Statistical inference based on generalized Lindley record values
This paper addresses the problems of frequentist and Bayesian estimation for the unknown parameters of generalized Lindley distribution based on lower record values. We first derive the exact explicit expressions for the single and product moments of lower record values, and then use these results t...
Saved in:
| Published in: | Journal of applied statistics Vol. 47; no. 9; pp. 1543 - 1561 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Taylor & Francis
03.07.2020
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 0266-4763, 1360-0532 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper addresses the problems of frequentist and Bayesian estimation for the unknown parameters of generalized Lindley distribution based on lower record values. We first derive the exact explicit expressions for the single and product moments of lower record values, and then use these results to compute the means, variances and covariance between two lower record values. We next obtain the maximum likelihood estimators and associated asymptotic confidence intervals. Furthermore, we obtain Bayes estimators under the assumption of gamma priors on both the shape and the scale parameters of the generalized Lindley distribution, and associated the highest posterior density interval estimates. The Bayesian estimation is studied with respect to both symmetric (squared error) and asymmetric (linear-exponential (LINEX)) loss functions. Finally, we compute Bayesian predictive estimates and predictive interval estimates for the future record values. To illustrate the findings, one real data set is analyzed, and Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation and prediction. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0266-4763 1360-0532 |
| DOI: | 10.1080/02664763.2019.1683153 |