Deep learning methods for medical image fusion: A review
The image fusion methods based on deep learning has become a research hotspot in the field of computer vision in recent years. This paper reviews these methods from five aspects: Firstly, the principle and advantages of image fusion methods based on deep learning are expounded; Secondly, the image f...
Saved in:
| Published in: | Computers in biology and medicine Vol. 160; p. 106959 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Ltd
01.06.2023
Elsevier Limited |
| Subjects: | |
| ISSN: | 0010-4825, 1879-0534, 1879-0534 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The image fusion methods based on deep learning has become a research hotspot in the field of computer vision in recent years. This paper reviews these methods from five aspects: Firstly, the principle and advantages of image fusion methods based on deep learning are expounded; Secondly, the image fusion methods are summarized in two aspects: End-to-End and Non-End-to-End, according to the different tasks of deep learning in the feature processing stage, the non-end-to-end image fusion methods are divided into two categories: deep learning for decision mapping and deep learning for feature extraction. According to the different types of the networks, the end-to-end image fusion methods are divided into three categories: image fusion methods based on Convolutional Neural Network, Generative Adversarial Network, and Encoder-Decoder Network; Thirdly, the application of the image fusion methods based on deep learning in medical image field is summarized from two aspects: method and data set; Fourthly, evaluation metrics commonly used in the field of medical image fusion are sorted out from 14 aspects; Fifthly, the main challenges faced by the medical image fusion are discussed from two aspects: data sets and fusion methods. And the future development direction is prospected. This paper systematically summarizes the image fusion methods based on the deep learning, which has a positive guiding significance for the in-depth study of multi modal medical images.
[Display omitted]
•Summarizing various deep learning models of medical image fusion.•Discussing the applications of deep learning in medical image fusion field.•Summarizing medical image fusion methods based on deep learning and datasets used in image fusion tasks.•Analyzing the challenges and future development directions of medical image fusion. |
|---|---|
| AbstractList | The image fusion methods based on deep learning has become a research hotspot in the field of computer vision in recent years. This paper reviews these methods from five aspects: Firstly, the principle and advantages of image fusion methods based on deep learning are expounded; Secondly, the image fusion methods are summarized in two aspects: End-to-End and Non-End-to-End, according to the different tasks of deep learning in the feature processing stage, the non-end-to-end image fusion methods are divided into two categories: deep learning for decision mapping and deep learning for feature extraction. According to the different types of the networks, the end-to-end image fusion methods are divided into three categories: image fusion methods based on Convolutional Neural Network, Generative Adversarial Network, and Encoder-Decoder Network; Thirdly, the application of the image fusion methods based on deep learning in medical image field is summarized from two aspects: method and data set; Fourthly, evaluation metrics commonly used in the field of medical image fusion are sorted out from 14 aspects; Fifthly, the main challenges faced by the medical image fusion are discussed from two aspects: data sets and fusion methods. And the future development direction is prospected. This paper systematically summarizes the image fusion methods based on the deep learning, which has a positive guiding significance for the in-depth study of multi modal medical images.
[Display omitted]
•Summarizing various deep learning models of medical image fusion.•Discussing the applications of deep learning in medical image fusion field.•Summarizing medical image fusion methods based on deep learning and datasets used in image fusion tasks.•Analyzing the challenges and future development directions of medical image fusion. The image fusion methods based on deep learning has become a research hotspot in the field of computer vision in recent years. This paper reviews these methods from five aspects: Firstly, the principle and advantages of image fusion methods based on deep learning are expounded; Secondly, the image fusion methods are summarized in two aspects: End-to-End and Non-End-to-End, according to the different tasks of deep learning in the feature processing stage, the non-end-to-end image fusion methods are divided into two categories: deep learning for decision mapping and deep learning for feature extraction. According to the different types of the networks, the end-to-end image fusion methods are divided into three categories: image fusion methods based on Convolutional Neural Network, Generative Adversarial Network, and Encoder-Decoder Network; Thirdly, the application of the image fusion methods based on deep learning in medical image field is summarized from two aspects: method and data set; Fourthly, evaluation metrics commonly used in the field of medical image fusion are sorted out from 14 aspects; Fifthly, the main challenges faced by the medical image fusion are discussed from two aspects: data sets and fusion methods. And the future development direction is prospected. This paper systematically summarizes the image fusion methods based on the deep learning, which has a positive guiding significance for the in-depth study of multi modal medical images.The image fusion methods based on deep learning has become a research hotspot in the field of computer vision in recent years. This paper reviews these methods from five aspects: Firstly, the principle and advantages of image fusion methods based on deep learning are expounded; Secondly, the image fusion methods are summarized in two aspects: End-to-End and Non-End-to-End, according to the different tasks of deep learning in the feature processing stage, the non-end-to-end image fusion methods are divided into two categories: deep learning for decision mapping and deep learning for feature extraction. According to the different types of the networks, the end-to-end image fusion methods are divided into three categories: image fusion methods based on Convolutional Neural Network, Generative Adversarial Network, and Encoder-Decoder Network; Thirdly, the application of the image fusion methods based on deep learning in medical image field is summarized from two aspects: method and data set; Fourthly, evaluation metrics commonly used in the field of medical image fusion are sorted out from 14 aspects; Fifthly, the main challenges faced by the medical image fusion are discussed from two aspects: data sets and fusion methods. And the future development direction is prospected. This paper systematically summarizes the image fusion methods based on the deep learning, which has a positive guiding significance for the in-depth study of multi modal medical images. AbstractThe image fusion methods based on deep learning has become a research hotspot in the field of computer vision in recent years. This paper reviews these methods from five aspects: Firstly, the principle and advantages of image fusion methods based on deep learning are expounded; Secondly, the image fusion methods are summarized in two aspects: End-to-End and Non-End-to-End, according to the different tasks of deep learning in the feature processing stage, the non-end-to-end image fusion methods are divided into two categories: deep learning for decision mapping and deep learning for feature extraction. According to the different types of the networks, the end-to-end image fusion methods are divided into three categories: image fusion methods based on Convolutional Neural Network, Generative Adversarial Network, and Encoder-Decoder Network; Thirdly, the application of the image fusion methods based on deep learning in medical image field is summarized from two aspects: method and data set; Fourthly, evaluation metrics commonly used in the field of medical image fusion are sorted out from 14 aspects; Fifthly, the main challenges faced by the medical image fusion are discussed from two aspects: data sets and fusion methods. And the future development direction is prospected. This paper systematically summarizes the image fusion methods based on the deep learning, which has a positive guiding significance for the in-depth study of multi modal medical images. The image fusion methods based on deep learning has become a research hotspot in the field of computer vision in recent years. This paper reviews these methods from five aspects: Firstly, the principle and advantages of image fusion methods based on deep learning are expounded; Secondly, the image fusion methods are summarized in two aspects: End-to-End and Non-End-to-End, according to the different tasks of deep learning in the feature processing stage, the non-end-to-end image fusion methods are divided into two categories: deep learning for decision mapping and deep learning for feature extraction. According to the different types of the networks, the end-to-end image fusion methods are divided into three categories: image fusion methods based on Convolutional Neural Network, Generative Adversarial Network, and Encoder-Decoder Network; Thirdly, the application of the image fusion methods based on deep learning in medical image field is summarized from two aspects: method and data set; Fourthly, evaluation metrics commonly used in the field of medical image fusion are sorted out from 14 aspects; Fifthly, the main challenges faced by the medical image fusion are discussed from two aspects: data sets and fusion methods. And the future development direction is prospected. This paper systematically summarizes the image fusion methods based on the deep learning, which has a positive guiding significance for the in-depth study of multi modal medical images. |
