Statistical inference based on generalized Lindley record values

This paper addresses the problems of frequentist and Bayesian estimation for the unknown parameters of generalized Lindley distribution based on lower record values. We first derive the exact explicit expressions for the single and product moments of lower record values, and then use these results t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of applied statistics Ročník 47; číslo 9; s. 1543 - 1561
Hlavní autoři: Singh, Sukhdev, Dey, Sanku, Kumar, Devendra
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Taylor & Francis 03.07.2020
Taylor & Francis Ltd
Témata:
ISSN:0266-4763, 1360-0532
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper addresses the problems of frequentist and Bayesian estimation for the unknown parameters of generalized Lindley distribution based on lower record values. We first derive the exact explicit expressions for the single and product moments of lower record values, and then use these results to compute the means, variances and covariance between two lower record values. We next obtain the maximum likelihood estimators and associated asymptotic confidence intervals. Furthermore, we obtain Bayes estimators under the assumption of gamma priors on both the shape and the scale parameters of the generalized Lindley distribution, and associated the highest posterior density interval estimates. The Bayesian estimation is studied with respect to both symmetric (squared error) and asymmetric (linear-exponential (LINEX)) loss functions. Finally, we compute Bayesian predictive estimates and predictive interval estimates for the future record values. To illustrate the findings, one real data set is analyzed, and Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation and prediction.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0266-4763
1360-0532
DOI:10.1080/02664763.2019.1683153