ident: ref92
  doi: 10.1023/A:1014573219977
– ident: ref6
  doi: 10.1007/BF00054836
– volume-title: Introduction to Algorithms
  year: 1989
  ident: ref24
– volume-title: Combinatorial Optimization: Algorithms and Complexity
  year: 1982
  ident: ref80
– ident: ref78
  doi: 10.1145/218380.218442
– volume-title: Computers and Intractability
  year: 1979
  ident: ref38
– ident: ref57
  doi: 10.1109/ICCV.2003.1238463
– ident: ref1
  doi: 10.1145/1015706.1015718
– ident: ref64
  doi: 10.1109/TPAMI.2004.1262177
– ident: ref39
  doi: 10.1109/34.368194
– ident: ref2
  doi: 10.1016/S0166-218X(01)00338-9
– ident: ref95
  doi: 10.1109/CCV.1988.590008
– ident: ref90
  doi: 10.1109/ICCV.1998.710763
– ident: ref21
  doi: 10.1109/TPAMI.2003.1217603
– ident: ref7
  doi: 10.1016/S0042-6989(98)00043-1
– ident: ref37
  doi: 10.1515/9780691273457
– ident: ref71
  doi: 10.1109/TPAMI.2009.143
– ident: ref53
  doi: 10.1109/34.954599
– ident: ref61
  doi: 10.1016/0020-0190(77)90002-3
– ident: ref25
  doi: 10.1006/cviu.2000.0842
– ident: ref47
  doi: 10.7551/mitpress/1090.001.0001
– ident: ref16
  doi: 10.1109/TPAMI.2004.60
– ident: ref62
  doi: 10.1109/TPAMI.2008.217
– ident: ref76
  doi: 10.1063/1.1699114
SSID ssj0014503
Score 2.4450839
SecondaryResourceType review_article
Snippet Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems....
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 721
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Application software
Applied sciences
Artificial intelligence
Combinatorial algorithms
Computer science
Computer science; control theory; systems
Computer Simulation
Computer vision
computing methodologies
Dynamic programming
Exact sciences and technology
Graphs
Image Enhancement - methods
Image Processing, Computer-Assisted - methods
Information retrieval. Graph
Intelligence
Interactive
Layout
Object segmentation
Optimization
Optimization methods
Pattern analysis
Pattern recognition. Digital image processing. Computational geometry
Probability
Stereo vision
Theoretical computing
Vision
vision and scene understanding
Vision, Ocular - physiology
Title Dynamic Programming and Graph Algorithms in Computer Vision
URI https://ieeexplore.ieee.org/document/5518769
https://www.ncbi.nlm.nih.gov/pubmed/20660950
https://www.proquest.com/docview/852729149
https://www.proquest.com/docview/1671234237
https://www.proquest.com/docview/864785414
https://pubmed.ncbi.nlm.nih.gov/PMC3717380
Volume 33
WOSCitedRecordID wos000287370400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-3539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB61FQc40BcPtyVaJCQumNrx2rurniJoAQmqHArKzfI-TCO1ThUn_f2d2XXcBrUHbnZ2lMg7M9kZ77ffB_DB4R-joE1WnVge81oS5a3MsEvB4sFya5XxPLM_xfm5nEzUeAM-9WdhnHMefOY-06Xfy7czs6RXZcfEHiYKtQmbQhThrFa_Y8Bzr4KMFQxmOLYRHUFjmqjji_Ho14-A4kozkqohCnMsLZK1tciLqxA0smpxduoga_FY3fkvfPLBenS2_X9PsgMvu7qTjUKg7MKGa_Zge6XpwLoU34MXDwgK9-HkaxCsZ-MA47rGT1nVWPaNeK7Z6OrvbD5dXF63bNqw_sv--PPqr-D32enFl-9xJ7cQG6zqFrESKnVq6IZS87zWQicmU3VWVc4mhkQ0ucHbWsmsqDCLncy5M3lqU65FXiiXvYatZta4t4SXwsYRg0MZ7Xhe2crpQnOtOV5ZndcRxKuJL03HRU6SGFel70kSVXqfleSzEn0Wwcfe_iawcDxpuU-z3Vt1Ex3BYM2v_fiQ-klVyAgOV44uuyxuS5kPsffAHjKC9_0oph_tqVSNmy3bMi0Erv2ELYqAPWEj6Twvya1H8CZEzv3Pd5EYgViLqd6A2L_XR5rppWcBzwg_IZODxx_4EJ6Ht9-EMTqCrcV86d7BM3O7mLbzASbQRA58At0BoAwXZQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VggQcKLQ8TKEsEhIX3PqxtnfVU1QorUijHALqzfI-TCO1DooTfj8zu47bVO2Bm50dJfLOTHbG--33AXyy-MdY0CarigwPeS2I8lak2KVg8WC4MVI7ntlhMRqJ83M53oAv_VkYa60Dn9l9unR7-Waml_Sq7IDYw4pcPoCHGedJ5E9r9XsGPHM6yFjDYI5jI9FRNMaRPJiMB2enHscVpyRWQyTmWFxEa6uRk1chcGTV4vzUXtjirsrzNoDyxop0vPV_z_IcnnWVJxv4UHkBG7bZhq2VqgPrknwbnt6gKNyBw69esp6NPZDrCj9lVWPYd2K6ZoPL37P5dHFx1bJpw_ov--VOrL-En8ffJkcnYSe4EGqs6xahLGRsZWIToXhWq0JFOpV1WlXWRJpkNLnG21qKNK8wj63IuNVZbGKuiiyXNn0Fm82ssW8IMYWtI4aH1MryrDKVVbniSnG8MiqrAwhXE1_qjo2cRDEuS9eVRLJ0PivJZyX6LIDPvf0fz8Nxr-UOzXZv1U10AHtrfu3HE-ooZS4C2F05uuzyuC1FlmD3gV1kAB_7UUxA2lWpGjtbtmWcF7j6E7ooAHaPjaATvSS4HsBrHznXP99FYgDFWkz1BsT_vT7STC8cD3hKCAoRvb37gT_A45PJ2bAcno5-7MIT_y6cEEfvYHMxX9r38Ej_XUzb-Z5Lo3-q2hnE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Programming+and+Graph+Algorithms+in+Computer+Vision&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Felzenszwalb%2C+P+F&rft.au=Zabih%2C+R&rft.date=2011-04-01&rft.issn=0162-8828&rft.volume=33&rft.issue=4&rft.spage=721&rft.epage=740&rft_id=info:doi/10.1109%2FTPAMI.2010.135&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2010_135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon