Innovation in Actinic Keratosis Assessment: Artificial Intelligence-Based Approach to LC-OCT PRO Score Evaluation

Actinic keratosis (AK) is a common skin cancer in situ that can progress to invasive SCC. Line-field confocal optical coherence tomography (LC-OCT) has emerged as a non-invasive imaging technique that can aid in diagnosis. Recently, machine-learning algorithms have been developed that can automatica...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cancers Ročník 15; číslo 18; s. 4457
Hlavní autoři: Daxenberger, Fabia, Deußing, Maximilian, Eijkenboom, Quirine, Gust, Charlotte, Thamm, Janis, Hartmann, Daniela, French, Lars, Welzel, Julia, Schuh, Sandra, Sattler, Elke
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 07.09.2023
MDPI
Témata:
ISSN:2072-6694, 2072-6694
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Actinic keratosis (AK) is a common skin cancer in situ that can progress to invasive SCC. Line-field confocal optical coherence tomography (LC-OCT) has emerged as a non-invasive imaging technique that can aid in diagnosis. Recently, machine-learning algorithms have been developed that can automatically assess the PRO score of AKs based on the dermo-epidermal junction’s (DEJ’s) protrusion on LC-OCT images. A dataset of 19.898 LC-OCT images from 80 histologically confirmed AK lesions was used to test the performance of a previous validated artificial intelligence (AI)-based LC-OCT assessment algorithm. AI-based PRO score assessment was compared to the imaging experts’ visual score. Additionally, undulation of the DEJ, the number of protrusions detected within the image, and the maximum depth of the protrusions were computed. Our results show that AI-automated PRO grading is highly comparable to the visual score, with an agreement of 71.3% for the lesions evaluated. Furthermore, this AI-based assessment was significantly faster than the regular visual PRO score assessment. The results confirm our previous findings of the pilot study in a larger cohort that the AI-based grading of LC-OCT images is a reliable and fast tool to optimize the efficiency of visual PRO score grading. This technology has the potential to improve the accuracy and speed of AK diagnosis and may lead to better clinical outcomes for patients.
AbstractList Simple SummaryIn this study, we evaluated the performance of a previous validated artificial intelligence-based assessment algorithm using line-field confocal optical coherence tomography (LC-OCT) to diagnose actinic keratosis (AK). The AI system accurately graded AK lesions in a large patient cohort and showed high agreement with visual assessments by experts. This non-invasive and fast AI-based approach has the potential to improve the efficiency and accuracy of AK diagnosis, leading to better clinical outcomes for patients.AbstractActinic keratosis (AK) is a common skin cancer in situ that can progress to invasive SCC. Line-field confocal optical coherence tomography (LC-OCT) has emerged as a non-invasive imaging technique that can aid in diagnosis. Recently, machine-learning algorithms have been developed that can automatically assess the PRO score of AKs based on the dermo-epidermal junction’s (DEJ’s) protrusion on LC-OCT images. A dataset of 19.898 LC-OCT images from 80 histologically confirmed AK lesions was used to test the performance of a previous validated artificial intelligence (AI)-based LC-OCT assessment algorithm. AI-based PRO score assessment was compared to the imaging experts’ visual score. Additionally, undulation of the DEJ, the number of protrusions detected within the image, and the maximum depth of the protrusions were computed. Our results show that AI-automated PRO grading is highly comparable to the visual score, with an agreement of 71.3% for the lesions evaluated. Furthermore, this AI-based assessment was significantly faster than the regular visual PRO score assessment. The results confirm our previous findings of the pilot study in a larger cohort that the AI-based grading of LC-OCT images is a reliable and fast tool to optimize the efficiency of visual PRO score grading. This technology has the potential to improve the accuracy and speed of AK diagnosis and may lead to better clinical outcomes for patients.
Actinic keratosis (AK) is a common skin cancer in situ that can progress to invasive SCC. Line-field confocal optical coherence tomography (LC-OCT) has emerged as a non-invasive imaging technique that can aid in diagnosis. Recently, machine-learning algorithms have been developed that can automatically assess the PRO score of AKs based on the dermo-epidermal junction's (DEJ's) protrusion on LC-OCT images. A dataset of 19.898 LC-OCT images from 80 histologically confirmed AK lesions was used to test the performance of a previous validated artificial intelligence (AI)-based LC-OCT assessment algorithm. AI-based PRO score assessment was compared to the imaging experts' visual score. Additionally, undulation of the DEJ, the number of protrusions detected within the image, and the maximum depth of the protrusions were computed. Our results show that AI-automated PRO grading is highly comparable to the visual score, with an agreement of 71.3% for the lesions evaluated. Furthermore, this AI-based assessment was significantly faster than the regular visual PRO score assessment. The results confirm our previous findings of the pilot study in a larger cohort that the AI-based grading of LC-OCT images is a reliable and fast tool to optimize the efficiency of visual PRO score grading. This technology has the potential to improve the accuracy and speed of AK diagnosis and may lead to better clinical outcomes for patients.Actinic keratosis (AK) is a common skin cancer in situ that can progress to invasive SCC. Line-field confocal optical coherence tomography (LC-OCT) has emerged as a non-invasive imaging technique that can aid in diagnosis. Recently, machine-learning algorithms have been developed that can automatically assess the PRO score of AKs based on the dermo-epidermal junction's (DEJ's) protrusion on LC-OCT images. A dataset of 19.898 LC-OCT images from 80 histologically confirmed AK lesions was used to test the performance of a previous validated artificial intelligence (AI)-based LC-OCT assessment algorithm. AI-based PRO score assessment was compared to the imaging experts' visual score. Additionally, undulation of the DEJ, the number of protrusions detected within the image, and the maximum depth of the protrusions were computed. Our results show that AI-automated PRO grading is highly comparable to the visual score, with an agreement of 71.3% for the lesions evaluated. Furthermore, this AI-based assessment was significantly faster than the regular visual PRO score assessment. The results confirm our previous findings of the pilot study in a larger cohort that the AI-based grading of LC-OCT images is a reliable and fast tool to optimize the efficiency of visual PRO score grading. This technology has the potential to improve the accuracy and speed of AK diagnosis and may lead to better clinical outcomes for patients.
In this study, we evaluated the performance of a previous validated artificial intelligence-based assessment algorithm using line-field confocal optical coherence tomography (LC-OCT) to diagnose actinic keratosis (AK). The AI system accurately graded AK lesions in a large patient cohort and showed high agreement with visual assessments by experts. This non-invasive and fast AI-based approach has the potential to improve the efficiency and accuracy of AK diagnosis, leading to better clinical outcomes for patients.
Actinic keratosis (AK) is a common skin cancer in situ that can progress to invasive SCC. Line-field confocal optical coherence tomography (LC-OCT) has emerged as a non-invasive imaging technique that can aid in diagnosis. Recently, machine-learning algorithms have been developed that can automatically assess the PRO score of AKs based on the dermo-epidermal junction’s (DEJ’s) protrusion on LC-OCT images. A dataset of 19.898 LC-OCT images from 80 histologically confirmed AK lesions was used to test the performance of a previous validated artificial intelligence (AI)-based LC-OCT assessment algorithm. AI-based PRO score assessment was compared to the imaging experts’ visual score. Additionally, undulation of the DEJ, the number of protrusions detected within the image, and the maximum depth of the protrusions were computed. Our results show that AI-automated PRO grading is highly comparable to the visual score, with an agreement of 71.3% for the lesions evaluated. Furthermore, this AI-based assessment was significantly faster than the regular visual PRO score assessment. The results confirm our previous findings of the pilot study in a larger cohort that the AI-based grading of LC-OCT images is a reliable and fast tool to optimize the efficiency of visual PRO score grading. This technology has the potential to improve the accuracy and speed of AK diagnosis and may lead to better clinical outcomes for patients.