| ArticleNumber | 106959 |
| Author | Qiu, Shi Lu, HuiLing Zhang, XiangXiang Zhou, Tao Cheng, QianRu Li, Qi |
| Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0002-8145-712X surname: Zhou fullname: Zhou, Tao organization: School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China – sequence: 2 givenname: QianRu surname: Cheng fullname: Cheng, QianRu email: chengqianru5@163.com organization: School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China – sequence: 3 givenname: HuiLing surname: Lu fullname: Lu, HuiLing email: Lu_huiling@163.com organization: School of Science, Ningxia Medical University, Yinchuan, 750004, China – sequence: 4 givenname: Qi surname: Li fullname: Li, Qi organization: School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China – sequence: 5 givenname: XiangXiang surname: Zhang fullname: Zhang, XiangXiang organization: School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China – sequence: 6 givenname: Shi surname: Qiu fullname: Qiu, Shi organization: Key Laboratory of Spectral Imaging Technology CAS, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37141652$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkl1rFDEUhoNU7Lb6F2TAG29mm-9NvBDbqlUoeKFeh0zmpGadSdZkRum_N8PWFQpCvUoIT17Oec45QUcxRUCoIXhNMJFn27VL464LaYR-TTFl9VlqoR-hFVEb3WLB-BFaYUxwyxUVx-iklC3GmGOGn6BjtiGcSEFXSL0F2DUD2BxDvGlGmL6lvjQ-5Xrvg7NDE0Z7A42fS0jxVXPeZPgZ4NdT9NjbocCzu_MUfX3_7svlh_b609XHy_Pr1gnJp5Z6KTfEUSqx1Z4yr5zFymriORHeE0Y56zopRd-B7hkH4AIrLnsgQLgg7BS93OfucvoxQ5nMGIqDYbAR0lwMVQRrotWGVfTFPXSb5hxrdQslNKdSLYHP76i5qy2aXa4N5lvzx0kF1B5wOZWSwR8Qgs2i32zNX_1m0W_2-uvX1_e-ujDZqYqbsg3DQwIu9gFQlVbN2RQXILo6igxuMn0K_1HFIcQNIS6z_A63UA5SiCnUYPN5WZNlSyirC0L5EvDm3wEPq-E3FTzPIw |
| CitedBy_id | crossref_primary_10_1016_j_siny_2024_101561 crossref_primary_10_3788_CJL250542 crossref_primary_10_1002_ima_23144 crossref_primary_10_1007_s00521_024_09729_4 crossref_primary_10_1109_JSEN_2024_3393619 crossref_primary_10_1002_jcc_70203 crossref_primary_10_1016_j_bspc_2024_106976 crossref_primary_10_1038_s41598_025_93662_6 crossref_primary_10_1016_j_jrras_2024_101026 crossref_primary_10_1186_s12915_025_02148_4 crossref_primary_10_1007_s11517_024_03263_0 crossref_primary_10_1007_s40747_025_02046_w crossref_primary_10_1109_TCSVT_2025_3549459 crossref_primary_10_1007_s11760_024_03464_y crossref_primary_10_1016_j_foodcont_2024_110819 crossref_primary_10_1007_s11554_024_01445_5 crossref_primary_10_3390_bioengineering11121229 crossref_primary_10_3390_life15060876 crossref_primary_10_1016_j_compbiomed_2025_110501 crossref_primary_10_3788_PI_2025_R03 crossref_primary_10_1155_acis_1913589 crossref_primary_10_1016_j_mtcomm_2025_113184 crossref_primary_10_1016_j_optcom_2024_131026 crossref_primary_10_1016_j_bspc_2024_107357 crossref_primary_10_1016_j_compbiomed_2024_108958 crossref_primary_10_1109_TIM_2025_3583382 crossref_primary_10_3389_fphy_2025_1588508 crossref_primary_10_1016_j_mex_2025_103466 crossref_primary_10_1109_ACCESS_2024_3496723 crossref_primary_10_26634_jip_12_2_21786 crossref_primary_10_1007_s11517_023_02902_2 crossref_primary_10_1016_j_knosys_2025_114053 crossref_primary_10_1109_ACCESS_2023_3340735 crossref_primary_10_3390_s24248217 crossref_primary_10_3390_electronics14122369 crossref_primary_10_32604_cmc_2024_047827 crossref_primary_10_1016_j_bspc_2024_107328 crossref_primary_10_2174_0123520965311272240709053422 crossref_primary_10_1016_j_jrras_2024_101089 crossref_primary_10_32604_cmc_2023_046821 crossref_primary_10_1109_TMM_2025_3535295 crossref_primary_10_3390_diagnostics13223457 crossref_primary_10_1016_j_neucom_2025_131448 crossref_primary_10_1109_TAI_2024_3397246 crossref_primary_10_1016_j_bspc_2023_105370 crossref_primary_10_1089_cmb_2024_0872 crossref_primary_10_1016_j_compmedimag_2024_102481 crossref_primary_10_1016_j_neucom_2025_130195 crossref_primary_10_1007_s40998_024_00788_w crossref_primary_10_1016_j_acra_2025_02_041 crossref_primary_10_1109_JSEN_2024_3432143 crossref_primary_10_32604_cmc_2024_054685 crossref_primary_10_1016_j_wneu_2025_123768 crossref_primary_10_3390_app15116224 crossref_primary_10_32604_cmc_2024_046320 crossref_primary_10_1007_s11760_025_04398_9 crossref_primary_10_1007_s40477_025_01081_0 crossref_primary_10_48084_etasr_11834 crossref_primary_10_1016_j_compbiomed_2023_107514 crossref_primary_10_1016_j_knosys_2025_114313 crossref_primary_10_1007_s11517_024_03242_5 crossref_primary_10_1016_j_mtcomm_2023_107531 crossref_primary_10_1016_j_bspc_2024_107407 crossref_primary_10_54691_zs78vp41 crossref_primary_10_1007_s00371_024_03495_z crossref_primary_10_1007_s10489_024_06085_7 crossref_primary_10_1038_s41598_024_75977_y crossref_primary_10_1109_TCSVT_2024_3516705 |
| Cites_doi | 10.1109/TIP.2021.3056868 10.1049/iet-ipr.2018.5609 10.1109/TMI.2017.2764326 10.1049/iet-ipr.2017.1067 10.1049/el:20020212 10.1109/TIP.2018.2887342 10.1109/TMM.2019.2895292 10.1109/JSTARS.2021.3097178 10.1109/ACCESS.2017.2685178 10.1109/JSEN.2021.3106063 10.1109/TIP.2021.3069339 10.1016/j.compbiomed.2018.06.008 10.1016/j.inffus.2018.09.004 10.1109/TIP.2020.3031173 10.1016/j.ijleo.2020.165409 10.1016/B978-0-12-372529-5.00017-2 10.1016/j.infrared.2021.103947 10.1016/j.patrec.2020.11.014 10.1109/ACCESS.2020.3037770 10.1016/j.enconman.2021.114714 10.1016/j.inffus.2020.11.009 10.1109/TIP.2021.3058764 10.1016/j.sigpro.2020.107681 10.1016/j.patrec.2006.09.005 10.1088/0957-0233/8/4/002 10.1016/j.inffus.2020.10.015 10.1109/TIP.2013.2244222 10.1016/j.inffus.2019.07.005 10.1016/j.image.2021.116554 10.1016/j.aqpro.2015.02.019 10.1016/j.bspc.2021.102488 10.1016/j.inffus.2013.12.002 10.1016/j.neucom.2015.07.160 10.1109/JSEN.2019.2913281 10.1016/j.infrared.2021.103894 10.1016/j.inffus.2013.11.005 10.1016/j.ijleo.2020.165120 10.1016/j.neucom.2021.08.044 10.1016/j.inffus.2016.12.001 10.1109/TIP.2020.2976190 10.1016/j.infrared.2019.103039 10.1109/ACCESS.2020.2982016 10.1016/j.inffus.2019.07.011 10.1016/j.image.2021.116295 10.1109/TIP.2020.2977573 10.1049/el:20081754 10.1109/JSEN.2019.2921803 10.1016/j.ijleo.2021.168084 10.1109/TIM.2020.3022438 10.1016/j.infrared.2021.103707 10.1016/j.eswa.2021.114574 10.1016/j.ins.2020.04.035 10.1016/j.infrared.2021.103839 10.1016/j.asoc.2020.106885 10.1148/radiol.2422051113 10.1109/LSENS.2020.3041585 10.1016/j.imavis.2019.02.011 10.2214/AJR.09.3193 10.1109/TIM.2019.2933341 10.1109/ACCESS.2021.3075953 10.1109/JBHI.2021.3083752 10.1016/j.inffus.2020.08.022 10.1016/j.inffus.2021.02.023 10.1016/j.compeleceng.2011.07.012 10.1016/j.inffus.2005.09.001 10.1109/JSTARS.2021.3065121 10.1109/TIP.2005.859378 10.1109/TIP.2003.819861 10.1109/TIP.2020.3033158 10.1016/j.inffus.2021.02.019 10.1016/j.comcom.2020.04.010 10.1016/j.infrared.2019.103144 10.1109/JSTSP.2020.3013418 10.1109/LSP.2019.2895749 10.1109/TMI.2019.2923601 10.1109/26.477498 10.1016/j.image.2020.115864 |
| ContentType | Journal Article |
| Copyright | 2023 Copyright © 2023. Published by Elsevier Ltd. Copyright Elsevier Limited Jun 2023 |
| Copyright_xml | – notice: 2023 – notice: Copyright © 2023. Published by Elsevier Ltd. – notice: Copyright Elsevier Limited Jun 2023 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2023.106959 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25. Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 106959 |
| ExternalDocumentID | 37141652 10_1016_j_compbiomed_2023_106959 S0010482523004249 1_s2_0_S0010482523004249 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR 9DU AAYXX AFFHD CITATION CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c564t-2f6671c2260a9f23f8ca08a91f415ff13243bb665dbe9d34ee450846de1e14513 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 82 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000992823400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Sun Sep 28 10:54:04 EDT 2025 Sat Nov 29 14:24:00 EST 2025 Wed Feb 19 02:23:41 EST 2025 Tue Nov 18 21:58:30 EST 2025 Sat Nov 29 07:32:37 EST 2025 Fri Feb 23 02:35:17 EST 2024 Tue Feb 25 20:12:01 EST 2025 Tue Oct 14 19:33:19 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Medical image fusion Encoder-decoder network Convolutional neural network Generative adversarial network |
| Language | English |
| License | Copyright © 2023. Published by Elsevier Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c564t-2f6671c2260a9f23f8ca08a91f415ff13243bb665dbe9d34ee450846de1e14513 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-8145-712X |
| OpenAccessLink | http://ir.opt.ac.cn/handle/181661/96483 |
| PMID | 37141652 |
