Mitochondria: An Organelle of Bacterial Origin Controlling Inflammation
Inflammation is a cellular and molecular response to infection and/or tissues injury. While a suited inflammatory response in intensity and time allows for killing pathogens, clearing necrotic tissue, and healing injury; an excessive inflammatory response drives various diseases in which inflammatio...
Saved in:
| Published in: | Frontiers in immunology Vol. 9; p. 536 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
Frontiers
19.04.2018
Frontiers Media S.A |
| Subjects: | |
| ISSN: | 1664-3224, 1664-3224 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Inflammation is a cellular and molecular response to infection and/or tissues injury. While a suited inflammatory response in intensity and time allows for killing pathogens, clearing necrotic tissue, and healing injury; an excessive inflammatory response drives various diseases in which inflammation and tissues damages/stress self-sustain each other. Microbes have been poorly implied in non-resolving inflammation, emphasizing the importance of endogenous regulation of inflammation. Mitochondria have been historically identified as the main source of cellular energy, by coupling the oxidation of fatty acids and pyruvate with the production of high amount of adenosine triphosphate by the electron transport chain. Mitochondria are also the main source of reactive oxygen species. Interestingly, research in the last decade has highlighted that since its integration in eukaryote cells, this organelle of bacterial origin has not only been tolerated by immunity, but has also been placed as a central regulator of cell defense. In intact cells, mitochondria regulate cell responses to critical innate immune receptors engagement. Downstream intracellular signaling pathways interact with mitochondrial proteins and are tuned by mitochondrial functioning. Moreover, upon cell stress or damages, mitochondrial components are released into the cytoplasm or the extra cellular milieu, where they act as danger signals when recognized by innate immune receptors. Finally, by regulating the energetic state of immunological synapse between dendritic cells and lymphocytes, mitochondria regulate the inflammation fate toward immunotolerance or immunogenicity. As dysregulations of these processes have been recently involved in various diseases, the identification of the underlying mechanisms might open new avenues to modulate inflammation. |
|---|---|
| AbstractList | Inflammation is a cellular and molecular response to infection and/or tissues injury. While a suited inflammatory response in intensity and time allows for killing pathogens, clearing necrotic tissue, and healing injury; an excessive inflammatory response drives various diseases in which inflammation and tissues damages/stress self-sustain each other. Microbes have been poorly implied in non-resolving inflammation, emphasizing the importance of endogenous regulation of inflammation. Mitochondria have been historically identified as the main source of cellular energy, by coupling the oxidation of fatty acids and pyruvate with the production of high amount of adenosine triphosphate by the electron transport chain. Mitochondria are also the main source of reactive oxygen species. Interestingly, research in the last decade has highlighted that since its integration in eukaryote cells, this organelle of bacterial origin has not only been tolerated by immunity, but has also been placed as a central regulator of cell defense. In intact cells, mitochondria regulate cell responses to critical innate immune receptors engagement. Downstream intracellular signaling pathways interact with mitochondrial proteins and are tuned by mitochondrial functioning. Moreover, upon cell stress or damages, mitochondrial components are released into the cytoplasm or the extra cellular milieu, where they act as danger signals when recognized by innate immune receptors. Finally, by regulating the energetic state of immunological synapse between dendritic cells and lymphocytes, mitochondria regulate the inflammation fate toward immunotolerance or immunogenicity. As dysregulations of these processes have been recently involved in various diseases, the identification of the underlying mechanisms might open new avenues to modulate inflammation.Inflammation is a cellular and molecular response to infection and/or tissues injury. While a suited inflammatory response in intensity and time allows for killing pathogens, clearing necrotic tissue, and healing injury; an excessive inflammatory response drives various diseases in which inflammation and tissues damages/stress self-sustain each other. Microbes have been poorly implied in non-resolving inflammation, emphasizing the importance of endogenous regulation of inflammation. Mitochondria have been historically identified as the main source of cellular energy, by coupling the oxidation of fatty acids and pyruvate with the production of high amount of adenosine triphosphate by the electron transport chain. Mitochondria are also the main source of reactive oxygen species. Interestingly, research in the last decade has highlighted that since its integration in eukaryote cells, this organelle of bacterial origin has not only been tolerated by immunity, but has also been placed as a central regulator of cell defense. In intact cells, mitochondria regulate cell responses to critical innate immune receptors engagement. Downstream intracellular signaling pathways interact with mitochondrial proteins and are tuned by mitochondrial functioning. Moreover, upon cell stress or damages, mitochondrial components are released into the cytoplasm or the extra cellular milieu, where they act as danger signals when recognized by innate immune receptors. Finally, by regulating the energetic state of immunological synapse between dendritic cells and lymphocytes, mitochondria regulate the inflammation fate toward immunotolerance or immunogenicity. As dysregulations of these processes have been recently involved in various diseases, the identification of the underlying mechanisms might open new avenues to modulate inflammation. Inflammation is a cellular and molecular response to infection and/or tissues injury. While a suited inflammatory response in intensity and time allows for killing pathogens, clearing necrotic tissue, and healing injury; an excessive inflammatory response drives various diseases in which inflammation and tissues damages/stress self-sustain each other. Microbes have been poorly implied in non-resolving inflammation, emphasizing the importance of endogenous regulation of inflammation. Mitochondria have been historically identified as the main source of cellular energy, by coupling the oxidation of fatty acids and pyruvate with the production of high amount of adenosine triphosphate by the electron transport chain. Mitochondria are also the main source of reactive oxygen species. Interestingly, research in the last decade has highlighted that since its integration in eukaryote cells, this organelle of bacterial origin has not only been tolerated by immunity, but has also been placed as a central regulator of cell defense. In intact cells, mitochondria regulate cell responses to critical innate immune receptors engagement. Downstream intracellular signaling pathways interact with mitochondrial proteins and are tuned by mitochondrial functioning. Moreover, upon cell stress or damages, mitochondrial components are released into the cytoplasm or the extra cellular milieu, where they act as danger signals when recognized by innate immune receptors. Finally, by regulating the energetic state of immunological synapse between dendritic cells and lymphocytes, mitochondria regulate the inflammation fate toward immunotolerance or immunogenicity. As dysregulations of these processes have been recently involved in various diseases, the identification of the underlying mechanisms might open new avenues to modulate inflammation. |
| Author | Meyer, Alain Bernardi, Livio Sibilia, Jean Pottecher, Julien Geny, Bernard Laverny, Gilles Charles, Anne Laure Alsaleh, Ghada |
| AuthorAffiliation | 5 Kennedy Institute of Rheumatology (KIR), University of Oxford , Oxford , United Kingdom 2 Centre de Référence des Maladies Autoimmunes Rares, Hôpitaux Universitaires de Strasbourg , Strasbourg , France 1 Institut de Physiologie EA 3072, Service de physiologie et d’Explorations Fonctionnelles, Hôpitaux Universitaires de Strasbourg , Strasbourg , France 6 Pôle d’Anesthésie-Réanimation SAMU-SMUR, Service d’Anesthésie-Réanimation Chirurgicale, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg , Strasbourg , France 3 Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg , Strasbourg , France 4 Institut de Génétique et de Biologie Moleculaire et Cellulaire, UMR 7104, INSERM U1248, University of Strasbourg , Illkirch , France |
| AuthorAffiliation_xml | – name: 4 Institut de Génétique et de Biologie Moleculaire et Cellulaire, UMR 7104, INSERM U1248, University of Strasbourg , Illkirch , France – name: 3 Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg , Strasbourg , France – name: 5 Kennedy Institute of Rheumatology (KIR), University of Oxford , Oxford , United Kingdom – name: 1 Institut de Physiologie EA 3072, Service de physiologie et d’Explorations Fonctionnelles, Hôpitaux Universitaires de Strasbourg , Strasbourg , France – name: 2 Centre de Référence des Maladies Autoimmunes Rares, Hôpitaux Universitaires de Strasbourg , Strasbourg , France – name: 6 Pôle d’Anesthésie-Réanimation SAMU-SMUR, Service d’Anesthésie-Réanimation Chirurgicale, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg , Strasbourg , France |
| Author_xml | – sequence: 1 givenname: Alain surname: Meyer fullname: Meyer, Alain – sequence: 2 givenname: Gilles surname: Laverny fullname: Laverny, Gilles – sequence: 3 givenname: Livio surname: Bernardi fullname: Bernardi, Livio – sequence: 4 givenname: Anne Laure surname: Charles fullname: Charles, Anne Laure – sequence: 5 givenname: Ghada surname: Alsaleh fullname: Alsaleh, Ghada – sequence: 6 givenname: Julien surname: Pottecher fullname: Pottecher, Julien – sequence: 7 givenname: Jean surname: Sibilia fullname: Sibilia, Jean – sequence: 8 givenname: Bernard surname: Geny fullname: Geny, Bernard |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29725325$$D View this record in MEDLINE/PubMed https://hal.science/hal-03663187$$DView record in HAL |
| BookMark | eNp1Uk1vGyEURFWqJk1z76naY3uwCzzA0EMl12oTS65yac-IZWFNxELKriPl3xfbaZREKhfQezPD-5i36CTl5BB6T_AcQKrPPgzDbk4xkXOMOYhX6IwIwWZAKTt58j5FF-N4g-thCgD4G3RK1YJyoPwMXf4MU7bbnLoSzJdmmZrr0pvkYnRN9s03YydXM7GGQx9Ss8ppKjnGkPpmnXw0w2CmkNM79NqbOLqLh_sc_f7x_dfqara5vlyvlpuZ5YJOM9JJD5gAxbUw30riVCepaCV0wi88wdZA6y0hXeuo5U5I5phgRgoPyioG52h91O2yudG3JQym3Otsgj4Ecum1KVOw0ekWeIcFpoTyBeOkMwJzxam0zCvKsapaX49at7t2cJ11tTUTn4k-z6Sw1X2-01wRoQSpAp-OAtsXtKvlRu9jGIQAIhd3e-zHh89K_rNz46SHMNo65zrsvBs1xcApg1pihX54Wtej8r-tVQA-AmzJ41icf4QQrPfe0Adv6L039MEblSJeUGyYDpurnYX4f-JfAkS8_w |
| CitedBy_id | crossref_primary_10_3390_ijms24054339 crossref_primary_10_3389_fimmu_2024_1334006 crossref_primary_10_7554_eLife_85964 crossref_primary_10_1038_s41598_020_64937_x crossref_primary_10_1002_jcb_29311 crossref_primary_10_1155_2020_2851949 crossref_primary_10_1097_j_pain_0000000000001996 crossref_primary_10_3390_jcm14051620 crossref_primary_10_1002_adhm_202203106 crossref_primary_10_1016_j_biopha_2025_118335 crossref_primary_10_1146_annurev_clinpsy_082719_104030 crossref_primary_10_1007_s11357_022_00620_5 crossref_primary_10_1016_j_biopha_2024_116573 crossref_primary_10_3390_cells13141182 crossref_primary_10_1016_j_ebiom_2022_103815 crossref_primary_10_1177_08850666241237715 crossref_primary_10_2147_JIR_S534574 crossref_primary_10_1186_s12967_025_06722_w crossref_primary_10_3389_fimmu_2021_688503 crossref_primary_10_3389_fnbeh_2018_00306 crossref_primary_10_3390_ijms22041532 crossref_primary_10_2174_1381612826666201012164330 crossref_primary_10_1186_s13578_024_01259_9 crossref_primary_10_1016_j_intimp_2023_110246 crossref_primary_10_1097_SHK_0000000000002206 crossref_primary_10_1161_CIRCRESAHA_118_314601 crossref_primary_10_3390_biomedicines13071708 crossref_primary_10_3390_v11040389 crossref_primary_10_3390_ijms22073330 crossref_primary_10_1016_j_inoche_2022_110372 crossref_primary_10_1016_j_biopha_2023_114999 crossref_primary_10_1016_j_ceca_2020_102308 crossref_primary_10_1186_s12987_022_00357_5 crossref_primary_10_3390_antiox7080098 crossref_primary_10_1038_s41419_022_05343_1 crossref_primary_10_3389_fimmu_2023_1243548 crossref_primary_10_3390_antiox10050696 crossref_primary_10_3390_antiox14030251 crossref_primary_10_3389_fcvm_2021_690116 crossref_primary_10_3389_fmed_2024_1498627 crossref_primary_10_1016_j_bbadis_2024_167321 crossref_primary_10_3390_biom12091216 crossref_primary_10_1016_j_preteyeres_2021_100998 crossref_primary_10_1016_j_bbih_2020_100080 crossref_primary_10_1093_infdis_jiaa204 crossref_primary_10_1038_s41419_023_05617_2 crossref_primary_10_12688_f1000research_17959_1 crossref_primary_10_1016_j_dci_2020_103924 crossref_primary_10_1016_j_heliyon_2024_e27357 crossref_primary_10_1016_j_envint_2020_105830 crossref_primary_10_1017_neu_2024_39 crossref_primary_10_1038_s41467_024_49460_1 crossref_primary_10_3390_antiox11061213 crossref_primary_10_3390_cells10051138 crossref_primary_10_3390_jcm10245815 crossref_primary_10_1007_s10067_020_05263_5 crossref_primary_10_1016_j_aqrep_2024_102575 crossref_primary_10_1016_j_bbamcr_2025_119906 crossref_primary_10_1016_j_pharmthera_2020_107475 crossref_primary_10_3390_jcm8101613 crossref_primary_10_1038_s41598_022_10290_0 crossref_primary_10_1016_j_exer_2021_108517 crossref_primary_10_1093_burnst_tkab001 crossref_primary_10_3389_fendo_2020_613639 crossref_primary_10_1007_s12035_025_04758_z crossref_primary_10_1136_ard_2022_223469 crossref_primary_10_1002_adhm_202304125 crossref_primary_10_1186_s13578_025_01456_0 crossref_primary_10_1016_j_cellsig_2023_110794 crossref_primary_10_1016_j_brainresbull_2020_12_022 crossref_primary_10_3390_ijms22073706 crossref_primary_10_3389_fimmu_2021_626755 crossref_primary_10_1016_j_biopha_2020_110308 crossref_primary_10_3389_fimmu_2024_1343325 crossref_primary_10_3389_fcimb_2020_593805 crossref_primary_10_3390_jcm9040978 crossref_primary_10_1002_acn3_51311 crossref_primary_10_1016_j_intimp_2018_08_023 crossref_primary_10_3389_fphys_2023_1222826 crossref_primary_10_3390_ijms22031016 crossref_primary_10_1016_j_phymed_2022_154545 crossref_primary_10_1007_s12035_024_04468_y crossref_primary_10_1097_WNR_0000000000001928 crossref_primary_10_3390_cells9041054 crossref_primary_10_1002_advs_202406760 crossref_primary_10_1016_j_biopha_2023_115529 crossref_primary_10_4103_1673_5374_381493 crossref_primary_10_1038_s41598_025_96578_3 crossref_primary_10_3390_molecules25122857 crossref_primary_10_1016_j_jep_2020_113147 crossref_primary_10_3390_ijms232214482 crossref_primary_10_3390_ijms26178369 crossref_primary_10_3390_antiox9080656 crossref_primary_10_1155_2022_9687925 crossref_primary_10_1002_ptr_6654 crossref_primary_10_3390_ijms22084080 crossref_primary_10_1042_BCJ20200920 crossref_primary_10_1016_j_colsurfb_2025_114684 crossref_primary_10_1093_rb_rbad070 crossref_primary_10_3390_cells10112898 |
| Cites_doi | 10.1073/pnas.0703126104 10.1007/s00401-017-1731-9 10.1038/nature08780 10.1073/pnas.0704014104 10.1371/journal.ppat.1003086 10.1016/j.mito.2013.08.006 10.1126/science.1195491 10.1084/jem.20102049 10.1093/rheumatology/kex041 10.1371/journal.ppat.1001012 10.1073/pnas.0908698106 10.1038/nature12640 10.1182/blood-2009-10-249540 10.1038/nature09973 10.1002/art.40142 10.1172/JCI76012 10.1038/embor.2009.258 10.1016/j.cell.2005.02.001 10.1038/nm.4027 10.1016/j.cell.2004.12.041 10.1371/journal.pone.0136883 10.1189/jlb.0703328 10.1016/j.cell.2014.11.037 10.4049/jimmunol.178.4.2122 10.3389/fimmu.2013.00248 10.1038/ni.1980 10.1016/j.immuni.2014.04.016 10.3389/fcimb.2017.00094 10.1016/j.cell.2013.02.054 10.1073/pnas.0914118107 10.1016/j.cell.2010.02.029 10.1038/nature14156 10.1126/science.1219855 10.1016/j.cell.2010.07.036 10.1126/scisignal.2000287 10.1083/jcb.201006159 10.3389/fimmu.2016.00200 10.1016/j.immuni.2012.01.009 10.1371/journal.ppat.1002057 10.1038/nature09663 10.1016/j.immuni.2009.01.008 10.1126/scisignal.aaf1933 10.1038/nature08476 10.1016/j.immuni.2013.08.001 10.3389/fphar.2015.00262 10.1136/annrheumdis-2012-201340 10.1073/pnas.1000779107 10.1016/j.immuni.2012.10.020 10.1038/ni.1863 10.1073/pnas.0807694106 10.1097/TA.0b013e3181dcd28d 10.1113/jphysiol.2003.049478 10.1016/j.ceb.2014.09.010 10.1016/j.cub.2015.07.055 10.1038/nature07201 10.1042/BJ20081386 10.1016/j.cell.2015.12.057 10.1126/scisignal.2001147 10.4049/jimmunol.1003613 10.1152/ajprenal.00203.2014 10.1038/ni.3123 10.1016/j.immuni.2008.09.003 10.1016/j.cell.2005.08.012 10.1038/ni.2550 |
| ContentType | Journal Article |
| Copyright | Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2018 Meyer, Laverny, Bernardi, Charles, Alsaleh, Pottecher, Sibilia and Geny. 2018 Meyer, Laverny, Bernardi, Charles, Alsaleh, Pottecher, Sibilia and Geny |
| Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2018 Meyer, Laverny, Bernardi, Charles, Alsaleh, Pottecher, Sibilia and Geny. 2018 Meyer, Laverny, Bernardi, Charles, Alsaleh, Pottecher, Sibilia and Geny |
| DBID | AAYXX CITATION NPM 7X8 1XC VOOES 5PM DOA |
| DOI | 10.3389/fimmu.2018.00536 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1664-3224 |
| ExternalDocumentID | oai_doaj_org_article_b35d06021257451da6059528c4f92509 PMC5916961 oai:HAL:hal-03663187v1 29725325 10_3389_fimmu_2018_00536 |
| Genre | Journal Article Review |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM ACXDI IAO IEA IHR IHW IPNFZ NPM RIG 7X8 1XC VOOES 5PM |
| ID | FETCH-LOGICAL-c562t-1d8f301320224fb81e9d826b83d6f7f10ca3bfc11dbe2c5e684e464a86f39c943 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 120 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430424200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-3224 |
| IngestDate | Fri Oct 03 12:41:20 EDT 2025 Thu Aug 21 14:30:46 EDT 2025 Tue Oct 14 20:56:07 EDT 2025 Fri Sep 05 08:49:06 EDT 2025 Wed Feb 19 02:36:11 EST 2025 Tue Nov 18 22:03:05 EST 2025 Sat Nov 29 02:50:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | systemic lupus erythematosus inflammation mitochondria myositis reactive oxygen species dermatomyositis rheumatoid arthritis |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c562t-1d8f301320224fb81e9d826b83d6f7f10ca3bfc11dbe2c5e684e464a86f39c943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 PMCID: PMC5916961 Edited by: Olivier Garraud, Institut National de la Transfusion Sanguine, France Specialty section: This article was submitted to Inflammation, a section of the journal Frontiers in Immunology Reviewed by: Sinisa Savic, University of Leeds, United Kingdom; Richard Eugene Frye, Phoenix Children’s Hospital, United States |
| ORCID | 0000-0003-3557-2642 0000-0002-5824-6359 0000-0002-1601-4795 0000-0002-2666-6877 |
| OpenAccessLink | https://doaj.org/article/b35d06021257451da6059528c4f92509 |
| PMID | 29725325 |
| PQID | 2035243059 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b35d06021257451da6059528c4f92509 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5916961 hal_primary_oai_HAL_hal_03663187v1 proquest_miscellaneous_2035243059 pubmed_primary_29725325 crossref_primary_10_3389_fimmu_2018_00536 crossref_citationtrail_10_3389_fimmu_2018_00536 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-19 |
| PublicationDateYYYYMMDD | 2018-04-19 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-19 day: 19 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in immunology |
| PublicationTitleAlternate | Front Immunol |
| PublicationYear | 2018 |
| Publisher | Frontiers Frontiers Media S.A |
| Publisher_xml | – name: Frontiers – name: Frontiers Media S.A |
| References | Tassi (B43) 2010; 107 Youle (B7) 2012; 337 Zhuang (B41) 2015; 308 McDonald (B53) 2010; 330 Collins (B46) 2004; 75 West (B47) 2015; 520 Ablasser (B23) 2013; 503 Buskiewicz (B21) 2016; 9 Mahla (B28) 2013; 4 Naviaux (B51) 2014; 16 Zhong (B24) 2008; 29 Michalek (B63) 2011; 186 Contis (B45) 2017; 56 Gerriets (B64) 2015; 125 Zhou (B36) 2011; 469 Sena (B62) 2013; 38 Castanier (B12) 2010; 11 Misawa (B37) 2013; 14 Reczek (B5) 2015; 33 Archibald (B8) 2015; 25 Osman (B54) 2011; 192 Seth (B10) 2005; 122 Iyer (B52) 2009; 106 Iwasaki (B57) 2015; 16 Rongvaux (B48) 2014; 159 Raoof (B56) 2010; 68 Shao (B35) 2015; 6 Nathan (B2) 2010; 140 Shi (B34) 2011; 7 Zhang (B44) 2010; 464 Nobre (B16) 2015; 10 Meyer (B20) 2017; 134 Balaban (B3) 2005; 120 Onoguchi (B14) 2010; 6 Murphy (B4) 2009; 417 Zhong (B26) 2009; 30 Klotz (B60) 2007; 178 Quintana (B61) 2007; 104 Seifert (B19) 2010; 142 Koshiba (B13) 2011; 4 Turrens (B6) 2003; 552 Kamata (B33) 2005; 120 Bulua (B32) 2011; 208 Simon (B31) 2010; 107 Iyer (B55) 2013; 39 Ishikawa (B25) 2009; 461 Mildner (B58) 2014; 40 Carta (B42) 2012; 71 Shimada (B50) 2012; 36 Gao (B22) 2017; 69 Nakahira (B40) 2011; 12 Jounai (B18) 2007; 104 Kawai (B27) 2010; 11 West (B29) 2011; 472 Zhao (B11) 2012; 8 Zhong (B39) 2016; 164 Lood (B49) 2016; 22 Yasukawa (B15) 2009; 2 Medzhitov (B1) 2008; 454 Min (B30) 2017; 7 Oshiumi (B9) 2016; 7 Tal (B17) 2009; 106 Subramanian (B38) 2013; 153 Krawczyk (B59) 2010; 115 |
| References_xml | – volume: 104 start-page: 14418 year: 2007 ident: B61 article-title: T cell activation requires mitochondrial translocation to the immunological synapse publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0703126104 – volume: 134 start-page: 655 year: 2017 ident: B20 article-title: IFN-β-induced reactive oxygen species and mitochondrial damage contribute to muscle impairment and inflammation maintenance in dermatomyositis publication-title: Acta Neuropathol doi: 10.1007/s00401-017-1731-9 – volume: 464 start-page: 104 year: 2010 ident: B44 article-title: Circulating mitochondrial DAMPs cause inflammatory responses to injury publication-title: Nature doi: 10.1038/nature08780 – volume: 104 start-page: 14050 year: 2007 ident: B18 article-title: The Atg5 Atg12 conjugate associates with innate antiviral immune responses publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0704014104 – volume: 8 start-page: e1003086 year: 2012 ident: B11 article-title: COX5B regulates MAVS-mediated antiviral signaling through interaction with ATG5 and repressing ROS production publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003086 – volume: 16 start-page: 7 year: 2014 ident: B51 article-title: Metabolic features of the cell danger response publication-title: Mitochondrion doi: 10.1016/j.mito.2013.08.006 – volume: 330 start-page: 362 year: 2010 ident: B53 article-title: Intravascular danger signals guide neutrophils to sites of sterile inflammation publication-title: Science doi: 10.1126/science.1195491 – volume: 208 start-page: 519 year: 2011 ident: B32 article-title: Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS) publication-title: J Exp Med doi: 10.1084/jem.20102049 – volume: 56 start-page: 1200 year: 2017 ident: B45 article-title: Neutrophil-derived mitochondrial DNA promotes receptor activator of nuclear factor κB and its ligand signalling in rheumatoid arthritis publication-title: Rheumatology (Oxford) doi: 10.1093/rheumatology/kex041 – volume: 6 start-page: e1001012 year: 2010 ident: B14 article-title: Virus-infection or 5’ppp-RNA activates antiviral signal through redistribution of IPS-1 mediated by MFN1 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1001012 – volume: 106 start-page: 20388 year: 2009 ident: B52 article-title: Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0908698106 – volume: 503 start-page: 530 year: 2013 ident: B23 article-title: Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP publication-title: Nature doi: 10.1038/nature12640 – volume: 115 start-page: 4742 year: 2010 ident: B59 article-title: Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation publication-title: Blood doi: 10.1182/blood-2009-10-249540 – volume: 472 start-page: 476 year: 2011 ident: B29 article-title: TLR signalling augments macrophage bactericidal activity through mitochondrial ROS publication-title: Nature doi: 10.1038/nature09973 – volume: 69 start-page: 1623 year: 2017 ident: B22 article-title: Bone marrow-derived mesenchymal stem cells from patients with systemic lupus erythematosus have a senescence-associated secretory phenotype mediated by a mitochondrial antiviral signaling protein-interferon-β feedback loop publication-title: Arthritis Rheumatol doi: 10.1002/art.40142 – volume: 125 start-page: 194 year: 2015 ident: B64 article-title: Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation publication-title: J Clin Invest doi: 10.1172/JCI76012 – volume: 11 start-page: 133 year: 2010 ident: B12 article-title: Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway publication-title: EMBO Rep doi: 10.1038/embor.2009.258 – volume: 120 start-page: 483 year: 2005 ident: B3 article-title: Mitochondria, oxidants, and aging publication-title: Cell doi: 10.1016/j.cell.2005.02.001 – volume: 22 start-page: 146 year: 2016 ident: B49 article-title: Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease publication-title: Nat Med doi: 10.1038/nm.4027 – volume: 120 start-page: 649 year: 2005 ident: B33 article-title: Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases publication-title: Cell doi: 10.1016/j.cell.2004.12.041 – volume: 10 start-page: e0136883 year: 2015 ident: B16 article-title: Modulation of innate immune signalling by lipid-mediated MAVS transmembrane domain oligomerization publication-title: PLoS One doi: 10.1371/journal.pone.0136883 – volume: 75 start-page: 995 year: 2004 ident: B46 article-title: Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses publication-title: J Leukoc Biol doi: 10.1189/jlb.0703328 – volume: 159 start-page: 1563 year: 2014 ident: B48 article-title: Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA publication-title: Cell doi: 10.1016/j.cell.2014.11.037 – volume: 178 start-page: 2122 year: 2007 ident: B60 article-title: Peroxisome proliferator-activated receptor gamma control of dendritic cell function contributes to development of CD4+ T cell anergy publication-title: J Immunol doi: 10.4049/jimmunol.178.4.2122 – volume: 4 start-page: 248 year: 2013 ident: B28 article-title: Sweeten PAMPs: role of sugar complexed PAMPs in innate immunity and vaccine biology publication-title: Front Immunol doi: 10.3389/fimmu.2013.00248 – volume: 12 start-page: 222 year: 2011 ident: B40 article-title: Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome publication-title: Nat Immunol doi: 10.1038/ni.1980 – volume: 40 start-page: 642 year: 2014 ident: B58 article-title: Development and function of dendritic cell subsets publication-title: Immunity doi: 10.1016/j.immuni.2014.04.016 – volume: 7 start-page: 94 year: 2017 ident: B30 article-title: Peroxiredoxin-6 negatively regulates bactericidal activity and NF-κB activity by interrupting TRAF6-ECSIT complex publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2017.00094 – volume: 153 start-page: 348 year: 2013 ident: B38 article-title: The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation publication-title: Cell doi: 10.1016/j.cell.2013.02.054 – volume: 107 start-page: 9801 year: 2010 ident: B31 article-title: Concerted action of wild-type and mutant TNF receptors enhances inflammation in TNF receptor 1-associated periodic fever syndrome publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0914118107 – volume: 140 start-page: 871 year: 2010 ident: B2 article-title: Nonresolving inflammation publication-title: Cell doi: 10.1016/j.cell.2010.02.029 – volume: 520 start-page: 553 year: 2015 ident: B47 article-title: Mitochondrial DNA stress primes the antiviral innate immune response publication-title: Nature doi: 10.1038/nature14156 – volume: 337 start-page: 1062 year: 2012 ident: B7 article-title: Mitochondrial fission, fusion, and stress publication-title: Science doi: 10.1126/science.1219855 – volume: 142 start-page: 613 year: 2010 ident: B19 article-title: Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress publication-title: Cell doi: 10.1016/j.cell.2010.07.036 – volume: 2 start-page: ra47 year: 2009 ident: B15 article-title: Mitofusin 2 inhibits mitochondrial antiviral signaling publication-title: Sci Signal doi: 10.1126/scisignal.2000287 – volume: 192 start-page: 7 year: 2011 ident: B54 article-title: Making heads or tails of phospholipids in mitochondria publication-title: J Cell Biol doi: 10.1083/jcb.201006159 – volume: 7 start-page: 200 year: 2016 ident: B9 article-title: Accessory factors of cytoplasmic viral RNA sensors required for antiviral innate immune response publication-title: Front Immunol doi: 10.3389/fimmu.2016.00200 – volume: 36 start-page: 401 year: 2012 ident: B50 article-title: Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis publication-title: Immunity doi: 10.1016/j.immuni.2012.01.009 – volume: 7 start-page: e1002057 year: 2011 ident: B34 article-title: Mitochondrial ubiquitin ligase MARCH5 promotes TLR7 signaling by attenuating TANK action publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002057 – volume: 469 start-page: 221 year: 2011 ident: B36 article-title: A role for mitochondria in NLRP3 inflammasome activation publication-title: Nature doi: 10.1038/nature09663 – volume: 30 start-page: 397 year: 2009 ident: B26 article-title: The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA publication-title: Immunity doi: 10.1016/j.immuni.2009.01.008 – volume: 9 start-page: ra115 year: 2016 ident: B21 article-title: Reactive oxygen species induce virus-independent MAVS oligomerization in systemic lupus erythematosus publication-title: Sci Signal doi: 10.1126/scisignal.aaf1933 – volume: 461 start-page: 788 year: 2009 ident: B25 article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity publication-title: Nature doi: 10.1038/nature08476 – volume: 39 start-page: 311 year: 2013 ident: B55 article-title: Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation publication-title: Immunity doi: 10.1016/j.immuni.2013.08.001 – volume: 6 start-page: 262 year: 2015 ident: B35 article-title: NLRP3 inflammasome and its inhibitors: a review publication-title: Front Pharmacol doi: 10.3389/fphar.2015.00262 – volume: 71 start-page: 1577 year: 2012 ident: B42 article-title: Deficient production of IL-1 receptor antagonist and IL-6 coupled to oxidative stress in cryopyrin-associated periodic syndrome monocytes publication-title: Ann Rheum Dis doi: 10.1136/annrheumdis-2012-201340 – volume: 107 start-page: 9789 year: 2010 ident: B43 article-title: Altered redox state of monocytes from cryopyrin-associated periodic syndromes causes accelerated IL-1beta secretion publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1000779107 – volume: 38 start-page: 225 year: 2013 ident: B62 article-title: Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling publication-title: Immunity doi: 10.1016/j.immuni.2012.10.020 – volume: 11 start-page: 373 year: 2010 ident: B27 article-title: The role of pattern-recognition receptors in innate immunity: update on toll-like receptors publication-title: Nat Immunol doi: 10.1038/ni.1863 – volume: 106 start-page: 2770 year: 2009 ident: B17 article-title: Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0807694106 – volume: 68 start-page: 1328 year: 2010 ident: B56 article-title: Mitochondrial peptides are potent immune activators that activate human neutrophils via FPR-1 publication-title: J Trauma doi: 10.1097/TA.0b013e3181dcd28d – volume: 552 start-page: 335 year: 2003 ident: B6 article-title: Mitochondrial formation of reactive oxygen species publication-title: J Physiol doi: 10.1113/jphysiol.2003.049478 – volume: 33 start-page: 8 year: 2015 ident: B5 article-title: ROS-dependent signal transduction publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2014.09.010 – volume: 25 start-page: R911 year: 2015 ident: B8 article-title: Endosymbiosis and eukaryotic cell evolution publication-title: Curr Biol doi: 10.1016/j.cub.2015.07.055 – volume: 454 start-page: 428 year: 2008 ident: B1 article-title: Origin and physiological roles of inflammation publication-title: Nature doi: 10.1038/nature07201 – volume: 417 start-page: 1 year: 2009 ident: B4 article-title: How mitochondria produce reactive oxygen species publication-title: Biochem J doi: 10.1042/BJ20081386 – volume: 164 start-page: 896 year: 2016 ident: B39 article-title: NF-κB restricts inflammasome activation via elimination of damaged mitochondria publication-title: Cell doi: 10.1016/j.cell.2015.12.057 – volume: 4 start-page: ra7 year: 2011 ident: B13 article-title: Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling publication-title: Sci Signal doi: 10.1126/scisignal.2001147 – volume: 186 start-page: 3299 year: 2011 ident: B63 article-title: Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets publication-title: J Immunol doi: 10.4049/jimmunol.1003613 – volume: 308 start-page: F857 year: 2015 ident: B41 article-title: Mitochondrial dysfunction confers albumin-induced NLRP3 inflammasome activation and renal tubular injury publication-title: Am J Physiol Renal Physiol doi: 10.1152/ajprenal.00203.2014 – volume: 16 start-page: 343 year: 2015 ident: B57 article-title: Control of adaptive immunity by the innate immune system publication-title: Nat Immunol doi: 10.1038/ni.3123 – volume: 29 start-page: 538 year: 2008 ident: B24 article-title: The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation publication-title: Immunity doi: 10.1016/j.immuni.2008.09.003 – volume: 122 start-page: 669 year: 2005 ident: B10 article-title: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3 publication-title: Cell doi: 10.1016/j.cell.2005.08.012 – volume: 14 start-page: 454 year: 2013 ident: B37 article-title: Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome publication-title: Nat Immunol doi: 10.1038/ni.2550 |
| SSID | ssj0000493335 |
| Score | 2.5229888 |
| SecondaryResourceType | review_article |
| Snippet | Inflammation is a cellular and molecular response to infection and/or tissues injury. While a suited inflammatory response in intensity and time allows for... |
| SourceID | doaj pubmedcentral hal proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 536 |
| SubjectTerms | Adaptive immunology Cellular Biology dermatomyositis Immunology inflammation Innate immunity Life Sciences mitochondria myositis reactive oxygen species rheumatoid arthritis Subcellular Processes |
| Title | Mitochondria: An Organelle of Bacterial Origin Controlling Inflammation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29725325 https://www.proquest.com/docview/2035243059 https://hal.science/hal-03663187 https://pubmed.ncbi.nlm.nih.gov/PMC5916961 https://doaj.org/article/b35d06021257451da6059528c4f92509 |
| Volume | 9 |
| WOSCitedRecordID | wos000430424200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VqkhcEO9ugSpFXDhEu45fMbdt1ZfUFg4g7c1K_FC3arOo3a3UC7-dGXu77FIJLlxycBInmRl7vonH3wB8jJVnxIBbthh8lYIFXTY8IJBTxAauneMukbie6LOzejQyX5dKfVFOWKYHzoLrt1z6gSIicqmFZL5B_G1kVTsRDbrvtHUPUc9SMHWRcS_nXOZ1SYzCTD-Or65mlMpFuZMyMTL_9kOJrh-9yzklQz5Emn8mTC55oINn8HQOHYthfuXnsBa6F_A4F5O8ewmHpzg4cTLrPNrU52LYFWmfJf2YLyax2M20zNjBl1QLq9jLSeq0Hb047iJaRt7F-Aq-H-x_2zsq52USSofgZVoyX0dOSybkjmNbs2A8Bg1tzb2KOrKBa3gbHWO-DZWTQdUiCCWaWkVunBH8Nax3ky5sQqF9lLJyRocmCGFiMwictxTTRMW1lD3o3wvNujmHOJWyuLQYS5CYbRKzJTHbJOYefFrc8SPzZ_zl2l3Sw-I6Yr5ODWgPdm4P9l_20IMPqMWVPo6GJ5ba0FkrnML0LevBzr2SLQ4nWiNBfUxmN_g2iEiJBg07epOVvuirMrqSvEIp6BVzWHnY6plufJ4ouyWicKPY1v_4wrfwhGRGS1rMvIP16fUsvIcNdzsd31xvwyM9qrfTaMDj6c_9X-A9Cvk |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondria%3A+An+Organelle+of+Bacterial+Origin+Controlling+Inflammation&rft.jtitle=Frontiers+in+immunology&rft.au=Meyer%2C+Alain&rft.au=Laverny%2C+Gilles&rft.au=Bernardi%2C+Livio&rft.au=Charles%2C+Anne+Laure&rft.date=2018-04-19&rft.issn=1664-3224&rft.eissn=1664-3224&rft.volume=9&rft.spage=536&rft_id=info:doi/10.3389%2Ffimmu.2018.00536&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |