Deep learning methods for medical image fusion: A review

The image fusion methods based on deep learning has become a research hotspot in the field of computer vision in recent years. This paper reviews these methods from five aspects: Firstly, the principle and advantages of image fusion methods based on deep learning are expounded; Secondly, the image f...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine Vol. 160; p. 106959
Main Authors: Zhou, Tao, Cheng, QianRu, Lu, HuiLing, Li, Qi, Zhang, XiangXiang, Qiu, Shi
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 01.06.2023
Elsevier Limited
Subjects:
ISSN:0010-4825, 1879-0534, 1879-0534
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The image fusion methods based on deep learning has become a research hotspot in the field of computer vision in recent years. This paper reviews these methods from five aspects: Firstly, the principle and advantages of image fusion methods based on deep learning are expounded; Secondly, the image fusion methods are summarized in two aspects: End-to-End and Non-End-to-End, according to the different tasks of deep learning in the feature processing stage, the non-end-to-end image fusion methods are divided into two categories: deep learning for decision mapping and deep learning for feature extraction. According to the different types of the networks, the end-to-end image fusion methods are divided into three categories: image fusion methods based on Convolutional Neural Network, Generative Adversarial Network, and Encoder-Decoder Network; Thirdly, the application of the image fusion methods based on deep learning in medical image field is summarized from two aspects: method and data set; Fourthly, evaluation metrics commonly used in the field of medical image fusion are sorted out from 14 aspects; Fifthly, the main challenges faced by the medical image fusion are discussed from two aspects: data sets and fusion methods. And the future development direction is prospected. This paper systematically summarizes the image fusion methods based on the deep learning, which has a positive guiding significance for the in-depth study of multi modal medical images. [Display omitted] •Summarizing various deep learning models of medical image fusion.•Discussing the applications of deep learning in medical image fusion field.•Summarizing medical image fusion methods based on deep learning and datasets used in image fusion tasks.•Analyzing the challenges and future development directions of medical image fusion.
AbstractList The image fusion methods based on deep learning has become a research hotspot in the field of computer vision in recent years. This paper reviews these methods from five aspects: Firstly, the principle and advantages of image fusion methods based on deep learning are expounded; Secondly, the image fusion methods are summarized in two aspects: End-to-End and Non-End-to-End, according to the different tasks of deep learning in the feature processing stage, the non-end-to-end image fusion methods are divided into two categories: deep learning for decision mapping and deep learning for feature extraction. According to the different types of the networks, the end-to-end image fusion methods are divided into three categories: image fusion methods based on Convolutional Neural Network, Generative Adversarial Network, and Encoder-Decoder Network; Thirdly, the application of the image fusion methods based on deep learning in medical image field is summarized from two aspects: method and data set; Fourthly, evaluation metrics commonly used in the field of medical image fusion are sorted out from 14 aspects; Fifthly, the main challenges faced by the medical image fusion are discussed from two aspects: data sets and fusion methods. And the future development direction is prospected. This paper systematically summarizes the image fusion methods based on the deep learning, which has a positive guiding significance for the in-depth study of multi modal medical images. [Display omitted] •Summarizing various deep learning models of medical image fusion.•Discussing the applications of deep learning in medical image fusion field.•Summarizing medical image fusion methods based on deep learning and datasets used in image fusion tasks.•Analyzing the challenges and future development directions of medical image fusion.
The image fusion methods based on deep learning has become a research hotspot in the field of computer vision in recent years. This paper reviews these methods from five aspects: Firstly, the principle and advantages of image fusion methods based on deep learning are expounded; Secondly, the image fusion methods are summarized in two aspects: End-to-End and Non-End-to-End, according to the different tasks of deep learning in the feature processing stage, the non-end-to-end image fusion methods are divided into two categories: deep learning for decision mapping and deep learning for feature extraction. According to the different types of the networks, the end-to-end image fusion methods are divided into three categories: image fusion methods based on Convolutional Neural Network, Generative Adversarial Network, and Encoder-Decoder Network; Thirdly, the application of the image fusion methods based on deep learning in medical image field is summarized from two aspects: method and data set; Fourthly, evaluation metrics commonly used in the field of medical image fusion are sorted out from 14 aspects; Fifthly, the main challenges faced by the medical image fusion are discussed from two aspects: data sets and fusion methods. And the future development direction is prospected. This paper systematically summarizes the image fusion methods based on the deep learning, which has a positive guiding significance for the in-depth study of multi modal medical images.The image fusion methods based on deep learning has become a research hotspot in the field of computer vision in recent years. This paper reviews these methods from five aspects: Firstly, the principle and advantages of image fusion methods based on deep learning are expounded; Secondly, the image fusion methods are summarized in two aspects: End-to-End and Non-End-to-End, according to the different tasks of deep learning in the feature processing stage, the non-end-to-end image fusion methods are divided into two categories: deep learning for decision mapping and deep learning for feature extraction. According to the different types of the networks, the end-to-end image fusion methods are divided into three categories: image fusion methods based on Convolutional Neural Network, Generative Adversarial Network, and Encoder-Decoder Network; Thirdly, the application of the image fusion methods based on deep learning in medical image field is summarized from two aspects: method and data set; Fourthly, evaluation metrics commonly used in the field of medical image fusion are sorted out from 14 aspects; Fifthly, the main challenges faced by the medical image fusion are discussed from two aspects: data sets and fusion methods. And the future development direction is prospected. This paper systematically summarizes the image fusion methods based on the deep learning, which has a positive guiding significance for the in-depth study of multi modal medical images.
AbstractThe image fusion methods based on deep learning has become a research hotspot in the field of computer vision in recent years. This paper reviews these methods from five aspects: Firstly, the principle and advantages of image fusion methods based on deep learning are expounded; Secondly, the image fusion methods are summarized in two aspects: End-to-End and Non-End-to-End, according to the different tasks of deep learning in the feature processing stage, the non-end-to-end image fusion methods are divided into two categories: deep learning for decision mapping and deep learning for feature extraction. According to the different types of the networks, the end-to-end image fusion methods are divided into three categories: image fusion methods based on Convolutional Neural Network, Generative Adversarial Network, and Encoder-Decoder Network; Thirdly, the application of the image fusion methods based on deep learning in medical image field is summarized from two aspects: method and data set; Fourthly, evaluation metrics commonly used in the field of medical image fusion are sorted out from 14 aspects; Fifthly, the main challenges faced by the medical image fusion are discussed from two aspects: data sets and fusion methods. And the future development direction is prospected. This paper systematically summarizes the image fusion methods based on the deep learning, which has a positive guiding significance for the in-depth study of multi modal medical images.
The image fusion methods based on deep learning has become a research hotspot in the field of computer vision in recent years. This paper reviews these methods from five aspects: Firstly, the principle and advantages of image fusion methods based on deep learning are expounded; Secondly, the image fusion methods are summarized in two aspects: End-to-End and Non-End-to-End, according to the different tasks of deep learning in the feature processing stage, the non-end-to-end image fusion methods are divided into two categories: deep learning for decision mapping and deep learning for feature extraction. According to the different types of the networks, the end-to-end image fusion methods are divided into three categories: image fusion methods based on Convolutional Neural Network, Generative Adversarial Network, and Encoder-Decoder Network; Thirdly, the application of the image fusion methods based on deep learning in medical image field is summarized from two aspects: method and data set; Fourthly, evaluation metrics commonly used in the field of medical image fusion are sorted out from 14 aspects; Fifthly, the main challenges faced by the medical image fusion are discussed from two aspects: data sets and fusion methods. And the future development direction is prospected. This paper systematically summarizes the image fusion methods based on the deep learning, which has a positive guiding significance for the in-depth study of multi modal medical images.
ArticleNumber 106959
Author Qiu, Shi
Lu, HuiLing
Zhang, XiangXiang
Zhou, Tao
Cheng, QianRu
Li, Qi
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0002-8145-712X
  surname: Zhou
  fullname: Zhou, Tao
  organization: School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China
– sequence: 2
  givenname: QianRu
  surname: Cheng
  fullname: Cheng, QianRu
  email: chengqianru5@163.com
  organization: School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China
– sequence: 3
  givenname: HuiLing
  surname: Lu
  fullname: Lu, HuiLing
  email: Lu_huiling@163.com
  organization: School of Science, Ningxia Medical University, Yinchuan, 750004, China
– sequence: 4
  givenname: Qi
  surname: Li
  fullname: Li, Qi
  organization: School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China
– sequence: 5
  givenname: XiangXiang
  surname: Zhang
  fullname: Zhang, XiangXiang
  organization: School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China
– sequence: 6
  givenname: Shi
  surname: Qiu
  fullname: Qiu, Shi
  organization: Key Laboratory of Spectral Imaging Technology CAS, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37141652$$D View this record in MEDLINE/PubMed
BookMark eNqVkl1rFDEUhoNU7Lb6F2TAG29mm-9NvBDbqlUoeKFeh0zmpGadSdZkRum_N8PWFQpCvUoIT17Oec45QUcxRUCoIXhNMJFn27VL464LaYR-TTFl9VlqoR-hFVEb3WLB-BFaYUxwyxUVx-iklC3GmGOGn6BjtiGcSEFXSL0F2DUD2BxDvGlGmL6lvjQ-5Xrvg7NDE0Z7A42fS0jxVXPeZPgZ4NdT9NjbocCzu_MUfX3_7svlh_b609XHy_Pr1gnJp5Z6KTfEUSqx1Z4yr5zFymriORHeE0Y56zopRd-B7hkH4AIrLnsgQLgg7BS93OfucvoxQ5nMGIqDYbAR0lwMVQRrotWGVfTFPXSb5hxrdQslNKdSLYHP76i5qy2aXa4N5lvzx0kF1B5wOZWSwR8Qgs2i32zNX_1m0W_2-uvX1_e-ujDZqYqbsg3DQwIu9gFQlVbN2RQXILo6igxuMn0K_1HFIcQNIS6z_A63UA5SiCnUYPN5WZNlSyirC0L5EvDm3wEPq-E3FTzPIw
CitedBy_id crossref_primary_10_1016_j_siny_2024_101561
crossref_primary_10_3788_CJL250542
crossref_primary_10_1002_ima_23144
crossref_primary_10_1007_s00521_024_09729_4
crossref_primary_10_1109_JSEN_2024_3393619
crossref_primary_10_1002_jcc_70203
crossref_primary_10_1016_j_bspc_2024_106976
crossref_primary_10_1038_s41598_025_93662_6
crossref_primary_10_1016_j_jrras_2024_101026
crossref_primary_10_1186_s12915_025_02148_4
crossref_primary_10_1007_s11517_024_03263_0
crossref_primary_10_1007_s40747_025_02046_w
crossref_primary_10_1109_TCSVT_2025_3549459
crossref_primary_10_1007_s11760_024_03464_y
crossref_primary_10_1016_j_foodcont_2024_110819
crossref_primary_10_1007_s11554_024_01445_5
crossref_primary_10_3390_bioengineering11121229
crossref_primary_10_3390_life15060876
crossref_primary_10_1016_j_compbiomed_2025_110501
crossref_primary_10_3788_PI_2025_R03
crossref_primary_10_1155_acis_1913589
crossref_primary_10_1016_j_mtcomm_2025_113184
crossref_primary_10_1016_j_optcom_2024_131026
crossref_primary_10_1016_j_bspc_2024_107357
crossref_primary_10_1016_j_compbiomed_2024_108958
crossref_primary_10_1109_TIM_2025_3583382
crossref_primary_10_3389_fphy_2025_1588508
crossref_primary_10_1016_j_mex_2025_103466
crossref_primary_10_1109_ACCESS_2024_3496723
crossref_primary_10_26634_jip_12_2_21786
crossref_primary_10_1007_s11517_023_02902_2
crossref_primary_10_1016_j_knosys_2025_114053
crossref_primary_10_1109_ACCESS_2023_3340735
crossref_primary_10_3390_s24248217
crossref_primary_10_3390_electronics14122369
crossref_primary_10_32604_cmc_2024_047827
crossref_primary_10_1016_j_bspc_2024_107328
crossref_primary_10_2174_0123520965311272240709053422
crossref_primary_10_1016_j_jrras_2024_101089
crossref_primary_10_32604_cmc_2023_046821
crossref_primary_10_1109_TMM_2025_3535295
crossref_primary_10_3390_diagnostics13223457
crossref_primary_10_1016_j_neucom_2025_131448
crossref_primary_10_1109_TAI_2024_3397246
crossref_primary_10_1016_j_bspc_2023_105370
crossref_primary_10_1089_cmb_2024_0872
crossref_primary_10_1016_j_compmedimag_2024_102481
crossref_primary_10_1016_j_neucom_2025_130195
crossref_primary_10_1007_s40998_024_00788_w
crossref_primary_10_1016_j_acra_2025_02_041
crossref_primary_10_1109_JSEN_2024_3432143
crossref_primary_10_32604_cmc_2024_054685
crossref_primary_10_1016_j_wneu_2025_123768
crossref_primary_10_3390_app15116224
crossref_primary_10_32604_cmc_2024_046320
crossref_primary_10_1007_s11760_025_04398_9
crossref_primary_10_1007_s40477_025_01081_0
crossref_primary_10_48084_etasr_11834
crossref_primary_10_1016_j_compbiomed_2023_107514
crossref_primary_10_1016_j_knosys_2025_114313
crossref_primary_10_1007_s11517_024_03242_5
crossref_primary_10_1016_j_mtcomm_2023_107531
crossref_primary_10_1016_j_bspc_2024_107407
crossref_primary_10_54691_zs78vp41
crossref_primary_10_1007_s00371_024_03495_z
crossref_primary_10_1007_s10489_024_06085_7
crossref_primary_10_1038_s41598_024_75977_y
crossref_primary_10_1109_TCSVT_2024_3516705
Cites_doi 10.1109/TIP.2021.3056868
10.1049/iet-ipr.2018.5609
10.1109/TMI.2017.2764326
10.1049/iet-ipr.2017.1067
10.1049/el:20020212
10.1109/TIP.2018.2887342
10.1109/TMM.2019.2895292
10.1109/JSTARS.2021.3097178
10.1109/ACCESS.2017.2685178
10.1109/JSEN.2021.3106063
10.1109/TIP.2021.3069339
10.1016/j.compbiomed.2018.06.008
10.1016/j.inffus.2018.09.004
10.1109/TIP.2020.3031173
10.1016/j.ijleo.2020.165409
10.1016/B978-0-12-372529-5.00017-2
10.1016/j.infrared.2021.103947
10.1016/j.patrec.2020.11.014
10.1109/ACCESS.2020.3037770
10.1016/j.enconman.2021.114714
10.1016/j.inffus.2020.11.009
10.1109/TIP.2021.3058764
10.1016/j.sigpro.2020.107681
10.1016/j.patrec.2006.09.005
10.1088/0957-0233/8/4/002
10.1016/j.inffus.2020.10.015
10.1109/TIP.2013.2244222
10.1016/j.inffus.2019.07.005
10.1016/j.image.2021.116554
10.1016/j.aqpro.2015.02.019
10.1016/j.bspc.2021.102488
10.1016/j.inffus.2013.12.002
10.1016/j.neucom.2015.07.160
10.1109/JSEN.2019.2913281
10.1016/j.infrared.2021.103894
10.1016/j.inffus.2013.11.005
10.1016/j.ijleo.2020.165120
10.1016/j.neucom.2021.08.044
10.1016/j.inffus.2016.12.001
10.1109/TIP.2020.2976190
10.1016/j.infrared.2019.103039
10.1109/ACCESS.2020.2982016
10.1016/j.inffus.2019.07.011
10.1016/j.image.2021.116295
10.1109/TIP.2020.2977573
10.1049/el:20081754
10.1109/JSEN.2019.2921803
10.1016/j.ijleo.2021.168084
10.1109/TIM.2020.3022438
10.1016/j.infrared.2021.103707
10.1016/j.eswa.2021.114574
10.1016/j.ins.2020.04.035
10.1016/j.infrared.2021.103839
10.1016/j.asoc.2020.106885
10.1148/radiol.2422051113
10.1109/LSENS.2020.3041585
10.1016/j.imavis.2019.02.011
10.2214/AJR.09.3193
10.1109/TIM.2019.2933341
10.1109/ACCESS.2021.3075953
10.1109/JBHI.2021.3083752
10.1016/j.inffus.2020.08.022
10.1016/j.inffus.2021.02.023
10.1016/j.compeleceng.2011.07.012
10.1016/j.inffus.2005.09.001
10.1109/JSTARS.2021.3065121
10.1109/TIP.2005.859378
10.1109/TIP.2003.819861
10.1109/TIP.2020.3033158
10.1016/j.inffus.2021.02.019
10.1016/j.comcom.2020.04.010
10.1016/j.infrared.2019.103144
10.1109/JSTSP.2020.3013418
10.1109/LSP.2019.2895749
10.1109/TMI.2019.2923601
10.1109/26.477498
10.1016/j.image.2020.115864
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier Ltd.
Copyright Elsevier Limited Jun 2023
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier Ltd.
– notice: Copyright Elsevier Limited Jun 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2023.106959
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


MEDLINE
Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 106959
ExternalDocumentID 37141652
10_1016_j_compbiomed_2023_106959
S0010482523004249
1_s2_0_S0010482523004249
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
9DU
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c564t-2f6671c2260a9f23f8ca08a91f415ff13243bb665dbe9d34ee450846de1e14513
IEDL.DBID K7-
ISICitedReferencesCount 82
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000992823400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4825
1879-0534
IngestDate Sun Sep 28 10:54:04 EDT 2025
Sat Nov 29 14:24:00 EST 2025
Wed Feb 19 02:23:41 EST 2025
Tue Nov 18 21:58:30 EST 2025
Sat Nov 29 07:32:37 EST 2025
Fri Feb 23 02:35:17 EST 2024
Tue Feb 25 20:12:01 EST 2025
Tue Oct 14 19:33:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Medical image fusion
Encoder-decoder network
Convolutional neural network
Generative adversarial network
Language English
License Copyright © 2023. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-2f6671c2260a9f23f8ca08a91f415ff13243bb665dbe9d34ee450846de1e14513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8145-712X
OpenAccessLink http://ir.opt.ac.cn/handle/181661/96483
PMID 37141652
PQID 2815942681
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2810919873
proquest_journals_2815942681
pubmed_primary_37141652
crossref_primary_10_1016_j_compbiomed_2023_106959
crossref_citationtrail_10_1016_j_compbiomed_2023_106959
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_106959
elsevier_clinicalkeyesjournals_1_s2_0_S0010482523004249
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_106959
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Eskicioglu, Fisher (bib99) 1995; 43
Fu, Wu, Durrani (bib68) 2021; 72
Xiao, Xu, Bi, Li (bib22) 2020; 30
Xu, Wang, Zhang, Zhang, Yu (bib44) 2020; 8
Zang, Zhou, Wang, Nie, Guo (bib33) 2021; 70
Wang, Yang, Papanastasiou, Tsaftaris, Newby, Gray, Macnaught, MacGillivray (bib51) 2021; 67
Haghighat, Aghagolzadeh, Seyedarabi (bib92) 2011; 37
Li, Wu (bib55) 2018; 28
Liu, Yu, Wei, Pan, Tang (bib69) 2020; 14
Li, Guo, Lu, Zhang, Zhang (bib10) 2020; 29
Long, Jia, Zhong, Jiang, Jia (bib36) 2020; 69
Rao (bib98) 1988; 8
Liu, Miao, Su (bib83) 2021; 14
Blodgett, Meltzer, Townsend (bib86) 2007; 242
Ma, Yu, Liang, Chang, Jiang (bib47) 2019; 48
Ahmadreza, Susanne, Ali, Fathi, Souza, Rayz (bib6) 2018; 99
Zhou, Ye, Lu (bib42) 2022; 2022
He, Zhang, Ren (bib16) 2016
Huang, Li, Ma, Fan, Zhang, Yang (bib54) 2020; 8
Xydeas, Petrovic (bib97) 2000; 56
Ren, Pan, Cao, Liao (bib82) 2021; 117
Li, Huo, Liu, Li (bib67) 2020; 529
Fang, Zhao, Yang, Qin, Zhang (bib61) 2021; 463
Ma, Le, Tian, Jiang (bib58) 2021; 7
Mustafa, Yang, Mustafa, Zareapoor (bib41) 2020; 224
Li, Wu, Durrani (bib25) 2019; 102
Ma, Liang, Yu, Chen, Guo, Wu, Jiang (bib65) 2020; 54
Li, Wu, Kittler (bib78) 2021; 73
Palkar, Mishra (bib3) 2019; 13
Zhou, Ren, Wan, Cheng, Chen (bib24) 2021; 248
Wang, Xu, Liu, Zhao, a Zhang, Zhang (bib48) 2021; 96
Fu, Li, Du (bib27) 2021; 66
Li, Peng, Fu, Wang, Huang, Chao (bib31) 2021; 141
Yuan, Sun, Tang (bib72) 2020; 11
Chai, Luo, Zhang (bib5) 2017; 5
Ren, Zhang, Wan, Miao, Gu, Chen (bib32) 2021; 115
Wang, Bovik, Sheikh, Simoncelli (bib94) 2003; 13
Singh, Anand (bib28) 2020; 69
Jian, Yang, Liu, Jeon, Gao, Chisholm (bib57) 2021; 70
Wang, Liu, Jin (bib60) 2019; 86
Deng, Zhang, Xu, Gu, Duan (bib63) 2021; 30
Jagalingam, Hegde (bib101) 2015; 4
Wu, Chen (bib29) 2020; 157
Zhang, Liu, Sun, Yan, Zhao, Zhang (bib20) 2020; 54
Huang, Liu, Maaten, Weinberger (bib17) 2017
Zhou, Li, Wang (bib12) 2014; 20
Yu, Xiao, Durrani (bib73) 2021; 72
Yi, Li, Yuan (bib75) 2021; 119
Zuo, Zhang, Yang (bib79) 2021; 25
Gai, Shen, Chen, Su (bib21) 2020; 176
Roberts, Van, Ahmed (bib95) 2008; 2
Xu, Shi, Qin, Lu, Wang, Ma (bib66) 2020; 104
Kligerman, Digumarthy (bib85) 2009; 193
Cui, Feng, Xu, Li, Chen (bib96) 2014; 341
Yin, Ou, Zhu (bib49) 2021; 247
Rajalingam, Priya (bib100) 2018; 2
Mustafa, Zareapoor, Yang (bib43) 2020; 85
Hossny, Nahavandi, Creighton (bib93) 2008; 44
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib46) 2014; 1406
Lei, Peng, Zhang, Ke, Li (bib35) 2021; 30
Li, Zhang, Jiang, Li (bib37) 2021; 141
Luo, Wang, Zhang, Xiang, Wu (bib74) 2021; 70
James, Dasarathy (bib87) 2014; 19
Liu, Chen, Ward, Wang (bib9) 2019; 26
Zhang, Le, Shao, Xu, Ma (bib70) 2021; 66
Mitianoudis, Stathaki (bib8) 2007; 8
Ronneberger, Fischer, Brox (bib18) 2015
Xiao, Guo, Veelaert, Philips (bib38) 2022; 101
Qu, Zhang, Yan (bib91) 2002; 38
An, Wang (bib77) 2020; 219
Ma, Xu, Jiang, Mei, Zhang (bib52) 2020; 29
Wang, Li, Duan, Su, Zhang, Guan (bib7) 2021; 171
Sheikh, Bovik (bib89) 2006; 15
Ancuti, Ancuti, Vleeschouwer, Bovik (bib4) 2017; 26
Li, Lu, Li, Wu, Yang (bib53) 2021; 21
Hou, Zhou, Nie (bib45) 2020; 6
Du, Li, Lu, Xiao (bib14) 2015; 215
Kumar, Fulham, Feng, Kim (bib76) 2020; 39
Raza, Liu, Liu, Li, Fang (bib80) 2021; 14
Zhang, Jiang, Hu, Chen (bib26) 2021; vol. 5
Simonyan, Zisserman (bib15) 2014
Song, Xu, Liu, Liu, Liu, Metaxas (bib40) 2021; 30
Wang, Shen (bib90) 2008; 19
Liu, Miao, Ji, Li (bib34) 2021; 119
Li, Cen, Liu, Chen, Yu (bib64) 2021; 30
Wang, Zhou, Zang, Nie, Guo (bib62) 2021; 21
Ma, Tang, Xu, Zhang, Xiao (bib39) 2021; 70
Zhou, Chang, Lu, Ye, Liu (bib88) 2022; 2022
Guo, Nie, Cao, Zhou, Mei, He (bib23) 2019; 21
Li, Kang, Hu (bib13) 2013; 22
Zhu, Park, Isola, Efros (bib50) 2017; vol. 1109
Huang, Jing (bib11) 2006; 28
Chartsias, Joyce, Giuffrida (bib59) 2018; 37
Hou, Zhang, Zhou (bib81) 2021; 13
Wang, Zhang, Liu, Mi, Zhang (bib30) 2021; 9
Li, Huo, Li, Wang, Sui, Liu (bib71) 2021; 70
Liang, Hu, Zhang, Sun, Yin (bib2) 2019; 19
Liu, Chen, Peng, Wang (bib19) 2017; 36
Raza, Huo, Fang (bib56) 2020; 4
Zhou, Lu, Yang, Huo (bib84) 2021; 98
Wang, Li, Zhang (bib1) 2018; 12
Raza (10.1016/j.compbiomed.2023.106959_bib80) 2021; 14
Rajalingam (10.1016/j.compbiomed.2023.106959_bib100) 2018; 2
Zang (10.1016/j.compbiomed.2023.106959_bib33) 2021; 70
Wang (10.1016/j.compbiomed.2023.106959_bib62) 2021; 21
Wang (10.1016/j.compbiomed.2023.106959_bib51) 2021; 67
Roberts (10.1016/j.compbiomed.2023.106959_bib95) 2008; 2
Eskicioglu (10.1016/j.compbiomed.2023.106959_bib99) 1995; 43
Zhang (10.1016/j.compbiomed.2023.106959_bib26) 2021; vol. 5
Lei (10.1016/j.compbiomed.2023.106959_bib35) 2021; 30
Zhou (10.1016/j.compbiomed.2023.106959_bib12) 2014; 20
Ma (10.1016/j.compbiomed.2023.106959_bib52) 2020; 29
Liu (10.1016/j.compbiomed.2023.106959_bib83) 2021; 14
An (10.1016/j.compbiomed.2023.106959_bib77) 2020; 219
Zhou (10.1016/j.compbiomed.2023.106959_bib42) 2022; 2022
Zhou (10.1016/j.compbiomed.2023.106959_bib84) 2021; 98
Song (10.1016/j.compbiomed.2023.106959_bib40) 2021; 30
Huang (10.1016/j.compbiomed.2023.106959_bib11) 2006; 28
Fang (10.1016/j.compbiomed.2023.106959_bib61) 2021; 463
Li (10.1016/j.compbiomed.2023.106959_bib64) 2021; 30
Zhou (10.1016/j.compbiomed.2023.106959_bib24) 2021; 248
Goodfellow (10.1016/j.compbiomed.2023.106959_bib46) 2014; 1406
Luo (10.1016/j.compbiomed.2023.106959_bib74) 2021; 70
Zhou (10.1016/j.compbiomed.2023.106959_bib88) 2022; 2022
Yin (10.1016/j.compbiomed.2023.106959_bib49) 2021; 247
Ma (10.1016/j.compbiomed.2023.106959_bib47) 2019; 48
Simonyan (10.1016/j.compbiomed.2023.106959_bib15) 2014
Yu (10.1016/j.compbiomed.2023.106959_bib73) 2021; 72
Xu (10.1016/j.compbiomed.2023.106959_bib44) 2020; 8
Ahmadreza (10.1016/j.compbiomed.2023.106959_bib6) 2018; 99
Liu (10.1016/j.compbiomed.2023.106959_bib9) 2019; 26
Li (10.1016/j.compbiomed.2023.106959_bib78) 2021; 73
Ancuti (10.1016/j.compbiomed.2023.106959_bib4) 2017; 26
Jagalingam (10.1016/j.compbiomed.2023.106959_bib101) 2015; 4
Ren (10.1016/j.compbiomed.2023.106959_bib32) 2021; 115
Liang (10.1016/j.compbiomed.2023.106959_bib2) 2019; 19
Ma (10.1016/j.compbiomed.2023.106959_bib39) 2021; 70
Li (10.1016/j.compbiomed.2023.106959_bib67) 2020; 529
Fu (10.1016/j.compbiomed.2023.106959_bib27) 2021; 66
Raza (10.1016/j.compbiomed.2023.106959_bib56) 2020; 4
Cui (10.1016/j.compbiomed.2023.106959_bib96) 2014; 341
Singh (10.1016/j.compbiomed.2023.106959_bib28) 2020; 69
Wang (10.1016/j.compbiomed.2023.106959_bib1) 2018; 12
Jian (10.1016/j.compbiomed.2023.106959_bib57) 2021; 70
Xiao (10.1016/j.compbiomed.2023.106959_bib38) 2022; 101
Li (10.1016/j.compbiomed.2023.106959_bib53) 2021; 21
Ma (10.1016/j.compbiomed.2023.106959_bib65) 2020; 54
He (10.1016/j.compbiomed.2023.106959_bib16) 2016
Chai (10.1016/j.compbiomed.2023.106959_bib5) 2017; 5
Zuo (10.1016/j.compbiomed.2023.106959_bib79) 2021; 25
Blodgett (10.1016/j.compbiomed.2023.106959_bib86) 2007; 242
Rao (10.1016/j.compbiomed.2023.106959_bib98) 1988; 8
Liu (10.1016/j.compbiomed.2023.106959_bib19) 2017; 36
Gai (10.1016/j.compbiomed.2023.106959_bib21) 2020; 176
Wang (10.1016/j.compbiomed.2023.106959_bib30) 2021; 9
Sheikh (10.1016/j.compbiomed.2023.106959_bib89) 2006; 15
Li (10.1016/j.compbiomed.2023.106959_bib55) 2018; 28
Xiao (10.1016/j.compbiomed.2023.106959_bib22) 2020; 30
Mustafa (10.1016/j.compbiomed.2023.106959_bib43) 2020; 85
Fu (10.1016/j.compbiomed.2023.106959_bib68) 2021; 72
Zhu (10.1016/j.compbiomed.2023.106959_bib50) 2017; vol. 1109
Guo (10.1016/j.compbiomed.2023.106959_bib23) 2019; 21
Hossny (10.1016/j.compbiomed.2023.106959_bib93) 2008; 44
James (10.1016/j.compbiomed.2023.106959_bib87) 2014; 19
Du (10.1016/j.compbiomed.2023.106959_bib14) 2015; 215
Zhang (10.1016/j.compbiomed.2023.106959_bib70) 2021; 66
Liu (10.1016/j.compbiomed.2023.106959_bib69) 2020; 14
Ren (10.1016/j.compbiomed.2023.106959_bib82) 2021; 117
Zhang (10.1016/j.compbiomed.2023.106959_bib20) 2020; 54
Long (10.1016/j.compbiomed.2023.106959_bib36) 2020; 69
Hou (10.1016/j.compbiomed.2023.106959_bib45) 2020; 6
Hou (10.1016/j.compbiomed.2023.106959_bib81) 2021; 13
Kligerman (10.1016/j.compbiomed.2023.106959_bib85) 2009; 193
Ronneberger (10.1016/j.compbiomed.2023.106959_bib18) 2015
Wang (10.1016/j.compbiomed.2023.106959_bib48) 2021; 96
Xu (10.1016/j.compbiomed.2023.106959_bib66) 2020; 104
Li (10.1016/j.compbiomed.2023.106959_bib10) 2020; 29
Yi (10.1016/j.compbiomed.2023.106959_bib75) 2021; 119
Wang (10.1016/j.compbiomed.2023.106959_bib90) 2008; 19
Wu (10.1016/j.compbiomed.2023.106959_bib29) 2020; 157
Li (10.1016/j.compbiomed.2023.106959_bib31) 2021; 141
Wang (10.1016/j.compbiomed.2023.106959_bib60) 2019; 86
Kumar (10.1016/j.compbiomed.2023.106959_bib76) 2020; 39
Liu (10.1016/j.compbiomed.2023.106959_bib34) 2021; 119
Yuan (10.1016/j.compbiomed.2023.106959_bib72) 2020; 11
Xydeas (10.1016/j.compbiomed.2023.106959_bib97) 2000; 56
Huang (10.1016/j.compbiomed.2023.106959_bib17) 2017
Huang (10.1016/j.compbiomed.2023.106959_bib54) 2020; 8
Li (10.1016/j.compbiomed.2023.106959_bib71) 2021; 70
Li (10.1016/j.compbiomed.2023.106959_bib37) 2021; 141
Qu (10.1016/j.compbiomed.2023.106959_bib91) 2002; 38
Haghighat (10.1016/j.compbiomed.2023.106959_bib92) 2011; 37
Mitianoudis (10.1016/j.compbiomed.2023.106959_bib8) 2007; 8
Palkar (10.1016/j.compbiomed.2023.106959_bib3) 2019; 13
Mustafa (10.1016/j.compbiomed.2023.106959_bib41) 2020; 224
Wang (10.1016/j.compbiomed.2023.106959_bib7) 2021; 171
Deng (10.1016/j.compbiomed.2023.106959_bib63) 2021; 30
Li (10.1016/j.compbiomed.2023.106959_bib25) 2019; 102
Ma (10.1016/j.compbiomed.2023.106959_bib58) 2021; 7
Li (10.1016/j.compbiomed.2023.106959_bib13) 2013; 22
Chartsias (10.1016/j.compbiomed.2023.106959_bib59) 2018; 37
Wang (10.1016/j.compbiomed.2023.106959_bib94) 2003; 13
References_xml – volume: 8
  start-page: 131
  year: 2007
  end-page: 142
  ident: bib8
  article-title: Pixel-based and region-based image fusion schemes using ICA bases
  publication-title: Inf. Fusion
– volume: 14
  start-page: 3426
  year: 2021
  end-page: 3437
  ident: bib80
  article-title: IR-MSDNet: infrared and visible image fusion based on infrared features and multiscale dense network
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens.
– volume: 44
  start-page: 1066
  year: 2008
  end-page: 1067
  ident: bib93
  article-title: Comments on information measure for performance of image fusion
  publication-title: Electron. Lett.
– volume: 48
  start-page: 11
  year: 2019
  end-page: 26
  ident: bib47
  article-title: A generative adversarial network for infrared and visible image fusion
  publication-title: Inf. Fusion
– volume: 30
  start-page: 55
  year: 2021
  end-page: 67
  ident: bib35
  article-title: Hierarchical Paired Channel Fusion network for street scene change detection
  publication-title: IEEE Trans. Image Process.
– volume: 19
  start-page: 469
  year: 2008
  end-page: 492
  ident: bib90
  article-title: Performance evaluation of image fusion techniques
  publication-title: Imag. Fusion
– volume: 242
  start-page: 360
  year: 2007
  end-page: 385
  ident: bib86
  article-title: PET/CT: form and function
  publication-title: Radiology
– volume: 529
  start-page: 28
  year: 2020
  end-page: 41
  ident: bib67
  article-title: Infrared and visible image fusion using dual discriminators generative adversarial networks with Wasserstein distance
  publication-title: Inf. Sci.
– volume: 13
  start-page: 1
  year: 2021
  end-page: 10
  ident: bib81
  article-title: Reconstructing a high dynamic range image with a deeply unsupervised fusion model
  publication-title: IEEE Photon. J.
– volume: 20
  start-page: 60
  year: 2014
  end-page: 72
  ident: bib12
  article-title: Multi-scale weighted gradient-based fusion for multi-focus images
  publication-title: Inf. Fusion
– volume: 9
  start-page: 67634
  year: 2021
  end-page: 67647
  ident: bib30
  article-title: Multimodal medical image fusion based on gabor representation combination of multi-CNN and fuzzy neural network
  publication-title: IEEE Access
– volume: 2022
  start-page: 22
  year: 2022
  ident: bib42
  article-title: Dense convolutional network and its application in medical image analysis
  publication-title: BioMed Res. Int.
– volume: 157
  start-page: 444
  year: 2020
  end-page: 450
  ident: bib29
  article-title: Smart city oriented remote sensing image fusion methods based on convolution sampling and spatial transformation
  publication-title: Comput. Commun.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 13
  ident: bib72
  article-title: FLGC-fusion GAN: an enhanced fusion GAN model by importing fully learnable group convolution
  publication-title: Math. Probl Eng.
– volume: 38
  start-page: 313
  year: 2002
  end-page: 315
  ident: bib91
  article-title: Information measure for performance of image fusion
  publication-title: Electron. Lett.
– volume: 14
  start-page: 7373
  year: 2021
  end-page: 7385
  ident: bib83
  article-title: UMAG-net: a new unsupervised multiattention- guided network for hyperspectral and multispectral image fusion
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens.
– volume: 43
  start-page: 2959
  year: 1995
  end-page: 2965
  ident: bib99
  article-title: Image quality measures and their performance
  publication-title: IEEE Trans. Commun.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib16
  article-title: Deep residual learning for image recognition
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 176
  year: 2020
  ident: bib21
  article-title: Multi-focus image fusion method based on two stages of convolutional neural network
  publication-title: Signal Process.
– volume: 141
  year: 2021
  ident: bib31
  article-title: A multiscale double-branch residual attention network for anatomical–functional medical image fusion
  publication-title: Comput. Biol. Med.
– volume: 341
  start-page: 199
  year: 2014
  end-page: 209
  ident: bib96
  article-title: Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition
  publication-title: Optics
– volume: 70
  start-page: 1
  year: 2021
  end-page: 12
  ident: bib71
  article-title: Multigrained attention network for infrared and visible image fusion
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 104
  year: 2020
  ident: bib66
  article-title: LBP-BEGAN: a generative adversarial network architecture for infrared and visible image fusion
  publication-title: Infrared Phys. Technol.
– volume: 66
  year: 2021
  ident: bib27
  article-title: A multiscale residual pyramid attention network for medical image fusion
  publication-title: Biomed. Signal Process Control
– volume: 85
  year: 2020
  ident: bib43
  article-title: MLDNet: multi-level dense network for multi-focus image fusion
  publication-title: Signal Process. Image Commun.
– volume: 67
  start-page: 147
  year: 2021
  end-page: 160
  ident: bib51
  article-title: DiCyc: GAN-based deformation invariant cross-domain information fusion for medical image synthesis
  publication-title: Inf. Fusion
– volume: 54
  start-page: 99
  year: 2020
  end-page: 118
  ident: bib20
  article-title: IFCNN: a general image fusion framework based on convolutional neural network
  publication-title: Inf. Fusion
– volume: 70
  start-page: 1
  year: 2021
  end-page: 16
  ident: bib74
  article-title: LatRAIVF: an infrared and visible image fusion method based on latent regression and adversarial training
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 7
  start-page: 309
  year: 2021
  end-page: 320
  ident: bib58
  article-title: SMFuse: multi-focus image fusion via self-supervised mask-optimization
  publication-title: IEEE Trans. Comput.Imag.
– volume: 115
  year: 2021
  ident: bib32
  article-title: An infrared and visible image fusion method based on improved DenseNet and mRMR-ZCA
  publication-title: Infrared Phys. Technol.
– volume: 66
  start-page: 40
  year: 2021
  end-page: 53
  ident: bib70
  article-title: MFF-GAN: an unsupervised generative adversarial network with adaptive and gradient joint constraints for multi-focus image fusion
  publication-title: Inf. Fusion
– volume: 28
  start-page: 2614
  year: 2018
  end-page: 2623
  ident: bib55
  article-title: DenseFuse: a fusion approach to infrared and visible images
  publication-title: IEEE Trans. Image Process.
– volume: 8
  start-page: 355
  year: 1988
  ident: bib98
  article-title: In-fibre Bragg grating sensors
  publication-title: Meas. Sci. Technol.
– volume: 119
  year: 2021
  ident: bib75
  article-title: DFPGAN: dual fusion path generative adversarial network for infrared and visible image fusion
  publication-title: Infrared Phys. Technol.
– volume: 86
  start-page: 1
  year: 2019
  end-page: 16
  ident: bib60
  article-title: A generative image fusion approach based on supervised deep convolution network driven by weighted gradient flow
  publication-title: Image Vis Comput.
– volume: 463
  start-page: 198
  year: 2021
  end-page: 211
  ident: bib61
  article-title: A light-weight, efficient, and general cross-modal image fusion network
  publication-title: Neurocomputing
– volume: 36
  start-page: 191
  year: 2017
  end-page: 207
  ident: bib19
  article-title: Multi-focus image fusion with a deep convolutional neural network
  publication-title: Inf. Fusion
– volume: 69
  start-page: 128
  year: 2020
  end-page: 141
  ident: bib36
  article-title: RXDNFuse: a aggregated residual dense network for infrared and visible image fusion
  publication-title: Inf. Fusion
– volume: 4
  start-page: 133
  year: 2015
  end-page: 142
  ident: bib101
  article-title: A review of quality metrics for fused image
  publication-title: Aquatic Proc.
– volume: 8
  start-page: 206445
  year: 2020
  end-page: 206458
  ident: bib44
  article-title: Infrared and visible image fusion using a deep unsupervised framework with perceptual loss
  publication-title: IEEE Access
– volume: 25
  start-page: 3438
  year: 2021
  end-page: 3449
  ident: bib79
  article-title: DMC-fusion: deep multi-cascade fusion with classifier-based feature synthesis for medical multi-modal images
  publication-title: IEEE J. Biomedi. Health Inf.
– volume: 28
  start-page: 493
  year: 2006
  end-page: 500
  ident: bib11
  article-title: Evaluation of focus measures in multi-focus image fusion
  publication-title: Pattern Recogn. Lett.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 17
  ident: bib33
  article-title: UFA-FUSE: a novel deep supervised and hybrid model for multifocus image fusion
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 117
  year: 2021
  ident: bib82
  article-title: Infrared and visible image fusion based on variational auto-encoder and infrared feature compensation
  publication-title: Infrared Phys. Technol.
– volume: 2
  start-page: 52
  year: 2018
  end-page: 60
  ident: bib100
  article-title: Hybrid multimodality medical image fusion technique for feature enhancement in medical diagnosis
  publication-title: Int. J. Eng. Sci. Invent.
– volume: 39
  start-page: 204
  year: 2020
  end-page: 217
  ident: bib76
  article-title: Co-learning feature fusion map from PET-CT images of lung cancer
  publication-title: IEEE Trans. Med. Imag.
– volume: 4
  start-page: 1
  year: 2020
  end-page: 4
  ident: bib56
  article-title: PFAF-net: pyramid feature network for multimodal fusion
  publication-title: IEEE Sens. Lett.
– volume: 29
  start-page: 4980
  year: 2020
  end-page: 4995
  ident: bib52
  article-title: DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion
  publication-title: IEEE Trans. Image Process.
– volume: 13
  start-page: 2271
  year: 2019
  end-page: 2280
  ident: bib3
  article-title: Fusion of multi-modal lumbar spine images using Kekre's hybrid wavelet transform
  publication-title: IET Image Process.
– volume: 30
  start-page: 163
  year: 2020
  end-page: 175
  ident: bib22
  article-title: Global-feature encoding U-net (GEU-Net) for multi-focus image fusion
  publication-title: IEEE Trans. Image Process.
– volume: 37
  start-page: 803
  year: 2018
  end-page: 814
  ident: bib59
  article-title: Multimodal MR synthesis via modality-invariant latent representation
  publication-title: IEEE Trans. Med. Imag.
– volume: 2
  start-page: 1
  year: 2008
  end-page: 28
  ident: bib95
  article-title: Assessment of image fusion procedures using entropy image quality and multispectral classification
  publication-title: J. Appl. Remote Sens.
– volume: 56
  start-page: 181
  year: 2000
  end-page: 193
  ident: bib97
  article-title: Objective image fusion performance measure
  publication-title: Military Tech. Cour.
– volume: 14
  start-page: 1176
  year: 2020
  end-page: 1188
  ident: bib69
  article-title: Multimodal MR image synthesis using gradient prior and adversarial learning
  publication-title: IEEE J.Select.Topic Sig.Process.
– volume: 193
  start-page: 1203
  year: 2009
  end-page: 1211
  ident: bib85
  article-title: Staging of non–small cell lung cancer using integrated PET/CT
  publication-title: Ajr Am. J.Roentgenol.
– volume: 13
  start-page: 600
  year: 2003
  end-page: 612
  ident: bib94
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 141
  start-page: 45
  year: 2021
  end-page: 53
  ident: bib37
  article-title: Multi-focus image fusion algorithm based on supervised learning for fully convolutional neural network
  publication-title: Pattern Recogn. Lett.
– volume: 102
  year: 2019
  ident: bib25
  article-title: Infrared and visible image fusion with ResNet and zero-phase component analysis
  publication-title: Infrared Phys. Technol.
– volume: 15
  start-page: 430
  year: 2006
  end-page: 444
  ident: bib89
  article-title: Image information and visual quality
  publication-title: IEEE Trans. Image Process.
– volume: 8
  start-page: 55145
  year: 2020
  end-page: 55157
  ident: bib54
  article-title: MGMDcGAN: medical image fusion using multi-generator multi-discriminator conditional generative adversarial network
  publication-title: IEEE Access
– volume: 5
  start-page: 6724
  year: 2017
  end-page: 6734
  ident: bib5
  article-title: Image fusion using quaternion wavelet transform and multiple features
  publication-title: IEEE Access
– volume: 12
  start-page: 1403
  year: 2018
  end-page: 1412
  ident: bib1
  article-title: Adaptive decomposition method for multi-modal medical image fusion
  publication-title: IET Image Process.
– volume: 30
  start-page: 4070
  year: 2021
  end-page: 4083
  ident: bib64
  article-title: Different input resolutions and arbitrary output resolution: a meta learning-based deep framework for infrared and visible image fusion
  publication-title: IEEE Trans. Image Process.
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib18
  article-title: U-Net: convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 1406
  start-page: 2661
  year: 2014
  ident: bib46
  publication-title: Generat. Advers.Netw.
– volume: 30
  start-page: 2923
  year: 2021
  end-page: 2934
  ident: bib40
  article-title: Multi-stage feature fusion network for video super-resolution
  publication-title: IEEE Trans. Image Process.
– volume: 73
  start-page: 72
  year: 2021
  end-page: 86
  ident: bib78
  article-title: RFN-Nest: an end-to-end residual fusion network for infrared and visible images
  publication-title: Inf. Fusion
– volume: 21
  start-page: 7458
  year: 2021
  end-page: 7467
  ident: bib53
  article-title: Coupled GAN with relativistic discriminators for infrared and visible images fusion
  publication-title: IEEE Sensor. J.
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: bib17
  article-title: Densely connected convolutional networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 96
  year: 2021
  ident: bib48
  article-title: MFIF-GAN: a new generative adversarial network for multi-focus image fusion
  publication-title: Signal Process. Image Commun.
– volume: 30
  start-page: 3098
  year: 2021
  end-page: 3112
  ident: bib63
  article-title: Deep coupled feedback network for joint exposure fusion and image super-resolution
  publication-title: IEEE Trans. Image Process.
– volume: 37
  start-page: 744
  year: 2011
  end-page: 756
  ident: bib92
  article-title: A nonreference image fusion metric based on mutual information of image features
  publication-title: Comput. Electr. Eng.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 15
  ident: bib57
  article-title: SEDRFuse: a symmetric encoder–decoder with residual block network for infrared and visible image fusion
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 54
  start-page: 85
  year: 2020
  end-page: 98
  ident: bib65
  article-title: Infrared and visible image fusion via detail preserving adversarial learning
  publication-title: Inf. Fusion
– volume: 69
  start-page: 3855
  year: 2020
  end-page: 3865
  ident: bib28
  article-title: Multimodal medical image fusion using hybrid layer decomposition with CNN-based feature mapping and structural clustering
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 6
  start-page: 640
  year: 2020
  end-page: 651
  ident: bib45
  article-title: VIF-net: an unsupervised framework for infrared and visible image fusion
  publication-title: IEEE Trans. Comput.Imag.
– volume: vol. 5
  start-page: 2164
  year: 2021
  end-page: 2170
  ident: bib26
  article-title: Medical image fusion based a densely connected convolutional networks
  publication-title: IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)
– volume: 2022
  start-page: 17
  year: 2022
  ident: bib88
  article-title: Pooling in deep learning: from “invariable” to “variable”
  publication-title: BioMed Res. Int.
– volume: 248
  year: 2021
  ident: bib24
  article-title: An infrared and visible image fusion method based on VGG-19 network
  publication-title: Optik
– volume: 29
  start-page: 4816
  year: 2020
  end-page: 4831
  ident: bib10
  article-title: DRPL: deep regression pair learning for multi-focus image fusion
  publication-title: IEEE Trans. Image Process.
– volume: 171
  year: 2021
  ident: bib7
  article-title: Medical image fusion based on convolutional neural networks and non-subsampled contourlet transform
  publication-title: Expert Syst. Appl.
– volume: 19
  start-page: 7107
  year: 2019
  end-page: 7119
  ident: bib2
  article-title: MCFNet: multi-layer concatenation fusion network for medical images fusion
  publication-title: IEEE Sensor. J.
– volume: 224
  year: 2020
  ident: bib41
  article-title: Infrared and visible image fusion based on dilated residual attention network
  publication-title: Optik
– start-page: 1409
  year: 2014
  end-page: 1556
  ident: bib15
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Comput. Sci.
– volume: 119
  year: 2021
  ident: bib34
  article-title: A Multi-scale MobileNet based fusion method for infrared and visible image
  publication-title: Infrared Phys. Technol.
– volume: 72
  start-page: 110
  year: 2021
  end-page: 125
  ident: bib68
  article-title: Image fusion based on generative adversarial network consistent with perception
  publication-title: Inf. Fusion
– volume: 219
  year: 2020
  ident: bib77
  article-title: Infrared and visible image fusion with supervised convolutional neural network
  publication-title: Optik
– volume: vol. 1109
  start-page: 2242
  year: 2017
  end-page: 2251
  ident: bib50
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
  publication-title: IEEE International Conference on Computer Vision (ICCV)
– volume: 21
  start-page: 1982
  year: 2019
  end-page: 1996
  ident: bib23
  article-title: FuseGAN: learning to fuse multi-focus image via conditional generative adversarial network
  publication-title: IEEE Trans. Multimed.
– volume: 98
  year: 2021
  ident: bib84
  article-title: The ensemble deep learning model for novel COVID-19 on CT images
  publication-title: Appl. Soft Comput.
– volume: 26
  start-page: 65
  year: 2017
  end-page: 78
  ident: bib4
  article-title: Single-scale fusion: an effective approach to merging images
  publication-title: IEEE Trans. Image Process.
– volume: 72
  start-page: 110
  year: 2021
  end-page: 125
  ident: bib73
  article-title: Image fusion based on generative adversarial network consistent with perception
  publication-title: Inf. Fusion
– volume: 215
  start-page: 3
  year: 2015
  end-page: 20
  ident: bib14
  article-title: An overview of multi-modal medical image fusion
  publication-title: Neurocomputing
– volume: 247
  year: 2021
  ident: bib49
  article-title: A novel asexual-reproduction evolutionary neural network for wind power prediction based on generative adversarial networks
  publication-title: Energy Convers. Manag.
– volume: 22
  start-page: 2864
  year: 2013
  end-page: 2875
  ident: bib13
  article-title: Image fusion with guided filtering
  publication-title: IEEE Trans. Image Process.
– volume: 19
  start-page: 4
  year: 2014
  end-page: 19
  ident: bib87
  article-title: Medical image fusion: a survey of the state of the art
  publication-title: Inf. Fusion
– volume: 101
  year: 2022
  ident: bib38
  article-title: Degradation model-based deep network for multi-focus image fusion
  publication-title: Signal Process. Image Commun.
– volume: 21
  start-page: 23069
  year: 2021
  end-page: 23084
  ident: bib62
  article-title: A deep and supervised atrous convolutional model for multi-focus image fusion
  publication-title: IEEE Sensor. J.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib39
  article-title: STDFusionNet: an infrared and visible image fusion network based on salient target detection
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 99
  start-page: 142
  year: 2018
  end-page: 153
  ident: bib6
  article-title: Curvelet Transform-based volume fusion for correcting signal loss artifacts in Time-of-Flight Magnetic Resonance Angiography data
  publication-title: Comput. Biol. Med.
– volume: 26
  start-page: 485
  year: 2019
  end-page: 489
  ident: bib9
  article-title: Medical image fusion via convolutional sparsity based morphological component analysis
  publication-title: IEEE Signal Process. Lett.
– volume: 341
  start-page: 199
  year: 2014
  ident: 10.1016/j.compbiomed.2023.106959_bib96
  article-title: Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition
  publication-title: Optics
– volume: vol. 1109
  start-page: 2242
  year: 2017
  ident: 10.1016/j.compbiomed.2023.106959_bib50
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
– volume: 30
  start-page: 2923
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib40
  article-title: Multi-stage feature fusion network for video super-resolution
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3056868
– volume: 141
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib31
  article-title: A multiscale double-branch residual attention network for anatomical–functional medical image fusion
  publication-title: Comput. Biol. Med.
– volume: 13
  start-page: 2271
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106959_bib3
  article-title: Fusion of multi-modal lumbar spine images using Kekre's hybrid wavelet transform
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2018.5609
– volume: 37
  start-page: 803
  year: 2018
  ident: 10.1016/j.compbiomed.2023.106959_bib59
  article-title: Multimodal MR synthesis via modality-invariant latent representation
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2017.2764326
– volume: 12
  start-page: 1403
  year: 2018
  ident: 10.1016/j.compbiomed.2023.106959_bib1
  article-title: Adaptive decomposition method for multi-modal medical image fusion
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2017.1067
– volume: 38
  start-page: 313
  year: 2002
  ident: 10.1016/j.compbiomed.2023.106959_bib91
  article-title: Information measure for performance of image fusion
  publication-title: Electron. Lett.
  doi: 10.1049/el:20020212
– start-page: 4700
  year: 2017
  ident: 10.1016/j.compbiomed.2023.106959_bib17
  article-title: Densely connected convolutional networks
– volume: 28
  start-page: 2614
  year: 2018
  ident: 10.1016/j.compbiomed.2023.106959_bib55
  article-title: DenseFuse: a fusion approach to infrared and visible images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2887342
– volume: 21
  start-page: 1982
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106959_bib23
  article-title: FuseGAN: learning to fuse multi-focus image via conditional generative adversarial network
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2019.2895292
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib74
  article-title: LatRAIVF: an infrared and visible image fusion method based on latent regression and adversarial training
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 14
  start-page: 7373
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib83
  article-title: UMAG-net: a new unsupervised multiattention- guided network for hyperspectral and multispectral image fusion
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens.
  doi: 10.1109/JSTARS.2021.3097178
– volume: 5
  start-page: 6724
  year: 2017
  ident: 10.1016/j.compbiomed.2023.106959_bib5
  article-title: Image fusion using quaternion wavelet transform and multiple features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2685178
– volume: 21
  start-page: 23069
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib62
  article-title: A deep and supervised atrous convolutional model for multi-focus image fusion
  publication-title: IEEE Sensor. J.
  doi: 10.1109/JSEN.2021.3106063
– volume: 30
  start-page: 4070
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib64
  article-title: Different input resolutions and arbitrary output resolution: a meta learning-based deep framework for infrared and visible image fusion
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3069339
– volume: 99
  start-page: 142
  year: 2018
  ident: 10.1016/j.compbiomed.2023.106959_bib6
  article-title: Curvelet Transform-based volume fusion for correcting signal loss artifacts in Time-of-Flight Magnetic Resonance Angiography data
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.06.008
– volume: 48
  start-page: 11
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106959_bib47
  article-title: A generative adversarial network for infrared and visible image fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.09.004
– volume: 30
  start-page: 55
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib35
  article-title: Hierarchical Paired Channel Fusion network for street scene change detection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3031173
– start-page: 1409
  year: 2014
  ident: 10.1016/j.compbiomed.2023.106959_bib15
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Comput. Sci.
– volume: vol. 5
  start-page: 2164
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib26
  article-title: Medical image fusion based a densely connected convolutional networks
– volume: 224
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106959_bib41
  article-title: Infrared and visible image fusion based on dilated residual attention network
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.165409
– volume: 19
  start-page: 469
  year: 2008
  ident: 10.1016/j.compbiomed.2023.106959_bib90
  article-title: Performance evaluation of image fusion techniques
  publication-title: Imag. Fusion
  doi: 10.1016/B978-0-12-372529-5.00017-2
– volume: 119
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib75
  article-title: DFPGAN: dual fusion path generative adversarial network for infrared and visible image fusion
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2021.103947
– volume: 141
  start-page: 45
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib37
  article-title: Multi-focus image fusion algorithm based on supervised learning for fully convolutional neural network
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2020.11.014
– volume: 8
  start-page: 206445
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106959_bib44
  article-title: Infrared and visible image fusion using a deep unsupervised framework with perceptual loss
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3037770
– volume: 247
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib49
  article-title: A novel asexual-reproduction evolutionary neural network for wind power prediction based on generative adversarial networks
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.114714
– volume: 69
  start-page: 128
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106959_bib36
  article-title: RXDNFuse: a aggregated residual dense network for infrared and visible image fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.11.009
– volume: 30
  start-page: 3098
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib63
  article-title: Deep coupled feedback network for joint exposure fusion and image super-resolution
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3058764
– volume: 176
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106959_bib21
  article-title: Multi-focus image fusion method based on two stages of convolutional neural network
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107681
– volume: 2022
  start-page: 17
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106959_bib88
  article-title: Pooling in deep learning: from “invariable” to “variable”
  publication-title: BioMed Res. Int.
– volume: 28
  start-page: 493
  year: 2006
  ident: 10.1016/j.compbiomed.2023.106959_bib11
  article-title: Evaluation of focus measures in multi-focus image fusion
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2006.09.005
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib71
  article-title: Multigrained attention network for infrared and visible image fusion
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 2
  start-page: 1
  year: 2008
  ident: 10.1016/j.compbiomed.2023.106959_bib95
  article-title: Assessment of image fusion procedures using entropy image quality and multispectral classification
  publication-title: J. Appl. Remote Sens.
– volume: 8
  start-page: 355
  year: 1988
  ident: 10.1016/j.compbiomed.2023.106959_bib98
  article-title: In-fibre Bragg grating sensors
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/8/4/002
– volume: 67
  start-page: 147
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib51
  article-title: DiCyc: GAN-based deformation invariant cross-domain information fusion for medical image synthesis
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.10.015
– volume: 22
  start-page: 2864
  year: 2013
  ident: 10.1016/j.compbiomed.2023.106959_bib13
  article-title: Image fusion with guided filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2244222
– volume: 54
  start-page: 85
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106959_bib65
  article-title: Infrared and visible image fusion via detail preserving adversarial learning
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.07.005
– volume: 2
  start-page: 52
  year: 2018
  ident: 10.1016/j.compbiomed.2023.106959_bib100
  article-title: Hybrid multimodality medical image fusion technique for feature enhancement in medical diagnosis
  publication-title: Int. J. Eng. Sci. Invent.
– volume: 101
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106959_bib38
  article-title: Degradation model-based deep network for multi-focus image fusion
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2021.116554
– volume: 4
  start-page: 133
  year: 2015
  ident: 10.1016/j.compbiomed.2023.106959_bib101
  article-title: A review of quality metrics for fused image
  publication-title: Aquatic Proc.
  doi: 10.1016/j.aqpro.2015.02.019
– volume: 66
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib27
  article-title: A multiscale residual pyramid attention network for medical image fusion
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2021.102488
– volume: 19
  start-page: 4
  year: 2014
  ident: 10.1016/j.compbiomed.2023.106959_bib87
  article-title: Medical image fusion: a survey of the state of the art
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2013.12.002
– volume: 215
  start-page: 3
  year: 2015
  ident: 10.1016/j.compbiomed.2023.106959_bib14
  article-title: An overview of multi-modal medical image fusion
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.160
– volume: 19
  start-page: 7107
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106959_bib2
  article-title: MCFNet: multi-layer concatenation fusion network for medical images fusion
  publication-title: IEEE Sensor. J.
  doi: 10.1109/JSEN.2019.2913281
– volume: 119
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib34
  article-title: A Multi-scale MobileNet based fusion method for infrared and visible image
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2021.103894
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib33
  article-title: UFA-FUSE: a novel deep supervised and hybrid model for multifocus image fusion
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib39
  article-title: STDFusionNet: an infrared and visible image fusion network based on salient target detection
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 20
  start-page: 60
  year: 2014
  ident: 10.1016/j.compbiomed.2023.106959_bib12
  article-title: Multi-scale weighted gradient-based fusion for multi-focus images
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2013.11.005
– volume: 219
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106959_bib77
  article-title: Infrared and visible image fusion with supervised convolutional neural network
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.165120
– volume: 6
  start-page: 640
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106959_bib45
  article-title: VIF-net: an unsupervised framework for infrared and visible image fusion
  publication-title: IEEE Trans. Comput.Imag.
– volume: 463
  start-page: 198
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib61
  article-title: A light-weight, efficient, and general cross-modal image fusion network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.08.044
– volume: 13
  start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib81
  article-title: Reconstructing a high dynamic range image with a deeply unsupervised fusion model
  publication-title: IEEE Photon. J.
– volume: 36
  start-page: 191
  year: 2017
  ident: 10.1016/j.compbiomed.2023.106959_bib19
  article-title: Multi-focus image fusion with a deep convolutional neural network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.12.001
– volume: 29
  start-page: 4816
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106959_bib10
  article-title: DRPL: deep regression pair learning for multi-focus image fusion
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2976190
– volume: 102
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106959_bib25
  article-title: Infrared and visible image fusion with ResNet and zero-phase component analysis
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2019.103039
– volume: 2022
  start-page: 22
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106959_bib42
  article-title: Dense convolutional network and its application in medical image analysis
  publication-title: BioMed Res. Int.
– volume: 8
  start-page: 55145
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106959_bib54
  article-title: MGMDcGAN: medical image fusion using multi-generator multi-discriminator conditional generative adversarial network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982016
– volume: 54
  start-page: 99
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106959_bib20
  article-title: IFCNN: a general image fusion framework based on convolutional neural network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.07.011
– volume: 96
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib48
  article-title: MFIF-GAN: a new generative adversarial network for multi-focus image fusion
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2021.116295
– volume: 29
  start-page: 4980
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106959_bib52
  article-title: DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2977573
– volume: 56
  start-page: 181
  year: 2000
  ident: 10.1016/j.compbiomed.2023.106959_bib97
  article-title: Objective image fusion performance measure
  publication-title: Military Tech. Cour.
– volume: 44
  start-page: 1066
  year: 2008
  ident: 10.1016/j.compbiomed.2023.106959_bib93
  article-title: Comments on information measure for performance of image fusion
  publication-title: Electron. Lett.
  doi: 10.1049/el:20081754
– volume: 21
  start-page: 7458
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib53
  article-title: Coupled GAN with relativistic discriminators for infrared and visible images fusion
  publication-title: IEEE Sensor. J.
  doi: 10.1109/JSEN.2019.2921803
– volume: 248
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib24
  article-title: An infrared and visible image fusion method based on VGG-19 network
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.168084
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib57
  article-title: SEDRFuse: a symmetric encoder–decoder with residual block network for infrared and visible image fusion
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.3022438
– start-page: 770
  year: 2016
  ident: 10.1016/j.compbiomed.2023.106959_bib16
  article-title: Deep residual learning for image recognition
– volume: 115
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib32
  article-title: An infrared and visible image fusion method based on improved DenseNet and mRMR-ZCA
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2021.103707
– volume: 171
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib7
  article-title: Medical image fusion based on convolutional neural networks and non-subsampled contourlet transform
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114574
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106959_bib72
  article-title: FLGC-fusion GAN: an enhanced fusion GAN model by importing fully learnable group convolution
  publication-title: Math. Probl Eng.
– volume: 529
  start-page: 28
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106959_bib67
  article-title: Infrared and visible image fusion using dual discriminators generative adversarial networks with Wasserstein distance
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.04.035
– volume: 117
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib82
  article-title: Infrared and visible image fusion based on variational auto-encoder and infrared feature compensation
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2021.103839
– volume: 98
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib84
  article-title: The ensemble deep learning model for novel COVID-19 on CT images
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106885
– volume: 242
  start-page: 360
  year: 2007
  ident: 10.1016/j.compbiomed.2023.106959_bib86
  article-title: PET/CT: form and function
  publication-title: Radiology
  doi: 10.1148/radiol.2422051113
– volume: 4
  start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106959_bib56
  article-title: PFAF-net: pyramid feature network for multimodal fusion
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2020.3041585
– volume: 86
  start-page: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106959_bib60
  article-title: A generative image fusion approach based on supervised deep convolution network driven by weighted gradient flow
  publication-title: Image Vis Comput.
  doi: 10.1016/j.imavis.2019.02.011
– volume: 193
  start-page: 1203
  year: 2009
  ident: 10.1016/j.compbiomed.2023.106959_bib85
  article-title: Staging of non–small cell lung cancer using integrated PET/CT
  publication-title: Ajr Am. J.Roentgenol.
  doi: 10.2214/AJR.09.3193
– volume: 69
  start-page: 3855
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106959_bib28
  article-title: Multimodal medical image fusion using hybrid layer decomposition with CNN-based feature mapping and structural clustering
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2933341
– volume: 9
  start-page: 67634
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib30
  article-title: Multimodal medical image fusion based on gabor representation combination of multi-CNN and fuzzy neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3075953
– start-page: 234
  year: 2015
  ident: 10.1016/j.compbiomed.2023.106959_bib18
  article-title: U-Net: convolutional networks for biomedical image segmentation
– volume: 25
  start-page: 3438
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib79
  article-title: DMC-fusion: deep multi-cascade fusion with classifier-based feature synthesis for medical multi-modal images
  publication-title: IEEE J. Biomedi. Health Inf.
  doi: 10.1109/JBHI.2021.3083752
– volume: 66
  start-page: 40
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib70
  article-title: MFF-GAN: an unsupervised generative adversarial network with adaptive and gradient joint constraints for multi-focus image fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.08.022
– volume: 73
  start-page: 72
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib78
  article-title: RFN-Nest: an end-to-end residual fusion network for infrared and visible images
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.02.023
– volume: 1406
  start-page: 2661
  year: 2014
  ident: 10.1016/j.compbiomed.2023.106959_bib46
  publication-title: Generat. Advers.Netw.
– volume: 37
  start-page: 744
  year: 2011
  ident: 10.1016/j.compbiomed.2023.106959_bib92
  article-title: A nonreference image fusion metric based on mutual information of image features
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2011.07.012
– volume: 8
  start-page: 131
  year: 2007
  ident: 10.1016/j.compbiomed.2023.106959_bib8
  article-title: Pixel-based and region-based image fusion schemes using ICA bases
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2005.09.001
– volume: 14
  start-page: 3426
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib80
  article-title: IR-MSDNet: infrared and visible image fusion based on infrared features and multiscale dense network
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens.
  doi: 10.1109/JSTARS.2021.3065121
– volume: 15
  start-page: 430
  year: 2006
  ident: 10.1016/j.compbiomed.2023.106959_bib89
  article-title: Image information and visual quality
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.859378
– volume: 13
  start-page: 600
  year: 2003
  ident: 10.1016/j.compbiomed.2023.106959_bib94
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 30
  start-page: 163
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106959_bib22
  article-title: Global-feature encoding U-net (GEU-Net) for multi-focus image fusion
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3033158
– volume: 72
  start-page: 110
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib73
  article-title: Image fusion based on generative adversarial network consistent with perception
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.02.019
– volume: 157
  start-page: 444
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106959_bib29
  article-title: Smart city oriented remote sensing image fusion methods based on convolution sampling and spatial transformation
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.04.010
– volume: 7
  start-page: 309
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib58
  article-title: SMFuse: multi-focus image fusion via self-supervised mask-optimization
  publication-title: IEEE Trans. Comput.Imag.
– volume: 104
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106959_bib66
  article-title: LBP-BEGAN: a generative adversarial network architecture for infrared and visible image fusion
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2019.103144
– volume: 26
  start-page: 65
  year: 2017
  ident: 10.1016/j.compbiomed.2023.106959_bib4
  article-title: Single-scale fusion: an effective approach to merging images
  publication-title: IEEE Trans. Image Process.
– volume: 14
  start-page: 1176
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106959_bib69
  article-title: Multimodal MR image synthesis using gradient prior and adversarial learning
  publication-title: IEEE J.Select.Topic Sig.Process.
  doi: 10.1109/JSTSP.2020.3013418
– volume: 26
  start-page: 485
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106959_bib9
  article-title: Medical image fusion via convolutional sparsity based morphological component analysis
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2019.2895749
– volume: 39
  start-page: 204
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106959_bib76
  article-title: Co-learning feature fusion map from PET-CT images of lung cancer
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2019.2923601
– volume: 43
  start-page: 2959
  year: 1995
  ident: 10.1016/j.compbiomed.2023.106959_bib99
  article-title: Image quality measures and their performance
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/26.477498
– volume: 72
  start-page: 110
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106959_bib68
  article-title: Image fusion based on generative adversarial network consistent with perception
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.02.019
– volume: 85
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106959_bib43
  article-title: MLDNet: multi-level dense network for multi-focus image fusion
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2020.115864
SSID ssj0004030
Score 2.6187894
SecondaryResourceType review_article
Snippet The image fusion methods based on deep learning has become a research hotspot in the field of computer vision in recent years. This paper reviews these methods...
AbstractThe image fusion methods based on deep learning has become a research hotspot in the field of computer vision in recent years. This paper reviews these...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106959
SubjectTerms Algorithms
Artificial neural networks
Coders
Computer vision
Convolutional neural network
Datasets
Deep Learning
Encoder-decoder network
Encoders-Decoders
Feature extraction
Generative adversarial network
Generative adversarial networks
Human error
Image Processing, Computer-Assisted - methods
Internal Medicine
Machine learning
Medical image fusion
Medical imaging
Neural networks
Neural Networks, Computer
Other
Teaching methods
Tomography
Wavelet transforms
Title Deep learning methods for medical image fusion: A review
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523004249
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523004249
https://dx.doi.org/10.1016/j.compbiomed.2023.106959
https://www.ncbi.nlm.nih.gov/pubmed/37141652
https://www.proquest.com/docview/2815942681
https://www.proquest.com/docview/2810919873
Volume 160
WOSCitedRecordID wos000992823400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: P5Z
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M7P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: K7-
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7RV
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M2O
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiEuvB8LZWUkroHYSfyAAyrQCgl1WZWHVlwsx7FRq3Z3aXb5_YxjJ3spaCUuc0gyeXk8M_Y8PoAXnJuqLliTMSFMVjah5W1Fm0wJz9H8e2Od78AmxGQiZzM1TRtubUqr7HVip6ibhQ175K-YRMOL5kTSt8tfWUCNCtHVBKGxA3uUMRrk_JPINnWReRFLUFDXlLgUSpk8Mb8rpGzHEveXAUIcD3MVOpZebZ7-5n52Zujo9v9-wB24lRxQchAl5i5cc_N7cOM4hdjvg_zg3JIkMImfJCJMtwR9W3IRgzrk9AKVEPHrsNH2mhyQWP7yAL4dHX59_zFL8AqZrXi5ypjnXFCL_ldulGeFl9bk0ijq0ah7j8vUsqhrzqumdqopSudK9OZK3jjqAr5v8RB254u5ewwkr2xDqRE-97bEFVvtvEHlYFlwD3OpRiD6v6pt6j0eIDDOdZ9kdqY346HDeOg4HiOgA-cy9t_Ygkf1A6f7-lLUiBqNxBa84ipe16ap3WqqW6Zz_aXrbIRCxYoufIycbwbO5L1Er2TL5-73UqOHR21EZgTPh9M4_0NQx8zdYt1dgy6fkqIYwaMomcOPCt0YKa_Yk3_f_CncDG8SE-D2YXd1uXbP4Lr9vTptL8ewI06-BzoTHZVj2Ht3OJmejLvJhvSYfQ5UTJFOqx9_AK-vLhg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fT9RAEJ4gGPUF_IF6gLom-ljpbtvdroYQAhIIcDERk3tbt9tdApG7k95J-Kf8G53ttr0XNPfCg69tZ7fpzM58252ZD-Ad5zorElZGTAgdpaVveZvRMpLCcQz_ThvrarIJ0e_ng4H8sgC_21oYn1bZ-sTaUZcj4_-Rb7IcAy-Gk5xuj39GnjXKn662FBrBLI7szTVu2aqtwz3U73vG9j-f7h5EDatAZDKeTiLmOBfUIOyItXQscbnRca4ldRjLnMPdWZoUBedZWVhZJqm1KYKYlJeWWk9rm-C492AJ_bjwKWRiIGZ1mHESSl7Qt6W49Woyh0I-mU8RDyX1HzxlOV7m0ndIvT0c_g3u1mFvf-V_-2CPYbkB2GQnrIgnsGCHT-HBSZNC8AzyPWvHpCHLOCOBQbsiiN3JZTi0IueX6GSJm_ofiR_JDgnlPavw7U7e-zksDkdD-xJInJmSUi1c7EyKO9LCOo3OzzAPf-Nc9kC0WlSm6a3uKT5-qDaJ7kLN9K-8_lXQfw9oJzkO_UXmkJGtoai2fhY9vsIgOIesuE3WVo3rqhRVFVOx-lp3bkIjZkl9PI6SnzrJBp0F1DXnvButlapuqpmJ9uBtdxv9mz-00kM7mtbPIKSVuUh68CKshO5D-W6TlGds7d-Dv4GHB6cnx-r4sH-0Do_8W4Vkvw1YnFxN7Su4b35Nzqur1_VyJvD9rpfDH_73gn4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgiouvB8LBYwEx9DYSewYhFDFsqIqrFYCpIqL6zg2atXuLs0uiL_Gr2McO9lLQXvpgWuSSaJkHt_YM_MBPONcF1XG6oQJoZO89iNvC1onUjiO4d9pY11LNiHG4_LgQE424HfXC-PLKjuf2Drqemb8GvkOKzHwYjgp6Y6LZRGT4ejN_HviGaT8TmtHpxFUZN_--onpW_N6b4j_-jljo3ef375PIsNAYgqeLxLmOBfUIARJtXQsc6XRaakldRjXnMNMLc-qivOirqyss9zaHAFNzmtLrae4zfC-l-CywBzTJ36T4uuqJzPNQvsL-rkc07BYRRRqy3y5eGivf-Hpy_Ewl35a6vmh8W_Qtw2Bo-v_88e7Adci8Ca7wVJuwoad3oKtj7G04DaUQ2vnJJJofCOBWbshiOnJadjMIken6HyJW_oFxpdkl4S2nzvw5ULe-y5sTmdTex9IWpiaUi1c6kyOmWplnUanaJiHxWkpByC6P6pMnLnuqT9OVFdcd6xWuqC8LqigCwOgveQ8zB1ZQ0Z2SqO6vlqMBAqD4xqy4jxZ20SX1iiqGqZS9amd6IQKzbJ22xwlX_WSEbUFNLbmc7c7jVX9o1bqOoCn_Wn0e34zS0_tbNleg1BXliIbwL1gFf2H8lMoKS_Yg3_f_AlsoRWoD3vj_Ydw1b9UqAHchs3F2dI-givmx-KoOXvcWjaBw4u2hj_N8Ytx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+methods+for+medical+image+fusion%3A+A+review&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Zhou%2C+Tao&rft.au=Cheng%2C+QianRu&rft.au=Lu%2C+HuiLing&rft.au=Li%2C+Qi&rft.date=2023-06-01&rft.issn=1879-0534&rft.eissn=1879-0534&rft.volume=160&rft.spage=106959&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.106959&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif