Statistical inference based on generalized Lindley record values

This paper addresses the problems of frequentist and Bayesian estimation for the unknown parameters of generalized Lindley distribution based on lower record values. We first derive the exact explicit expressions for the single and product moments of lower record values, and then use these results t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics Jg. 47; H. 9; S. 1543 - 1561
Hauptverfasser: Singh, Sukhdev, Dey, Sanku, Kumar, Devendra
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Taylor & Francis 03.07.2020
Taylor & Francis Ltd
Schlagworte:
ISSN:0266-4763, 1360-0532
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the problems of frequentist and Bayesian estimation for the unknown parameters of generalized Lindley distribution based on lower record values. We first derive the exact explicit expressions for the single and product moments of lower record values, and then use these results to compute the means, variances and covariance between two lower record values. We next obtain the maximum likelihood estimators and associated asymptotic confidence intervals. Furthermore, we obtain Bayes estimators under the assumption of gamma priors on both the shape and the scale parameters of the generalized Lindley distribution, and associated the highest posterior density interval estimates. The Bayesian estimation is studied with respect to both symmetric (squared error) and asymmetric (linear-exponential (LINEX)) loss functions. Finally, we compute Bayesian predictive estimates and predictive interval estimates for the future record values. To illustrate the findings, one real data set is analyzed, and Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation and prediction.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0266-4763
1360-0532
DOI:10.1080/02664763.2019.1683153