| PQID | 2815942681 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2810919873 proquest_journals_2815942681 pubmed_primary_37141652 crossref_primary_10_1016_j_compbiomed_2023_106959 crossref_citationtrail_10_1016_j_compbiomed_2023_106959 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_106959 elsevier_clinicalkeyesjournals_1_s2_0_S0010482523004249 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_106959 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Eskicioglu, Fisher (bib99) 1995; 43 Fu, Wu, Durrani (bib68) 2021; 72 Xiao, Xu, Bi, Li (bib22) 2020; 30 Xu, Wang, Zhang, Zhang, Yu (bib44) 2020; 8 Zang, Zhou, Wang, Nie, Guo (bib33) 2021; 70 Wang, Yang, Papanastasiou, Tsaftaris, Newby, Gray, Macnaught, MacGillivray (bib51) 2021; 67 Haghighat, Aghagolzadeh, Seyedarabi (bib92) 2011; 37 Li, Wu (bib55) 2018; 28 Liu, Yu, Wei, Pan, Tang (bib69) 2020; 14 Li, Guo, Lu, Zhang, Zhang (bib10) 2020; 29 Long, Jia, Zhong, Jiang, Jia (bib36) 2020; 69 Rao (bib98) 1988; 8 Liu, Miao, Su (bib83) 2021; 14 Blodgett, Meltzer, Townsend (bib86) 2007; 242 Ma, Yu, Liang, Chang, Jiang (bib47) 2019; 48 Ahmadreza, Susanne, Ali, Fathi, Souza, Rayz (bib6) 2018; 99 Zhou, Ye, Lu (bib42) 2022; 2022 He, Zhang, Ren (bib16) 2016 Huang, Li, Ma, Fan, Zhang, Yang (bib54) 2020; 8 Xydeas, Petrovic (bib97) 2000; 56 Ren, Pan, Cao, Liao (bib82) 2021; 117 Li, Huo, Liu, Li (bib67) 2020; 529 Fang, Zhao, Yang, Qin, Zhang (bib61) 2021; 463 Ma, Le, Tian, Jiang (bib58) 2021; 7 Mustafa, Yang, Mustafa, Zareapoor (bib41) 2020; 224 Li, Wu, Durrani (bib25) 2019; 102 Ma, Liang, Yu, Chen, Guo, Wu, Jiang (bib65) 2020; 54 Li, Wu, Kittler (bib78) 2021; 73 Palkar, Mishra (bib3) 2019; 13 Zhou, Ren, Wan, Cheng, Chen (bib24) 2021; 248 Wang, Xu, Liu, Zhao, a Zhang, Zhang (bib48) 2021; 96 Fu, Li, Du (bib27) 2021; 66 Li, Peng, Fu, Wang, Huang, Chao (bib31) 2021; 141 Yuan, Sun, Tang (bib72) 2020; 11 Chai, Luo, Zhang (bib5) 2017; 5 Ren, Zhang, Wan, Miao, Gu, Chen (bib32) 2021; 115 Wang, Bovik, Sheikh, Simoncelli (bib94) 2003; 13 Singh, Anand (bib28) 2020; 69 Jian, Yang, Liu, Jeon, Gao, Chisholm (bib57) 2021; 70 Wang, Liu, Jin (bib60) 2019; 86 Deng, Zhang, Xu, Gu, Duan (bib63) 2021; 30 Jagalingam, Hegde (bib101) 2015; 4 Wu, Chen (bib29) 2020; 157 Zhang, Liu, Sun, Yan, Zhao, Zhang (bib20) 2020; 54 Huang, Liu, Maaten, Weinberger (bib17) 2017 Zhou, Li, Wang (bib12) 2014; 20 Yu, Xiao, Durrani (bib73) 2021; 72 Yi, Li, Yuan (bib75) 2021; 119 Zuo, Zhang, Yang (bib79) 2021; 25 Gai, Shen, Chen, Su (bib21) 2020; 176 Roberts, Van, Ahmed (bib95) 2008; 2 Xu, Shi, Qin, Lu, Wang, Ma (bib66) 2020; 104 Kligerman, Digumarthy (bib85) 2009; 193 Cui, Feng, Xu, Li, Chen (bib96) 2014; 341 Yin, Ou, Zhu (bib49) 2021; 247 Rajalingam, Priya (bib100) 2018; 2 Mustafa, Zareapoor, Yang (bib43) 2020; 85 Hossny, Nahavandi, Creighton (bib93) 2008; 44 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib46) 2014; 1406 Lei, Peng, Zhang, Ke, Li (bib35) 2021; 30 Li, Zhang, Jiang, Li (bib37) 2021; 141 Luo, Wang, Zhang, Xiang, Wu (bib74) 2021; 70 James, Dasarathy (bib87) 2014; 19 Liu, Chen, Ward, Wang (bib9) 2019; 26 Zhang, Le, Shao, Xu, Ma (bib70) 2021; 66 Mitianoudis, Stathaki (bib8) 2007; 8 Ronneberger, Fischer, Brox (bib18) 2015 Xiao, Guo, Veelaert, Philips (bib38) 2022; 101 Qu, Zhang, Yan (bib91) 2002; 38 An, Wang (bib77) 2020; 219 Ma, Xu, Jiang, Mei, Zhang (bib52) 2020; 29 Wang, Li, Duan, Su, Zhang, Guan (bib7) 2021; 171 Sheikh, Bovik (bib89) 2006; 15 Ancuti, Ancuti, Vleeschouwer, Bovik (bib4) 2017; 26 Li, Lu, Li, Wu, Yang (bib53) 2021; 21 Hou, Zhou, Nie (bib45) 2020; 6 Du, Li, Lu, Xiao (bib14) 2015; 215 Kumar, Fulham, Feng, Kim (bib76) 2020; 39 Raza, Liu, Liu, Li, Fang (bib80) 2021; 14 Zhang, Jiang, Hu, Chen (bib26) 2021; vol. 5 Simonyan, Zisserman (bib15) 2014 Song, Xu, Liu, Liu, Liu, Metaxas (bib40) 2021; 30 Wang, Shen (bib90) 2008; 19 Liu, Miao, Ji, Li (bib34) 2021; 119 Li, Cen, Liu, Chen, Yu (bib64) 2021; 30 Wang, Zhou, Zang, Nie, Guo (bib62) 2021; 21 Ma, Tang, Xu, Zhang, Xiao (bib39) 2021; 70 Zhou, Chang, Lu, Ye, Liu (bib88) 2022; 2022 Guo, Nie, Cao, Zhou, Mei, He (bib23) 2019; 21 Li, Kang, Hu (bib13) 2013; 22 Zhu, Park, Isola, Efros (bib50) 2017; vol. 1109 Huang, Jing (bib11) 2006; 28 Chartsias, Joyce, Giuffrida (bib59) 2018; 37 Hou, Zhang, Zhou (bib81) 2021; 13 Wang, Zhang, Liu, Mi, Zhang (bib30) 2021; 9 Li, Huo, Li, Wang, Sui, Liu (bib71) 2021; 70 Liang, Hu, Zhang, Sun, Yin (bib2) 2019; 19 Liu, Chen, Peng, Wang (bib19) 2017; 36 Raza, Huo, Fang (bib56) 2020; 4 Zhou, Lu, Yang, Huo (bib84) 2021; 98 Wang, Li, Zhang (bib1) 2018; 12 Raza (10.1016/j.compbiomed.2023.106959_bib80) 2021; 14 Rajalingam (10.1016/j.compbiomed.2023.106959_bib100) 2018; 2 Zang (10.1016/j.compbiomed.2023.106959_bib33) 2021; 70 Wang (10.1016/j.compbiomed.2023.106959_bib62) 2021; 21 Wang (10.1016/j.compbiomed.2023.106959_bib51) 2021; 67 Roberts (10.1016/j.compbiomed.2023.106959_bib95) 2008; 2 Eskicioglu (10.1016/j.compbiomed.2023.106959_bib99) 1995; 43 Zhang (10.1016/j.compbiomed.2023.106959_bib26) 2021; vol. 5 Lei (10.1016/j.compbiomed.2023.106959_bib35) 2021; 30 Zhou (10.1016/j.compbiomed.2023.106959_bib12) 2014; 20 Ma (10.1016/j.compbiomed.2023.106959_bib52) 2020; 29 Liu (10.1016/j.compbiomed.2023.106959_bib83) 2021; 14 An (10.1016/j.compbiomed.2023.106959_bib77) 2020; 219 Zhou (10.1016/j.compbiomed.2023.106959_bib42) 2022; 2022 Zhou (10.1016/j.compbiomed.2023.106959_bib84) 2021; 98 Song (10.1016/j.compbiomed.2023.106959_bib40) 2021; 30 Huang (10.1016/j.compbiomed.2023.106959_bib11) 2006; 28 Fang (10.1016/j.compbiomed.2023.106959_bib61) 2021; 463 Li (10.1016/j.compbiomed.2023.106959_bib64) 2021; 30 Zhou (10.1016/j.compbiomed.2023.106959_bib24) 2021; 248 Goodfellow (10.1016/j.compbiomed.2023.106959_bib46) 2014; 1406 Luo (10.1016/j.compbiomed.2023.106959_bib74) 2021; 70 Zhou (10.1016/j.compbiomed.2023.106959_bib88) 2022; 2022 Yin (10.1016/j.compbiomed.2023.106959_bib49) 2021; 247 Ma (10.1016/j.compbiomed.2023.106959_bib47) 2019; 48 Simonyan (10.1016/j.compbiomed.2023.106959_bib15) 2014 Yu (10.1016/j.compbiomed.2023.106959_bib73) 2021; 72 Xu (10.1016/j.compbiomed.2023.106959_bib44) 2020; 8 Ahmadreza (10.1016/j.compbiomed.2023.106959_bib6) 2018; 99 Liu (10.1016/j.compbiomed.2023.106959_bib9) 2019; 26 Li (10.1016/j.compbiomed.2023.106959_bib78) 2021; 73 Ancuti (10.1016/j.compbiomed.2023.106959_bib4) 2017; 26 Jagalingam (10.1016/j.compbiomed.2023.106959_bib101) 2015; 4 Ren (10.1016/j.compbiomed.2023.106959_bib32) 2021; 115 Liang (10.1016/j.compbiomed.2023.106959_bib2) 2019; 19 Ma (10.1016/j.compbiomed.2023.106959_bib39) 2021; 70 Li (10.1016/j.compbiomed.2023.106959_bib67) 2020; 529 Fu (10.1016/j.compbiomed.2023.106959_bib27) 2021; 66 Raza (10.1016/j.compbiomed.2023.106959_bib56) 2020; 4 Cui (10.1016/j.compbiomed.2023.106959_bib96) 2014; 341 Singh (10.1016/j.compbiomed.2023.106959_bib28) 2020; 69 Wang (10.1016/j.compbiomed.2023.106959_bib1) 2018; 12 Jian (10.1016/j.compbiomed.2023.106959_bib57) 2021; 70 Xiao (10.1016/j.compbiomed.2023.106959_bib38) 2022; 101 Li (10.1016/j.compbiomed.2023.106959_bib53) 2021; 21 Ma (10.1016/j.compbiomed.2023.106959_bib65) 2020; 54 He (10.1016/j.compbiomed.2023.106959_bib16) 2016 Chai (10.1016/j.compbiomed.2023.106959_bib5) 2017; 5 Zuo (10.1016/j.compbiomed.2023.106959_bib79) 2021; 25 Blodgett (10.1016/j.compbiomed.2023.106959_bib86) 2007; 242 Rao (10.1016/j.compbiomed.2023.106959_bib98) 1988; 8 Liu (10.1016/j.compbiomed.2023.106959_bib19) 2017; 36 Gai (10.1016/j.compbiomed.2023.106959_bib21) 2020; 176 Wang (10.1016/j.compbiomed.2023.106959_bib30) 2021; 9 Sheikh (10.1016/j.compbiomed.2023.106959_bib89) 2006; 15 Li (10.1016/j.compbiomed.2023.106959_bib55) 2018; 28 Xiao (10.1016/j.compbiomed.2023.106959_bib22) 2020; 30 Mustafa (10.1016/j.compbiomed.2023.106959_bib43) 2020; 85 Fu (10.1016/j.compbiomed.2023.106959_bib68) 2021; 72 Zhu (10.1016/j.compbiomed.2023.106959_bib50) 2017; vol. 1109 Guo (10.1016/j.compbiomed.2023.106959_bib23) 2019; 21 Hossny (10.1016/j.compbiomed.2023.106959_bib93) 2008; 44 James (10.1016/j.compbiomed.2023.106959_bib87) 2014; 19 Du (10.1016/j.compbiomed.2023.106959_bib14) 2015; 215 Zhang (10.1016/j.compbiomed.2023.106959_bib70) 2021; 66 Liu (10.1016/j.compbiomed.2023.106959_bib69) 2020; 14 Ren (10.1016/j.compbiomed.2023.106959_bib82) 2021; 117 Zhang (10.1016/j.compbiomed.2023.106959_bib20) 2020; 54 Long (10.1016/j.compbiomed.2023.106959_bib36) 2020; 69 Hou (10.1016/j.compbiomed.2023.106959_bib45) 2020; 6 Hou (10.1016/j.compbiomed.2023.106959_bib81) 2021; 13 Kligerman (10.1016/j.compbiomed.2023.106959_bib85) 2009; 193 Ronneberger (10.1016/j.compbiomed.2023.106959_bib18) 2015 Wang (10.1016/j.compbiomed.2023.106959_bib48) 2021; 96 Xu (10.1016/j.compbiomed.2023.106959_bib66) 2020; 104 Li (10.1016/j.compbiomed.2023.106959_bib10) 2020; 29 Yi (10.1016/j.compbiomed.2023.106959_bib75) 2021; 119 Wang (10.1016/j.compbiomed.2023.106959_bib90) 2008; 19 Wu (10.1016/j.compbiomed.2023.106959_bib29) 2020; 157 Li (10.1016/j.compbiomed.2023.106959_bib31) 2021; 141 Wang (10.1016/j.compbiomed.2023.106959_bib60) 2019; 86 Kumar (10.1016/j.compbiomed.2023.106959_bib76) 2020; 39 Liu (10.1016/j.compbiomed.2023.106959_bib34) 2021; 119 Yuan (10.1016/j.compbiomed.2023.106959_bib72) 2020; 11 Xydeas (10.1016/j.compbiomed.2023.106959_bib97) 2000; 56 Huang (10.1016/j.compbiomed.2023.106959_bib17) 2017 Huang (10.1016/j.compbiomed.2023.106959_bib54) 2020; 8 Li (10.1016/j.compbiomed.2023.106959_bib71) 2021; 70 Li (10.1016/j.compbiomed.2023.106959_bib37) 2021; 141 Qu (10.1016/j.compbiomed.2023.106959_bib91) 2002; 38 Haghighat (10.1016/j.compbiomed.2023.106959_bib92) 2011; 37 Mitianoudis (10.1016/j.compbiomed.2023.106959_bib8) 2007; 8 Palkar (10.1016/j.compbiomed.2023.106959_bib3) 2019; 13 Mustafa (10.1016/j.compbiomed.2023.106959_bib41) 2020; 224 Wang (10.1016/j.compbiomed.2023.106959_bib7) 2021; 171 Deng (10.1016/j.compbiomed.2023.106959_bib63) 2021; 30 Li (10.1016/j.compbiomed.2023.106959_bib25) 2019; 102 Ma (10.1016/j.compbiomed.2023.106959_bib58) 2021; 7 Li (10.1016/j.compbiomed.2023.106959_bib13) 2013; 22 Chartsias (10.1016/j.compbiomed.2023.106959_bib59) 2018; 37 Wang (10.1016/j.compbiomed.2023.106959_bib94) 2003; 13 |
| References_xml | – volume: 8 start-page: 131 year: 2007 end-page: 142 ident: bib8 article-title: Pixel-based and region-based image fusion schemes using ICA bases publication-title: Inf. Fusion – volume: 14 start-page: 3426 year: 2021 end-page: 3437 ident: bib80 article-title: IR-MSDNet: infrared and visible image fusion based on infrared features and multiscale dense network publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. – volume: 44 start-page: 1066 year: 2008 end-page: 1067 ident: bib93 article-title: Comments on information measure for performance of image fusion publication-title: Electron. Lett. – volume: 48 start-page: 11 year: 2019 end-page: 26 ident: bib47 article-title: A generative adversarial network for infrared and visible image fusion publication-title: Inf. Fusion – volume: 30 start-page: 55 year: 2021 end-page: 67 ident: bib35 article-title: Hierarchical Paired Channel Fusion network for street scene change detection publication-title: IEEE Trans. Image Process. – volume: 19 start-page: 469 year: 2008 end-page: 492 ident: bib90 article-title: Performance evaluation of image fusion techniques publication-title: Imag. Fusion – volume: 242 start-page: 360 year: 2007 end-page: 385 ident: bib86 article-title: PET/CT: form and function publication-title: Radiology – volume: 529 start-page: 28 year: 2020 end-page: 41 ident: bib67 article-title: Infrared and visible image fusion using dual discriminators generative adversarial networks with Wasserstein distance publication-title: Inf. Sci. – volume: 13 start-page: 1 year: 2021 end-page: 10 ident: bib81 article-title: Reconstructing a high dynamic range image with a deeply unsupervised fusion model publication-title: IEEE Photon. J. – volume: 20 start-page: 60 year: 2014 end-page: 72 ident: bib12 article-title: Multi-scale weighted gradient-based fusion for multi-focus images publication-title: Inf. Fusion – volume: 9 start-page: 67634 year: 2021 end-page: 67647 ident: bib30 article-title: Multimodal medical image fusion based on gabor representation combination of multi-CNN and fuzzy neural network publication-title: IEEE Access – volume: 2022 start-page: 22 year: 2022 ident: bib42 article-title: Dense convolutional network and its application in medical image analysis publication-title: BioMed Res. Int. – volume: 157 start-page: 444 year: 2020 end-page: 450 ident: bib29 article-title: Smart city oriented remote sensing image fusion methods based on convolution sampling and spatial transformation publication-title: Comput. Commun. – volume: 11 start-page: 1 year: 2020 end-page: 13 ident: bib72 article-title: FLGC-fusion GAN: an enhanced fusion GAN model by importing fully learnable group convolution publication-title: Math. Probl Eng. – volume: 38 start-page: 313 year: 2002 end-page: 315 ident: bib91 article-title: Information measure for performance of image fusion publication-title: Electron. Lett. – volume: 14 start-page: 7373 year: 2021 end-page: 7385 ident: bib83 article-title: UMAG-net: a new unsupervised multiattention- guided network for hyperspectral and multispectral image fusion publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. – volume: 43 start-page: 2959 year: 1995 end-page: 2965 ident: bib99 article-title: Image quality measures and their performance publication-title: IEEE Trans. Commun. – start-page: 770 year: 2016 end-page: 778 ident: bib16 article-title: Deep residual learning for image recognition publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 176 year: 2020 ident: bib21 article-title: Multi-focus image fusion method based on two stages of convolutional neural network publication-title: Signal Process. – volume: 141 year: 2021 ident: bib31 article-title: A multiscale double-branch residual attention network for anatomical–functional medical image fusion publication-title: Comput. Biol. Med. – volume: 341 start-page: 199 year: 2014 end-page: 209 ident: bib96 article-title: Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition publication-title: Optics – volume: 70 start-page: 1 year: 2021 end-page: 12 ident: bib71 article-title: Multigrained attention network for infrared and visible image fusion publication-title: IEEE Trans. Instrum. Meas. – volume: 104 year: 2020 ident: bib66 article-title: LBP-BEGAN: a generative adversarial network architecture for infrared and visible image fusion publication-title: Infrared Phys. Technol. – volume: 66 year: 2021 ident: bib27 article-title: A multiscale residual pyramid attention network for medical image fusion publication-title: Biomed. Signal Process Control – volume: 85 year: 2020 ident: bib43 article-title: MLDNet: multi-level dense network for multi-focus image fusion publication-title: Signal Process. Image Commun. – volume: 67 start-page: 147 year: 2021 end-page: 160 ident: bib51 article-title: DiCyc: GAN-based deformation invariant cross-domain information fusion for medical image synthesis publication-title: Inf. Fusion – volume: 54 start-page: 99 year: 2020 end-page: 118 ident: bib20 article-title: IFCNN: a general image fusion framework based on convolutional neural network publication-title: Inf. Fusion – volume: 70 start-page: 1 year: 2021 end-page: 16 ident: bib74 article-title: LatRAIVF: an infrared and visible image fusion method based on latent regression and adversarial training publication-title: IEEE Trans. Instrum. Meas. – volume: 7 start-page: 309 year: 2021 end-page: 320 ident: bib58 article-title: SMFuse: multi-focus image fusion via self-supervised mask-optimization publication-title: IEEE Trans. Comput.Imag. – volume: 115 year: 2021 ident: bib32 article-title: An infrared and visible image fusion method based on improved DenseNet and mRMR-ZCA publication-title: Infrared Phys. Technol. – volume: 66 start-page: 40 year: 2021 end-page: 53 ident: bib70 article-title: MFF-GAN: an unsupervised generative adversarial network with adaptive and gradient joint constraints for multi-focus image fusion publication-title: Inf. Fusion – volume: 28 start-page: 2614 year: 2018 end-page: 2623 ident: bib55 article-title: DenseFuse: a fusion approach to infrared and visible images publication-title: IEEE Trans. Image Process. – volume: 8 start-page: 355 year: 1988 ident: bib98 article-title: In-fibre Bragg grating sensors publication-title: Meas. Sci. Technol. – volume: 119 year: 2021 ident: bib75 article-title: DFPGAN: dual fusion path generative adversarial network for infrared and visible image fusion publication-title: Infrared Phys. Technol. – volume: 86 start-page: 1 year: 2019 end-page: 16 ident: bib60 article-title: A generative image fusion approach based on supervised deep convolution network driven by weighted gradient flow publication-title: Image Vis Comput. – volume: 463 start-page: 198 year: 2021 end-page: 211 ident: bib61 article-title: A light-weight, efficient, and general cross-modal image fusion network publication-title: Neurocomputing – volume: 36 start-page: 191 year: 2017 end-page: 207 ident: bib19 article-title: Multi-focus image fusion with a deep convolutional neural network publication-title: Inf. Fusion – volume: 69 start-page: 128 year: 2020 end-page: 141 ident: bib36 article-title: RXDNFuse: a aggregated residual dense network for infrared and visible image fusion publication-title: Inf. Fusion – volume: 4 start-page: 133 year: 2015 end-page: 142 ident: bib101 article-title: A review of quality metrics for fused image publication-title: Aquatic Proc. – volume: 8 start-page: 206445 year: 2020 end-page: 206458 ident: bib44 article-title: Infrared and visible image fusion using a deep unsupervised framework with perceptual loss publication-title: IEEE Access – volume: 25 start-page: 3438 year: 2021 end-page: 3449 ident: bib79 article-title: DMC-fusion: deep multi-cascade fusion with classifier-based feature synthesis for medical multi-modal images publication-title: IEEE J. Biomedi. Health Inf. – volume: 28 start-page: 493 year: 2006 end-page: 500 ident: bib11 article-title: Evaluation of focus measures in multi-focus image fusion publication-title: Pattern Recogn. Lett. – volume: 70 start-page: 1 year: 2021 end-page: 17 ident: bib33 article-title: UFA-FUSE: a novel deep supervised and hybrid model for multifocus image fusion publication-title: IEEE Trans. Instrum. Meas. – volume: 117 year: 2021 ident: bib82 article-title: Infrared and visible image fusion based on variational auto-encoder and infrared feature compensation publication-title: Infrared Phys. Technol. – volume: 2 start-page: 52 year: 2018 end-page: 60 ident: bib100 article-title: Hybrid multimodality medical image fusion technique for feature enhancement in medical diagnosis publication-title: Int. J. Eng. Sci. Invent. – volume: 39 start-page: 204 year: 2020 end-page: 217 ident: bib76 article-title: Co-learning feature fusion map from PET-CT images of lung cancer publication-title: IEEE Trans. Med. Imag. – volume: 4 start-page: 1 year: 2020 end-page: 4 ident: bib56 article-title: PFAF-net: pyramid feature network for multimodal fusion publication-title: IEEE Sens. Lett. – volume: 29 start-page: 4980 year: 2020 end-page: 4995 ident: bib52 article-title: DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion publication-title: IEEE Trans. Image Process. – volume: 13 start-page: 2271 year: 2019 end-page: 2280 ident: bib3 article-title: Fusion of multi-modal lumbar spine images using Kekre's hybrid wavelet transform publication-title: IET Image Process. – volume: 30 start-page: 163 year: 2020 end-page: 175 ident: bib22 article-title: Global-feature encoding U-net (GEU-Net) for multi-focus image fusion publication-title: IEEE Trans. Image Process. – volume: 37 start-page: 803 year: 2018 end-page: 814 ident: bib59 article-title: Multimodal MR synthesis via modality-invariant latent representation publication-title: IEEE Trans. Med. Imag. – volume: 2 start-page: 1 year: 2008 end-page: 28 ident: bib95 article-title: Assessment of image fusion procedures using entropy image quality and multispectral classification publication-title: J. Appl. Remote Sens. – volume: 56 start-page: 181 year: 2000 end-page: 193 ident: bib97 article-title: Objective image fusion performance measure publication-title: Military Tech. Cour. – volume: 14 start-page: 1176 year: 2020 end-page: 1188 ident: bib69 article-title: Multimodal MR image synthesis using gradient prior and adversarial learning publication-title: IEEE J.Select.Topic Sig.Process. – volume: 193 start-page: 1203 year: 2009 end-page: 1211 ident: bib85 article-title: Staging of non–small cell lung cancer using integrated PET/CT publication-title: Ajr Am. J.Roentgenol. – volume: 13 start-page: 600 year: 2003 end-page: 612 ident: bib94 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – volume: 141 start-page: 45 year: 2021 end-page: 53 ident: bib37 article-title: Multi-focus image fusion algorithm based on supervised learning for fully convolutional neural network publication-title: Pattern Recogn. Lett. – volume: 102 year: 2019 ident: bib25 article-title: Infrared and visible image fusion with ResNet and zero-phase component analysis publication-title: Infrared Phys. Technol. – volume: 15 start-page: 430 year: 2006 end-page: 444 ident: bib89 article-title: Image information and visual quality publication-title: IEEE Trans. Image Process. – volume: 8 start-page: 55145 year: 2020 end-page: 55157 ident: bib54 article-title: MGMDcGAN: medical image fusion using multi-generator multi-discriminator conditional generative adversarial network publication-title: IEEE Access – volume: 5 start-page: 6724 year: 2017 end-page: 6734 ident: bib5 article-title: Image fusion using quaternion wavelet transform and multiple features publication-title: IEEE Access – volume: 12 start-page: 1403 year: 2018 end-page: 1412 ident: bib1 article-title: Adaptive decomposition method for multi-modal medical image fusion publication-title: IET Image Process. – volume: 30 start-page: 4070 year: 2021 end-page: 4083 ident: bib64 article-title: Different input resolutions and arbitrary output resolution: a meta learning-based deep framework for infrared and visible image fusion publication-title: IEEE Trans. Image Process. – start-page: 234 year: 2015 end-page: 241 ident: bib18 article-title: U-Net: convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 1406 start-page: 2661 year: 2014 ident: bib46 publication-title: Generat. Advers.Netw. – volume: 30 start-page: 2923 year: 2021 end-page: 2934 ident: bib40 article-title: Multi-stage feature fusion network for video super-resolution publication-title: IEEE Trans. Image Process. – volume: 73 start-page: 72 year: 2021 end-page: 86 ident: bib78 article-title: RFN-Nest: an end-to-end residual fusion network for infrared and visible images publication-title: Inf. Fusion – volume: 21 start-page: 7458 year: 2021 end-page: 7467 ident: bib53 article-title: Coupled GAN with relativistic discriminators for infrared and visible images fusion publication-title: IEEE Sensor. J. – start-page: 4700 year: 2017 end-page: 4708 ident: bib17 article-title: Densely connected convolutional networks publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 96 year: 2021 ident: bib48 article-title: MFIF-GAN: a new generative adversarial network for multi-focus image fusion publication-title: Signal Process. Image Commun. – volume: 30 start-page: 3098 year: 2021 end-page: 3112 ident: bib63 article-title: Deep coupled feedback network for joint exposure fusion and image super-resolution publication-title: IEEE Trans. Image Process. – volume: 37 start-page: 744 year: 2011 end-page: 756 ident: bib92 article-title: A nonreference image fusion metric based on mutual information of image features publication-title: Comput. Electr. Eng. – volume: 70 start-page: 1 year: 2021 end-page: 15 ident: bib57 article-title: SEDRFuse: a symmetric encoder–decoder with residual block network for infrared and visible image fusion publication-title: IEEE Trans. Instrum. Meas. – volume: 54 start-page: 85 year: 2020 end-page: 98 ident: bib65 article-title: Infrared and visible image fusion via detail preserving adversarial learning publication-title: Inf. Fusion – volume: 69 start-page: 3855 year: 2020 end-page: 3865 ident: bib28 article-title: Multimodal medical image fusion using hybrid layer decomposition with CNN-based feature mapping and structural clustering publication-title: IEEE Trans. Instrum. Meas. – volume: 6 start-page: 640 year: 2020 end-page: 651 ident: bib45 article-title: VIF-net: an unsupervised framework for infrared and visible image fusion publication-title: IEEE Trans. Comput.Imag. – volume: vol. 5 start-page: 2164 year: 2021 end-page: 2170 ident: bib26 article-title: Medical image fusion based a densely connected convolutional networks publication-title: IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) – volume: 2022 start-page: 17 year: 2022 ident: bib88 article-title: Pooling in deep learning: from “invariable” to “variable” publication-title: BioMed Res. Int. – volume: 248 year: 2021 ident: bib24 article-title: An infrared and visible image fusion method based on VGG-19 network publication-title: Optik – volume: 29 start-page: 4816 year: 2020 end-page: 4831 ident: bib10 article-title: DRPL: deep regression pair learning for multi-focus image fusion publication-title: IEEE Trans. Image Process. – volume: 171 year: 2021 ident: bib7 article-title: Medical image fusion based on convolutional neural networks and non-subsampled contourlet transform publication-title: Expert Syst. Appl. – volume: 19 start-page: 7107 year: 2019 end-page: 7119 ident: bib2 article-title: MCFNet: multi-layer concatenation fusion network for medical images fusion publication-title: IEEE Sensor. J. – volume: 224 year: 2020 ident: bib41 article-title: Infrared and visible image fusion based on dilated residual attention network publication-title: Optik – start-page: 1409 year: 2014 end-page: 1556 ident: bib15 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Comput. Sci. – volume: 119 year: 2021 ident: bib34 article-title: A Multi-scale MobileNet based fusion method for infrared and visible image publication-title: Infrared Phys. Technol. – volume: 72 start-page: 110 year: 2021 end-page: 125 ident: bib68 article-title: Image fusion based on generative adversarial network consistent with perception publication-title: Inf. Fusion – volume: 219 year: 2020 ident: bib77 article-title: Infrared and visible image fusion with supervised convolutional neural network publication-title: Optik – volume: vol. 1109 start-page: 2242 year: 2017 end-page: 2251 ident: bib50 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks publication-title: IEEE International Conference on Computer Vision (ICCV) – volume: 21 start-page: 1982 year: 2019 end-page: 1996 ident: bib23 article-title: FuseGAN: learning to fuse multi-focus image via conditional generative adversarial network publication-title: IEEE Trans. Multimed. – volume: 98 year: 2021 ident: bib84 article-title: The ensemble deep learning model for novel COVID-19 on CT images publication-title: Appl. Soft Comput. – volume: 26 start-page: 65 year: 2017 end-page: 78 ident: bib4 article-title: Single-scale fusion: an effective approach to merging images publication-title: IEEE Trans. Image Process. – volume: 72 start-page: 110 year: 2021 end-page: 125 ident: bib73 article-title: Image fusion based on generative adversarial network consistent with perception publication-title: Inf. Fusion – volume: 215 start-page: 3 year: 2015 end-page: 20 ident: bib14 article-title: An overview of multi-modal medical image fusion publication-title: Neurocomputing – volume: 247 year: 2021 ident: bib49 article-title: A novel asexual-reproduction evolutionary neural network for wind power prediction based on generative adversarial networks publication-title: Energy Convers. Manag. – volume: 22 start-page: 2864 year: 2013 end-page: 2875 ident: bib13 article-title: Image fusion with guided filtering publication-title: IEEE Trans. Image Process. – volume: 19 start-page: 4 year: 2014 end-page: 19 ident: bib87 article-title: Medical image fusion: a survey of the state of the art publication-title: Inf. Fusion – volume: 101 year: 2022 ident: bib38 article-title: Degradation model-based deep network for multi-focus image fusion publication-title: Signal Process. Image Commun. – volume: 21 start-page: 23069 year: 2021 end-page: 23084 ident: bib62 article-title: A deep and supervised atrous convolutional model for multi-focus image fusion publication-title: IEEE Sensor. J. – volume: 70 start-page: 1 year: 2021 end-page: 13 ident: bib39 article-title: STDFusionNet: an infrared and visible image fusion network based on salient target detection publication-title: IEEE Trans. Instrum. Meas. – volume: 99 start-page: 142 year: 2018 end-page: 153 ident: bib6 article-title: Curvelet Transform-based volume fusion for correcting signal loss artifacts in Time-of-Flight Magnetic Resonance Angiography data publication-title: Comput. Biol. Med. – volume: 26 start-page: 485 year: 2019 end-page: 489 ident: bib9 article-title: Medical image fusion via convolutional sparsity based morphological component analysis publication-title: IEEE Signal Process. Lett. – volume: 341 start-page: 199 year: 2014 ident: 10.1016/j.compbiomed.2023.106959_bib96 article-title: Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition publication-title: Optics – volume: vol. 1109 start-page: 2242 year: 2017 ident: 10.1016/j.compbiomed.2023.106959_bib50 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks – volume: 30 start-page: 2923 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib40 article-title: Multi-stage feature fusion network for video super-resolution publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3056868 – volume: 141 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib31 article-title: A multiscale double-branch residual attention network for anatomical–functional medical image fusion publication-title: Comput. Biol. Med. – volume: 13 start-page: 2271 year: 2019 ident: 10.1016/j.compbiomed.2023.106959_bib3 article-title: Fusion of multi-modal lumbar spine images using Kekre's hybrid wavelet transform publication-title: IET Image Process. doi: 10.1049/iet-ipr.2018.5609 – volume: 37 start-page: 803 year: 2018 ident: 10.1016/j.compbiomed.2023.106959_bib59 article-title: Multimodal MR synthesis via modality-invariant latent representation publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2017.2764326 – volume: 12 start-page: 1403 year: 2018 ident: 10.1016/j.compbiomed.2023.106959_bib1 article-title: Adaptive decomposition method for multi-modal medical image fusion publication-title: IET Image Process. doi: 10.1049/iet-ipr.2017.1067 – volume: 38 start-page: 313 year: 2002 ident: 10.1016/j.compbiomed.2023.106959_bib91 article-title: Information measure for performance of image fusion publication-title: Electron. Lett. doi: 10.1049/el:20020212 – start-page: 4700 year: 2017 ident: 10.1016/j.compbiomed.2023.106959_bib17 article-title: Densely connected convolutional networks – volume: 28 start-page: 2614 year: 2018 ident: 10.1016/j.compbiomed.2023.106959_bib55 article-title: DenseFuse: a fusion approach to infrared and visible images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2887342 – volume: 21 start-page: 1982 year: 2019 ident: 10.1016/j.compbiomed.2023.106959_bib23 article-title: FuseGAN: learning to fuse multi-focus image via conditional generative adversarial network publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2019.2895292 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib74 article-title: LatRAIVF: an infrared and visible image fusion method based on latent regression and adversarial training publication-title: IEEE Trans. Instrum. Meas. – volume: 14 start-page: 7373 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib83 article-title: UMAG-net: a new unsupervised multiattention- guided network for hyperspectral and multispectral image fusion publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. doi: 10.1109/JSTARS.2021.3097178 – volume: 5 start-page: 6724 year: 2017 ident: 10.1016/j.compbiomed.2023.106959_bib5 article-title: Image fusion using quaternion wavelet transform and multiple features publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2685178 – volume: 21 start-page: 23069 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib62 article-title: A deep and supervised atrous convolutional model for multi-focus image fusion publication-title: IEEE Sensor. J. doi: 10.1109/JSEN.2021.3106063 – volume: 30 start-page: 4070 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib64 article-title: Different input resolutions and arbitrary output resolution: a meta learning-based deep framework for infrared and visible image fusion publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3069339 – volume: 99 start-page: 142 year: 2018 ident: 10.1016/j.compbiomed.2023.106959_bib6 article-title: Curvelet Transform-based volume fusion for correcting signal loss artifacts in Time-of-Flight Magnetic Resonance Angiography data publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.06.008 – volume: 48 start-page: 11 year: 2019 ident: 10.1016/j.compbiomed.2023.106959_bib47 article-title: A generative adversarial network for infrared and visible image fusion publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.09.004 – volume: 30 start-page: 55 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib35 article-title: Hierarchical Paired Channel Fusion network for street scene change detection publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3031173 – start-page: 1409 year: 2014 ident: 10.1016/j.compbiomed.2023.106959_bib15 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Comput. Sci. – volume: vol. 5 start-page: 2164 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib26 article-title: Medical image fusion based a densely connected convolutional networks – volume: 224 year: 2020 ident: 10.1016/j.compbiomed.2023.106959_bib41 article-title: Infrared and visible image fusion based on dilated residual attention network publication-title: Optik doi: 10.1016/j.ijleo.2020.165409 – volume: 19 start-page: 469 year: 2008 ident: 10.1016/j.compbiomed.2023.106959_bib90 article-title: Performance evaluation of image fusion techniques publication-title: Imag. Fusion doi: 10.1016/B978-0-12-372529-5.00017-2 – volume: 119 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib75 article-title: DFPGAN: dual fusion path generative adversarial network for infrared and visible image fusion publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2021.103947 – volume: 141 start-page: 45 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib37 article-title: Multi-focus image fusion algorithm based on supervised learning for fully convolutional neural network publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2020.11.014 – volume: 8 start-page: 206445 year: 2020 ident: 10.1016/j.compbiomed.2023.106959_bib44 article-title: Infrared and visible image fusion using a deep unsupervised framework with perceptual loss publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3037770 – volume: 247 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib49 article-title: A novel asexual-reproduction evolutionary neural network for wind power prediction based on generative adversarial networks publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.114714 – volume: 69 start-page: 128 year: 2020 ident: 10.1016/j.compbiomed.2023.106959_bib36 article-title: RXDNFuse: a aggregated residual dense network for infrared and visible image fusion publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.11.009 – volume: 30 start-page: 3098 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib63 article-title: Deep coupled feedback network for joint exposure fusion and image super-resolution publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3058764 – volume: 176 year: 2020 ident: 10.1016/j.compbiomed.2023.106959_bib21 article-title: Multi-focus image fusion method based on two stages of convolutional neural network publication-title: Signal Process. doi: 10.1016/j.sigpro.2020.107681 – volume: 2022 start-page: 17 year: 2022 ident: 10.1016/j.compbiomed.2023.106959_bib88 article-title: Pooling in deep learning: from “invariable” to “variable” publication-title: BioMed Res. Int. – volume: 28 start-page: 493 year: 2006 ident: 10.1016/j.compbiomed.2023.106959_bib11 article-title: Evaluation of focus measures in multi-focus image fusion publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2006.09.005 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib71 article-title: Multigrained attention network for infrared and visible image fusion publication-title: IEEE Trans. Instrum. Meas. – volume: 2 start-page: 1 year: 2008 ident: 10.1016/j.compbiomed.2023.106959_bib95 article-title: Assessment of image fusion procedures using entropy image quality and multispectral classification publication-title: J. Appl. Remote Sens. – volume: 8 start-page: 355 year: 1988 ident: 10.1016/j.compbiomed.2023.106959_bib98 article-title: In-fibre Bragg grating sensors publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/8/4/002 – volume: 67 start-page: 147 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib51 article-title: DiCyc: GAN-based deformation invariant cross-domain information fusion for medical image synthesis publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.10.015 – volume: 22 start-page: 2864 year: 2013 ident: 10.1016/j.compbiomed.2023.106959_bib13 article-title: Image fusion with guided filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2244222 – volume: 54 start-page: 85 year: 2020 ident: 10.1016/j.compbiomed.2023.106959_bib65 article-title: Infrared and visible image fusion via detail preserving adversarial learning publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.07.005 – volume: 2 start-page: 52 year: 2018 ident: 10.1016/j.compbiomed.2023.106959_bib100 article-title: Hybrid multimodality medical image fusion technique for feature enhancement in medical diagnosis publication-title: Int. J. Eng. Sci. Invent. – volume: 101 year: 2022 ident: 10.1016/j.compbiomed.2023.106959_bib38 article-title: Degradation model-based deep network for multi-focus image fusion publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2021.116554 – volume: 4 start-page: 133 year: 2015 ident: 10.1016/j.compbiomed.2023.106959_bib101 article-title: A review of quality metrics for fused image publication-title: Aquatic Proc. doi: 10.1016/j.aqpro.2015.02.019 – volume: 66 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib27 article-title: A multiscale residual pyramid attention network for medical image fusion publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2021.102488 – volume: 19 start-page: 4 year: 2014 ident: 10.1016/j.compbiomed.2023.106959_bib87 article-title: Medical image fusion: a survey of the state of the art publication-title: Inf. Fusion doi: 10.1016/j.inffus.2013.12.002 – volume: 215 start-page: 3 year: 2015 ident: 10.1016/j.compbiomed.2023.106959_bib14 article-title: An overview of multi-modal medical image fusion publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.160 – volume: 19 start-page: 7107 year: 2019 ident: 10.1016/j.compbiomed.2023.106959_bib2 article-title: MCFNet: multi-layer concatenation fusion network for medical images fusion publication-title: IEEE Sensor. J. doi: 10.1109/JSEN.2019.2913281 – volume: 119 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib34 article-title: A Multi-scale MobileNet based fusion method for infrared and visible image publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2021.103894 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib33 article-title: UFA-FUSE: a novel deep supervised and hybrid model for multifocus image fusion publication-title: IEEE Trans. Instrum. Meas. – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib39 article-title: STDFusionNet: an infrared and visible image fusion network based on salient target detection publication-title: IEEE Trans. Instrum. Meas. – volume: 20 start-page: 60 year: 2014 ident: 10.1016/j.compbiomed.2023.106959_bib12 article-title: Multi-scale weighted gradient-based fusion for multi-focus images publication-title: Inf. Fusion doi: 10.1016/j.inffus.2013.11.005 – volume: 219 year: 2020 ident: 10.1016/j.compbiomed.2023.106959_bib77 article-title: Infrared and visible image fusion with supervised convolutional neural network publication-title: Optik doi: 10.1016/j.ijleo.2020.165120 – volume: 6 start-page: 640 year: 2020 ident: 10.1016/j.compbiomed.2023.106959_bib45 article-title: VIF-net: an unsupervised framework for infrared and visible image fusion publication-title: IEEE Trans. Comput.Imag. – volume: 463 start-page: 198 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib61 article-title: A light-weight, efficient, and general cross-modal image fusion network publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.08.044 – volume: 13 start-page: 1 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib81 article-title: Reconstructing a high dynamic range image with a deeply unsupervised fusion model publication-title: IEEE Photon. J. – volume: 36 start-page: 191 year: 2017 ident: 10.1016/j.compbiomed.2023.106959_bib19 article-title: Multi-focus image fusion with a deep convolutional neural network publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.12.001 – volume: 29 start-page: 4816 year: 2020 ident: 10.1016/j.compbiomed.2023.106959_bib10 article-title: DRPL: deep regression pair learning for multi-focus image fusion publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2976190 – volume: 102 year: 2019 ident: 10.1016/j.compbiomed.2023.106959_bib25 article-title: Infrared and visible image fusion with ResNet and zero-phase component analysis publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2019.103039 – volume: 2022 start-page: 22 year: 2022 ident: 10.1016/j.compbiomed.2023.106959_bib42 article-title: Dense convolutional network and its application in medical image analysis publication-title: BioMed Res. Int. – volume: 8 start-page: 55145 year: 2020 ident: 10.1016/j.compbiomed.2023.106959_bib54 article-title: MGMDcGAN: medical image fusion using multi-generator multi-discriminator conditional generative adversarial network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982016 – volume: 54 start-page: 99 year: 2020 ident: 10.1016/j.compbiomed.2023.106959_bib20 article-title: IFCNN: a general image fusion framework based on convolutional neural network publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.07.011 – volume: 96 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib48 article-title: MFIF-GAN: a new generative adversarial network for multi-focus image fusion publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2021.116295 – volume: 29 start-page: 4980 year: 2020 ident: 10.1016/j.compbiomed.2023.106959_bib52 article-title: DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2977573 – volume: 56 start-page: 181 year: 2000 ident: 10.1016/j.compbiomed.2023.106959_bib97 article-title: Objective image fusion performance measure publication-title: Military Tech. Cour. – volume: 44 start-page: 1066 year: 2008 ident: 10.1016/j.compbiomed.2023.106959_bib93 article-title: Comments on information measure for performance of image fusion publication-title: Electron. Lett. doi: 10.1049/el:20081754 – volume: 21 start-page: 7458 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib53 article-title: Coupled GAN with relativistic discriminators for infrared and visible images fusion publication-title: IEEE Sensor. J. doi: 10.1109/JSEN.2019.2921803 – volume: 248 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib24 article-title: An infrared and visible image fusion method based on VGG-19 network publication-title: Optik doi: 10.1016/j.ijleo.2021.168084 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib57 article-title: SEDRFuse: a symmetric encoder–decoder with residual block network for infrared and visible image fusion publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.3022438 – start-page: 770 year: 2016 ident: 10.1016/j.compbiomed.2023.106959_bib16 article-title: Deep residual learning for image recognition – volume: 115 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib32 article-title: An infrared and visible image fusion method based on improved DenseNet and mRMR-ZCA publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2021.103707 – volume: 171 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib7 article-title: Medical image fusion based on convolutional neural networks and non-subsampled contourlet transform publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114574 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.compbiomed.2023.106959_bib72 article-title: FLGC-fusion GAN: an enhanced fusion GAN model by importing fully learnable group convolution publication-title: Math. Probl Eng. – volume: 529 start-page: 28 year: 2020 ident: 10.1016/j.compbiomed.2023.106959_bib67 article-title: Infrared and visible image fusion using dual discriminators generative adversarial networks with Wasserstein distance publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.04.035 – volume: 117 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib82 article-title: Infrared and visible image fusion based on variational auto-encoder and infrared feature compensation publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2021.103839 – volume: 98 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib84 article-title: The ensemble deep learning model for novel COVID-19 on CT images publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106885 – volume: 242 start-page: 360 year: 2007 ident: 10.1016/j.compbiomed.2023.106959_bib86 article-title: PET/CT: form and function publication-title: Radiology doi: 10.1148/radiol.2422051113 – volume: 4 start-page: 1 year: 2020 ident: 10.1016/j.compbiomed.2023.106959_bib56 article-title: PFAF-net: pyramid feature network for multimodal fusion publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2020.3041585 – volume: 86 start-page: 1 year: 2019 ident: 10.1016/j.compbiomed.2023.106959_bib60 article-title: A generative image fusion approach based on supervised deep convolution network driven by weighted gradient flow publication-title: Image Vis Comput. doi: 10.1016/j.imavis.2019.02.011 – volume: 193 start-page: 1203 year: 2009 ident: 10.1016/j.compbiomed.2023.106959_bib85 article-title: Staging of non–small cell lung cancer using integrated PET/CT publication-title: Ajr Am. J.Roentgenol. doi: 10.2214/AJR.09.3193 – volume: 69 start-page: 3855 year: 2020 ident: 10.1016/j.compbiomed.2023.106959_bib28 article-title: Multimodal medical image fusion using hybrid layer decomposition with CNN-based feature mapping and structural clustering publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2019.2933341 – volume: 9 start-page: 67634 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib30 article-title: Multimodal medical image fusion based on gabor representation combination of multi-CNN and fuzzy neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3075953 – start-page: 234 year: 2015 ident: 10.1016/j.compbiomed.2023.106959_bib18 article-title: U-Net: convolutional networks for biomedical image segmentation – volume: 25 start-page: 3438 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib79 article-title: DMC-fusion: deep multi-cascade fusion with classifier-based feature synthesis for medical multi-modal images publication-title: IEEE J. Biomedi. Health Inf. doi: 10.1109/JBHI.2021.3083752 – volume: 66 start-page: 40 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib70 article-title: MFF-GAN: an unsupervised generative adversarial network with adaptive and gradient joint constraints for multi-focus image fusion publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.08.022 – volume: 73 start-page: 72 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib78 article-title: RFN-Nest: an end-to-end residual fusion network for infrared and visible images publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.02.023 – volume: 1406 start-page: 2661 year: 2014 ident: 10.1016/j.compbiomed.2023.106959_bib46 publication-title: Generat. Advers.Netw. – volume: 37 start-page: 744 year: 2011 ident: 10.1016/j.compbiomed.2023.106959_bib92 article-title: A nonreference image fusion metric based on mutual information of image features publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2011.07.012 – volume: 8 start-page: 131 year: 2007 ident: 10.1016/j.compbiomed.2023.106959_bib8 article-title: Pixel-based and region-based image fusion schemes using ICA bases publication-title: Inf. Fusion doi: 10.1016/j.inffus.2005.09.001 – volume: 14 start-page: 3426 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib80 article-title: IR-MSDNet: infrared and visible image fusion based on infrared features and multiscale dense network publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. doi: 10.1109/JSTARS.2021.3065121 – volume: 15 start-page: 430 year: 2006 ident: 10.1016/j.compbiomed.2023.106959_bib89 article-title: Image information and visual quality publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.859378 – volume: 13 start-page: 600 year: 2003 ident: 10.1016/j.compbiomed.2023.106959_bib94 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 30 start-page: 163 year: 2020 ident: 10.1016/j.compbiomed.2023.106959_bib22 article-title: Global-feature encoding U-net (GEU-Net) for multi-focus image fusion publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3033158 – volume: 72 start-page: 110 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib73 article-title: Image fusion based on generative adversarial network consistent with perception publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.02.019 – volume: 157 start-page: 444 year: 2020 ident: 10.1016/j.compbiomed.2023.106959_bib29 article-title: Smart city oriented remote sensing image fusion methods based on convolution sampling and spatial transformation publication-title: Comput. Commun. doi: 10.1016/j.comcom.2020.04.010 – volume: 7 start-page: 309 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib58 article-title: SMFuse: multi-focus image fusion via self-supervised mask-optimization publication-title: IEEE Trans. Comput.Imag. – volume: 104 year: 2020 ident: 10.1016/j.compbiomed.2023.106959_bib66 article-title: LBP-BEGAN: a generative adversarial network architecture for infrared and visible image fusion publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2019.103144 – volume: 26 start-page: 65 year: 2017 ident: 10.1016/j.compbiomed.2023.106959_bib4 article-title: Single-scale fusion: an effective approach to merging images publication-title: IEEE Trans. Image Process. – volume: 14 start-page: 1176 year: 2020 ident: 10.1016/j.compbiomed.2023.106959_bib69 article-title: Multimodal MR image synthesis using gradient prior and adversarial learning publication-title: IEEE J.Select.Topic Sig.Process. doi: 10.1109/JSTSP.2020.3013418 – volume: 26 start-page: 485 year: 2019 ident: 10.1016/j.compbiomed.2023.106959_bib9 article-title: Medical image fusion via convolutional sparsity based morphological component analysis publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2019.2895749 – volume: 39 start-page: 204 year: 2020 ident: 10.1016/j.compbiomed.2023.106959_bib76 article-title: Co-learning feature fusion map from PET-CT images of lung cancer publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2019.2923601 – volume: 43 start-page: 2959 year: 1995 ident: 10.1016/j.compbiomed.2023.106959_bib99 article-title: Image quality measures and their performance publication-title: IEEE Trans. Commun. doi: 10.1109/26.477498 – volume: 72 start-page: 110 year: 2021 ident: 10.1016/j.compbiomed.2023.106959_bib68 article-title: Image fusion based on generative adversarial network consistent with perception publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.02.019 – volume: 85 year: 2020 ident: 10.1016/j.compbiomed.2023.106959_bib43 article-title: MLDNet: multi-level dense network for multi-focus image fusion publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2020.115864 |
| SSID | ssj0004030 |
| Score | 2.6187894 |
| SecondaryResourceType | review_article |
| Snippet | The image fusion methods based on deep learning has become a research hotspot in the field of computer vision in recent years. This paper reviews these methods... AbstractThe image fusion methods based on deep learning has become a research hotspot in the field of computer vision in recent years. This paper reviews these... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 106959 |
| SubjectTerms | Algorithms Artificial neural networks Coders Computer vision Convolutional neural network Datasets Deep Learning Encoder-decoder network Encoders-Decoders Feature extraction Generative adversarial network Generative adversarial networks Human error Image Processing, Computer-Assisted - methods Internal Medicine Machine learning Medical image fusion Medical imaging Neural networks Neural Networks, Computer Other Teaching methods Tomography Wavelet transforms |
| Title | Deep learning methods for medical image fusion: A review |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523004249 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523004249 https://dx.doi.org/10.1016/j.compbiomed.2023.106959 https://www.ncbi.nlm.nih.gov/pubmed/37141652 https://www.proquest.com/docview/2815942681 https://www.proquest.com/docview/2810919873 |
| Volume | 160 |
| WOSCitedRecordID | wos000992823400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: P5Z dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: M7P dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: K7- dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25. customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7RV dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: M2O dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSFe-P4ojMpIvAZiO7EdeEADNiGhlWp8qOLFchwbbdrasrT8_ZxjJ30ZqBIvJ6XNNal9vjv7Pn4AL2yjlDF5nQkvK9ygNDQzBaOZKpXBq9pwazqwCTmZqNmsmqYDtzalVfY6sVPUzcKGM_JXTKHhRXOi6NvlryygRoXoaoLQ2IE9yhgNcv5JZpu6yJzHEhTUNQVuhVImT8zvCinbscT9ZYAQx49FFTqWXm2e_uZ-dmbo6Pb__oE7cCs5oOQgSsxduObm9-DGcQqx3wf1wbklSWASP0lEmG4J-rbkIgZ1yOkFKiHi1-Gg7TU5ILH85QF8Ozr8-v5jluAVMluKYpUxL4SkFv2v3FSeca-syZWpqEej7j1uUwte10KUTe2qhhfOFejNFaJx1AV8X_4QdueLuXsMhDXIWDhPleW4A-KV9dxIIVAQaNMINQLZj6q2qfd4gMA4132S2ZnezIcO86HjfIyADpzL2H9jC56qnzjd15eiRtRoJLbglVfxujYt7VZT3TKd6y9dZyMUKsa78DFyvhk4k_cSvZItn7vfS40eHrURmRE8H77G9R-COmbuFuvuHnT5Khz0ETyKkjkMVOjGSEXJnvz7x5_CzfAmMQFuH3ZXl2v3DK7b36vT9nIMO_Lke6Az2VE1hr13h5PpybhbbEiP2edA5RTptPzxByB8Lo4 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL78dCASPBMRDbWT9ACFWUqlXbFRJF2ptxHLtqRXeXZhfEn-I3Mo6T7KWgvfTAMY-xI894HvHMfAAvXKWUtXmZiSA1BigVzWzBaKaGyuJVabmzDdiEHI3UeKw_rcHvrhYmplV2OrFR1NXUxX_kr5lCw4vmRNH3s-9ZRI2Kp6sdhEYSiz3_6yeGbPW73S3k70vGtj8eftjJWlSBzA1FMc9YEEJSh25HbnVgPChnc2U1DWjLQsDorOBlKcSwKr2ueOF9gU5MISpPfYS15TjuJbiMelzGFDI5lss6zJynkhfUbQWGXm3mUMoniyniqaT-VYQsx9tCxw6p55vDv7m7jdnbvvm_LdgtuNE62GQz7YjbsOYnd-DqQZtCcBfUlvcz0oJlHJGEoF0T9N3JaTq0IsenqGRJWMQfiW_IJknlPffgy4V8931Yn0wn_iEQViFh4QNVjmOEx7UL3EohUNBpVQk1ANlx0bi2t3qE-PhmuiS6E7Pkv4n8N4n_A6A95Sz1F1mBRneCYrr6WdT4Bo3gCrTyPFpft6qrNtTUzOTmc9O5CYWY8eZ4HCnf9pStd5a8rhXn3eik1PRTLUV0AM_7x6jf4qGVnfjponkHXVqNiz6AB2kn9AsVu01SMWSP_j34M7i2c3iwb_Z3R3uP4Xr8qpTstwHr87OFfwJX3I_5cX32tNnOBL5e9Hb4A8omgvQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgiouvB8LBYwEx9DYThwHhFDFsqIqrFYCpIqL6_iBWrW7S7ML4q_x6xjHSfZS0F564JjH2JEzT3tmPoBnxkqpdVolwhclBiiWJjpjNJG51HhVaW50AzZRjMfy4KCcbMDvrhYmpFV2OrFR1HZmwh75DpNoeNGcSLrj27SIyXD0Zv49CQhS4aS1g9OILLLvfv3E8K1-vTfEf_2csdG7z2_fJy3CQGJykS0S5oUoqEEXJNWlZ9xLo1OpS-rRrnmPkVrGq0qI3FautDxzLkOHJhPWURcgbjmOewkuFxhjhsBvkn9d1WSmPJa_oJ7LMAxrs4hibllIF4_l9S8CfDneFmXolnq-afyb69uYwNH1_3nxbsC11vEmu1FSbsKGm96CrY9tasFtkEPn5qQF0fhGIrJ2TdCnJ6fxMIscnaLyJX4ZNhhfkl0Sy37uwJcL-e67sDmdTd19IMwiYeY8lYZj5MdL47kuhEABoNYKOYCi-6PKtD3XA_THieqS647VihdU4AUVeWEAtKecx74ja9CUHdOorq4WLYFC47gGbXEeratblVYrqmqmUvWp6eiEDM14c2yOlK96ytZri97YmvNudxyr-qlW7DqAp_1j1HvhMEtP3WzZvIOubomLPoB7USr6hQpdKKnI2YN_D_4EtlAK1Ie98f5DuBo-KuYAbsPm4mzpHsEV82NxVJ89biSbwOFFS8MfnwqL5w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+methods+for+medical+image+fusion%3A+A+review&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Zhou%2C+Tao&rft.au=Cheng%2C+QianRu&rft.au=Lu%2C+HuiLing&rft.au=Li%2C+Qi&rft.date=2023-06-01&rft.eissn=1879-0534&rft.volume=160&rft.spage=106959&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.106959&rft_id=info%3Apmid%2F37141652&rft.externalDocID=37141652 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif |