Does the magic of BERT apply to medical code assignment? A quantitative study
Unsupervised pretraining is an integral part of many natural language processing systems, and transfer learning with language models has achieved remarkable results in downstream tasks. In the clinical application of medical code assignment, diagnosis and procedure codes are inferred from lengthy cl...
Saved in:
| Published in: | Computers in biology and medicine Vol. 139; p. 104998 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Ltd
01.12.2021
Elsevier Limited |
| Subjects: | |
| ISSN: | 0010-4825, 1879-0534, 1879-0534 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Unsupervised pretraining is an integral part of many natural language processing systems, and transfer learning with language models has achieved remarkable results in downstream tasks. In the clinical application of medical code assignment, diagnosis and procedure codes are inferred from lengthy clinical notes such as hospital discharge summaries. However, it is not clear if pretrained models are useful for medical code prediction without further architecture engineering. This paper conducts a comprehensive quantitative analysis of various contextualized language models' performances, pretrained in different domains, for medical code assignment from clinical notes. We propose a hierarchical fine-tuning architecture to capture interactions between distant words and adopt label-wise attention to exploit label information. Contrary to current trends, we demonstrate that a carefully trained classical CNN outperforms attention-based models on a MIMIC-III subset with frequent codes. Our empirical findings suggest directions for building robust medical code assignment models.
•A study on knowledge transfer via mixed-domain and task-adaptive language model.•A thorough comparative study to answer the research questions.•A hierarchical BERT architecture with a label attention mechanism.•Vanilla CNN model with appropriate training can improve the predictive performance. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0010-4825 1879-0534 1879-0534 |
| DOI: | 10.1016/j.compbiomed.2021.104998 |