In this study, we evaluated the performance of a previous validated artificial intelligence-based assessment algorithm using line-field confocal optical coherence tomography (LC-OCT) to diagnose actinic keratosis (AK). The AI system accurately graded AK lesions in a large patient cohort and showed high agreement with visual assessments by experts. This non-invasive and fast AI-based approach has the potential to improve the efficiency and accuracy of AK diagnosis, leading to better clinical outcomes for patients. Actinic keratosis (AK) is a common skin cancer in situ that can progress to invasive SCC. Line-field confocal optical coherence tomography (LC-OCT) has emerged as a non-invasive imaging technique that can aid in diagnosis. Recently, machine-learning algorithms have been developed that can automatically assess the PRO score of AKs based on the dermo-epidermal junction’s (DEJ’s) protrusion on LC-OCT images. A dataset of 19.898 LC-OCT images from 80 histologically confirmed AK lesions was used to test the performance of a previous validated artificial intelligence (AI)-based LC-OCT assessment algorithm. AI-based PRO score assessment was compared to the imaging experts’ visual score. Additionally, undulation of the DEJ, the number of protrusions detected within the image, and the maximum depth of the protrusions were computed. Our results show that AI-automated PRO grading is highly comparable to the visual score, with an agreement of 71.3% for the lesions evaluated. Furthermore, this AI-based assessment was significantly faster than the regular visual PRO score assessment. The results confirm our previous findings of the pilot study in a larger cohort that the AI-based grading of LC-OCT images is a reliable and fast tool to optimize the efficiency of visual PRO score grading. This technology has the potential to improve the accuracy and speed of AK diagnosis and may lead to better clinical outcomes for patients.
Audience Academic
Author Maximilian Deußing
Daniela Hartmann
Janis Thamm
Elke Sattler
Sandra Schuh
Julia Welzel
Quirine Eijkenboom
Fabia Daxenberger
Charlotte Gust
Lars French
AuthorAffiliation 3 Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
1 Department of Dermatology and Allergy, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany elke.sattler@med.uni-muenchen.de (E.C.S.)
2 Department of Dermatology and Allergology, University Hospital, University of Augsburg, 86179 Augsburg, Germany
AuthorAffiliation_xml – name: 1 Department of Dermatology and Allergy, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany elke.sattler@med.uni-muenchen.de (E.C.S.)
– name: 3 Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
– name: 2 Department of Dermatology and Allergology, University Hospital, University of Augsburg, 86179 Augsburg, Germany
Author_xml – sequence: 1
  givenname: Fabia
  surname: Daxenberger
  fullname: Daxenberger, Fabia
– sequence: 2
  givenname: Maximilian
  orcidid: 0000-0003-4935-9877
  surname: Deußing
  fullname: Deußing, Maximilian
– sequence: 3
  givenname: Quirine
  orcidid: 0009-0006-8014-4152
  surname: Eijkenboom
  fullname: Eijkenboom, Quirine
– sequence: 4
  givenname: Charlotte
  surname: Gust
  fullname: Gust, Charlotte
– sequence: 5
  givenname: Janis
  surname: Thamm
  fullname: Thamm, Janis
– sequence: 6
  givenname: Daniela
  orcidid: 0000-0002-1002-8133
  surname: Hartmann
  fullname: Hartmann, Daniela
– sequence: 7
  givenname: Lars
  surname: French
  fullname: French, Lars
– sequence: 8
  givenname: Julia
  orcidid: 0000-0002-6099-7418
  surname: Welzel
  fullname: Welzel, Julia
– sequence: 9
  givenname: Sandra
  orcidid: 0000-0002-1470-7619
  surname: Schuh
  fullname: Schuh, Sandra
– sequence: 10
  givenname: Elke
  surname: Sattler
  fullname: Sattler, Elke
BackLink https://cir.nii.ac.jp/crid/1873679867747930624$$DView record in CiNii
BookMark eNp9UstrFDEcHqSCtfbsNaAHL9PmNcnEi0yXqosLK1rPIZNJtikzyTbJLPjfm-0WtYuYQJ7fgy-_vKxOfPCmql4jeEGIgJdaeW1iQg1qKW34s-oUQ45rxgQ9-Wv9ojpP6Q6WRgjijJ9W90vvw05lFzxwHnQ6O-80-GKiyiG5BLqUTEqT8fk96GJ21mmnRrD02Yyj25jiW1-pZAbQbbcxKH0LcgCrRb1e3ICv39bguw7RgOudGucHm1fVc6vGZM4f57Pqx8frm8XnerX-tFx0q1o3DOVaWYIHgalQuFEN6RkVhlkGDewpbxUe4DDYhipleq5pr7nY7waKesPaxlpyVn046G7nfjKDLgmiGuU2uknFnzIoJ5_eeHcrN2EnEWwwJ4wVhXePCjHczyZlObmkS2zlTZiTxC2HiApKcYG-OYLehTn6kq-gmMAtoVj8QW3UaKTzNhRjvReVHS_1wbxFtKAu_oEqfTCT06Xu1pXzJ4TLA0HHkFI09ndIBOX-e8ij71EYzRFDu_xQnWLlxv_w3h543rlC2Y-oLW_FRcs4p1wQyDAlvwD8HMzs
CitedBy_id crossref_primary_10_3390_bioengineering12060650
crossref_primary_10_3390_life13122268
crossref_primary_10_1111_ddg_15640
crossref_primary_10_1038_s41598_024_74370_z
crossref_primary_10_1111_jdv_20059
crossref_primary_10_1007_s15012_024_8633_z
crossref_primary_10_1111_ddg_15640_g
crossref_primary_10_3390_app15020535
crossref_primary_10_3390_cancers16061133
crossref_primary_10_3390_app15010159
crossref_primary_10_3390_medicina60071043
crossref_primary_10_1016_j_det_2024_08_006
crossref_primary_10_3390_cancers15194861
crossref_primary_10_1007_s12326_025_00725_6
crossref_primary_10_1007_s00105_024_05376_x
Cites_doi 10.1111/ced.14762
10.1111/bjd.17632
10.1038/nature21056
10.1111/jdv.13626
10.1016/j.jmir.2019.09.005
10.1002/jbio.201800391
10.1002/cac2.12012
10.1136/ijgc-2022-004213
10.1096/fj.202001412R
10.1111/j.1365-2133.2007.07860.x
10.1111/jdv.14512
10.1016/S0140-6736(88)91658-3
10.1038/s43018-022-00436-4
10.1007/s13244-018-0639-9
10.1001/jamadermatol.2022.1034
10.1111/jdv.12848
10.3390/cancers13122856
10.3390/ijerph182413409
10.1016/j.jaad.2022.12.057
10.1016/j.clindermatol.2021.03.011
10.1111/bjd.16536
10.1111/ajd.13965
10.5826/dpc.1004a121
10.1111/ddg.15194
10.1111/jdv.15580
10.1067/mjd.2000.103344
10.1111/j.1365-2133.2006.07426.x
10.1007/s40257-019-00462-6
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID RYH
AAYXX
CITATION
3V.
7T5
7TO
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
H94
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.3390/cancers15184457
DatabaseName CiNii Complete
CrossRef
ProQuest Central (Corporate)
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Biological Science Collection
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2072-6694
ExternalDocumentID PMC10527366
A766927814
10_3390_cancers15184457
GroupedDBID ---
53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
ABDBF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
DIK
DWQXO
E3Z
EBD
ESX
GNUQQ
GUQSH
GX1
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
RYH
TUS
AAYXX
CITATION
3V.
7T5
7TO
7XB
8FK
H94
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c561t-af32d9249a25a53b649e6f60e0b478a2d0ddf54aaeb7c4bc79f54ad41be685ff3
IEDL.DBID M7P
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001074510300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-6694
IngestDate Tue Nov 04 02:06:28 EST 2025
Thu Oct 02 06:13:32 EDT 2025
Fri Jul 25 11:57:27 EDT 2025
Tue Nov 11 11:16:23 EST 2025
Tue Nov 04 18:37:51 EST 2025
Tue Nov 18 21:36:12 EST 2025
Sat Nov 29 07:12:07 EST 2025
Mon Nov 10 09:11:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c561t-af32d9249a25a53b649e6f60e0b478a2d0ddf54aaeb7c4bc79f54ad41be685ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-1470-7619
0000-0003-4935-9877
0009-0006-8014-4152
0000-0002-5198-0956
0000-0002-6099-7418
0000-0002-1002-8133
0000-0001-6205-7959
OpenAccessLink https://www.proquest.com/docview/2869283429?pq-origsite=%requestingapplication%
PQID 2869283429
PQPubID 2032421
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10527366
proquest_miscellaneous_2870149442
proquest_journals_2869283429
gale_infotracmisc_A766927814
gale_infotracacademiconefile_A766927814
crossref_primary_10_3390_cancers15184457
crossref_citationtrail_10_3390_cancers15184457
nii_cinii_1873679867747930624
PublicationCentury 2000
PublicationDate 20230907
PublicationDateYYYYMMDD 2023-09-07
PublicationDate_xml – month: 9
  year: 2023
  text: 20230907
  day: 7
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Cancers
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Noels (ref_30) 2019; 181
Cockerell (ref_2) 2000; 42
Christensen (ref_4) 2023; 88
Schmitz (ref_9) 2018; 32
ref_13
Schmitz (ref_23) 2019; 33
Queen (ref_32) 2020; 34
Carrato (ref_8) 2015; 29
Ruini (ref_14) 2021; 46
ref_19
Currie (ref_21) 2019; 50
Esteva (ref_18) 2017; 542
ref_17
ref_16
Yamashita (ref_20) 2018; 9
Zalaudek (ref_11) 2006; 155
Siddharthan (ref_6) 2019; 32
Hogarty (ref_27) 2020; 21
Kesic (ref_5) 2023; 33
Schmitz (ref_12) 2019; 180
ref_22
Schmitz (ref_1) 2018; 16
Shmatko (ref_24) 2022; 3
Marks (ref_28) 1988; 1
Rundle (ref_26) 2021; 39
Heppt (ref_3) 2020; 18
Schmitz (ref_10) 2016; 30
Patel (ref_7) 2007; 156
Jiang (ref_25) 2020; 40
Ahmady (ref_29) 2022; 158
Suppa (ref_15) 2023; 158
Kim (ref_31) 2023; 64
References_xml – volume: 46
  start-page: 1471
  year: 2021
  ident: ref_14
  article-title: Line-field optical coherence tomography: In vivo diagnosis of basal cell carcinoma subtypes compared with histopathology
  publication-title: Clin. Exp. Dermatol.
  doi: 10.1111/ced.14762
– volume: 181
  start-page: 544
  year: 2019
  ident: ref_30
  article-title: Healthcare utilization and management of actinic keratosis in primary and secondary care: A complementary database analysis
  publication-title: Br. J. Dermatol.
  doi: 10.1111/bjd.17632
– volume: 158
  start-page: 180
  year: 2023
  ident: ref_15
  article-title: Line-field confocal optical coherence tomography in melanocytic and non-melanocytic skin tumors
  publication-title: Ital. J. Dermatol. Venerol.
– volume: 542
  start-page: 115
  year: 2017
  ident: ref_18
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 30
  start-page: 1303
  year: 2016
  ident: ref_10
  article-title: Actinic keratosis: Correlation between clinical and histological classification systems
  publication-title: J. Eur. Acad. Dermatol. Venereol.
  doi: 10.1111/jdv.13626
– volume: 50
  start-page: 477
  year: 2019
  ident: ref_21
  article-title: Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging
  publication-title: J. Med. Imaging Radiat. Sci.
  doi: 10.1016/j.jmir.2019.09.005
– ident: ref_16
  doi: 10.1002/jbio.201800391
– volume: 40
  start-page: 154
  year: 2020
  ident: ref_25
  article-title: Emerging role of deep learning-based artificial intelligence in tumor pathology
  publication-title: Cancer Commun.
  doi: 10.1002/cac2.12012
– volume: 33
  start-page: 446
  year: 2023
  ident: ref_5
  article-title: The European Society of Gynaecological Oncology (ESGO), the International Society for the Study of Vulvovaginal Disease (ISSVD), the European College for the Study of Vulval Disease (ECSVD), and the European Federation for Colposcopy (EFC) consensus statement on the management of vaginal intraepithelial neoplasia
  publication-title: Int. J. Gynecol. Cancer
  doi: 10.1136/ijgc-2022-004213
– volume: 32
  start-page: 257
  year: 2019
  ident: ref_6
  article-title: Anal intraepithelial neoplasia: Diagnosis, screening, and treatment
  publication-title: Ann. Gastroenterol.
– volume: 34
  start-page: 13022
  year: 2020
  ident: ref_32
  article-title: UV biomarker genes for classification and risk stratification of cutaneous actinic keratoses and squamous cell carcinoma subtypes
  publication-title: FASEB J.
  doi: 10.1096/fj.202001412R
– volume: 156
  start-page: 8
  year: 2007
  ident: ref_7
  article-title: Actinic keratosis is an early in situ squamous cell carcinoma: A proposal for reclassification
  publication-title: Br. J. Dermatol.
  doi: 10.1111/j.1365-2133.2007.07860.x
– volume: 32
  start-page: 745
  year: 2018
  ident: ref_9
  article-title: Actinic keratoses show variable histological basal growth patterns—A proposed classification adjustment
  publication-title: J. Eur. Acad. Dermatol. Venereol.
  doi: 10.1111/jdv.14512
– volume: 1
  start-page: 795
  year: 1988
  ident: ref_28
  article-title: Malignant transformation of solar keratoses to squamous cell carcinoma
  publication-title: Lancet
  doi: 10.1016/S0140-6736(88)91658-3
– volume: 3
  start-page: 1026
  year: 2022
  ident: ref_24
  article-title: Artificial intelligence in histopathology: Enhancing cancer research and clinical oncology
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-022-00436-4
– volume: 9
  start-page: 611
  year: 2018
  ident: ref_20
  article-title: Convolutional neural networks: An overview and application in radiology
  publication-title: Insights Imaging
  doi: 10.1007/s13244-018-0639-9
– volume: 158
  start-page: 634
  year: 2022
  ident: ref_29
  article-title: Risk of Invasive Cutaneous Squamous Cell Carcinoma after Different Treatments for Actinic Keratosis: A Secondary Analysis of a Randomized Clinical Trial
  publication-title: JAMA Dermatol.
  doi: 10.1001/jamadermatol.2022.1034
– volume: 29
  start-page: 991
  year: 2015
  ident: ref_8
  article-title: Actinic keratosis with atypical basal cells (AK I) is the most common lesion associated with invasive squamous cell carcinoma of the skin
  publication-title: J. Eur. Acad. Dermatol. Venereol.
  doi: 10.1111/jdv.12848
– ident: ref_17
  doi: 10.3390/cancers13122856
– ident: ref_19
  doi: 10.3390/ijerph182413409
– volume: 18
  start-page: 275
  year: 2020
  ident: ref_3
  article-title: S3 guideline for actinic keratosis and cutaneous squamous cell carcinoma—Short version, part 1: Diagnosis, interventions for actinic keratoses, care structures and quality-of-care indicators
  publication-title: J. Dtsch. Dermatol. Ges.
– volume: 88
  start-page: 1317
  year: 2023
  ident: ref_4
  article-title: Dermatopathologic features of cutaneous squamous cell carcinoma and actinic keratosis: Consensus criteria and proposed reporting guidelines
  publication-title: J. Am. Acad. Dermatol.
  doi: 10.1016/j.jaad.2022.12.057
– volume: 39
  start-page: 657
  year: 2021
  ident: ref_26
  article-title: Artificial intelligence in dermatology
  publication-title: Clin. Dermatol.
  doi: 10.1016/j.clindermatol.2021.03.011
– volume: 180
  start-page: 916
  year: 2019
  ident: ref_12
  article-title: Cutaneous squamous cell carcinomas are associated with basal proliferating actinic keratoses
  publication-title: Br. J. Dermatol.
  doi: 10.1111/bjd.16536
– volume: 64
  start-page: 80
  year: 2023
  ident: ref_31
  article-title: Factors for risk stratification of patients with actinic keratosis using integrated analysis of clinicopathological features and gene expression patterns
  publication-title: Australas. J. Dermatol.
  doi: 10.1111/ajd.13965
– ident: ref_13
  doi: 10.5826/dpc.1004a121
– ident: ref_22
  doi: 10.1111/ddg.15194
– volume: 33
  start-page: 1092
  year: 2019
  ident: ref_23
  article-title: Evaluation of two histological classifications for actinic keratoses—PRO classification scored highest inter-rater reliability
  publication-title: J. Eur. Acad. Dermatol. Venereol.
  doi: 10.1111/jdv.15580
– volume: 42
  start-page: 11
  year: 2000
  ident: ref_2
  article-title: Histopathology of incipient intraepidermal squamous cell carcinoma (“actinic keratosis”)
  publication-title: J. Am. Acad. Dermatol.
  doi: 10.1067/mjd.2000.103344
– volume: 155
  start-page: 951
  year: 2006
  ident: ref_11
  article-title: Dermoscopy of facial nonpigmented actinic keratosis
  publication-title: Br. J. Dermatol.
  doi: 10.1111/j.1365-2133.2006.07426.x
– volume: 16
  start-page: 1002
  year: 2018
  ident: ref_1
  article-title: Nonmelanoma skin cancer—From actinic keratosis to cutaneous squamous cell carcinoma
  publication-title: JDDG J. Dtsch. Dermatol. Ges.
– volume: 21
  start-page: 41
  year: 2020
  ident: ref_27
  article-title: Artificial Intelligence in Dermatology-Where We Are and the Way to the Future: A Review
  publication-title: Am. J. Clin. Dermatol.
  doi: 10.1007/s40257-019-00462-6
SSID ssj0000331767
Score 2.398726
Snippet Actinic keratosis (AK) is a common skin cancer in situ that can progress to invasive SCC. Line-field confocal optical coherence tomography (LC-OCT) has emerged...
In this study, we evaluated the performance of a previous validated artificial intelligence-based assessment algorithm using line-field confocal optical...
Simple SummaryIn this study, we evaluated the performance of a previous validated artificial intelligence-based assessment algorithm using line-field confocal...
SourceID pubmedcentral
proquest
gale
crossref
nii
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4457
SubjectTerms Actinic keratosis
Algorithms
Artificial intelligence
Classification
Data mining
ddc:610
Dermatology
Diagnosis
Histology
Invasiveness
Keratosis
Lesions
Machine learning
Neural networks
Pilot projects
Skin
Skin cancer
Tomography
Title Innovation in Actinic Keratosis Assessment: Artificial Intelligence-Based Approach to LC-OCT PRO Score Evaluation
URI https://cir.nii.ac.jp/crid/1873679867747930624
https://www.proquest.com/docview/2869283429
https://www.proquest.com/docview/2870149442
https://pubmed.ncbi.nlm.nih.gov/PMC10527366
Volume 15
WOSCitedRecordID wos001074510300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: M2O
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfohhAvfE8UtspISPBiljqu7fCCuqoTFWsbjYHKU2THiYiEkq3p-Pu5S93QIMELL5EcO47jO9-HffkdIa8jy60yoWOj0GZMaDdkhueKcaONAoVjXIPA9_VCLRZ6tYpiv-FW-7DKnUxsBLWrUtwjP-VaRqAKQXx-uL5hmDUKT1d9Co0eOUSUhLAJ3YvbPZYgBO0o1RbRJwTv_jTFqVzXoOa0EKiS9pSRF8m9sig65mY3WHJP-5w__N9xPyIPvN1Jx1tGeUzuZOUTcm_uT9afkptZmx6VFiUdgxgsi5R-Qszlqi5qOm4hPN83vWyRJ-hsD9KTnYFKdHTsYcrppqIXE7acXNH4ckk_I2Amnbbo4s_Il_Pp1eQj8-kYWApG1oaZPOQO3TXDRwZIK0WUyVwGWWCF0oa7wLl8JIzJrEqFTVWEJSeGNpN6lOfhETkoqzJ7Tig6YVbZocV6YyMdSR0oo3SmokBY3ifvdnRJUo9VjikzfiTgsyAhkz8I2Sdv2weutzAdf2_6Bgmd4AKGPlPj_0OAkSEUVjJWEiiGSGB9ctxpCQsv7VSfAKvA-PA61CrEAy0J5jSIvEByfHzHEYkXDHXymx365FVbjT1jsFuZVbfYRqHjKgTMg-4wX_ttCArerSmL7w04ONjLYJFK-eLfb39J7nMw15poOXVMDjbr2-yE3E1_bop6PSA9tdIDcng2XcSXUJrz5aBZWnAvns3jb78AlqIsbA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwELa2gRgv_EYrbGAkELyYpY5rO0gIhbJpVbuugoL2FuzEEZFQsjUdiH-Kv5G7JA0NErztgZdIkR3HST7fd5dcviPkaWC5VcZP2MC3jgmd9JnhqWLcaKOAcExSKfB9mqjpVJ-eBrMN8nP1LwymVa5sYmWokyLGd-T7XMsAqBDM55uzc4ZVo_Dr6qqERg2LsfvxHUK28vXoHTzfZ5wfHsyHR6ypKsBi8BWWzKQ-TzDqMHxgYIZSBE6m0nOeFUobnnhJkg6EMc6qWNhYBbiXiL51Ug_S1IdxN8kVcCO4rlIFZ-07Hc8HNpaqVhDy_cDbj_HRLUqgVS0EUuAa-TUUsJlnWce97SZnrrHd4c3_7T7dIjcav5qG9UK4TTZcfodcO24yB-6S81Fb_pVmOQ3BzOdZTMeoKV2UWUnDVqL0VTVKraxBR2uSpewtUH5Cw0aGnS4LOhmyk-Gczt6f0A8oCEoPWvX0e-TjpVzwfbKVF7nbIRSDTKts32K7sYEOpPaUUdqpwBOW98jLFQ6iuNFix5IgXyOIyRA40R_A6ZEX7QFntQzJ37s-R2BFaKBgzNg0_1nAzFDqKwqVBISg0lmP7HZ6gmGJO817AE2YH277Wvn4wU5CuAAm3ZMcD18hMGoMXxn9hl-PPGmbcWRM5stdcYF9FAbmQsB90B2wt9eGoufdljz7UomfQzwAHreUD_599sdk-2h-PIkmo-n4IbnOwTWtMgPVLtlaLi7cHrkaf1tm5eJRtYQp-XzZa-EXC4OGwg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLa2gSZeuCMKGxgJBC-hqePaDhJCoVtF1dJVsKG9BdtxRCSUbE0H4q_x6zgnSUODBG974CVSZMdx7O_ckpPvEPI0NMxIHSTeMDDO4yoZeJql0mNaaQkGRycVA9-nmZzP1elpuNgiP9f_wmBa5VonVoo6KSy-I-8zJUIwhaA--2mTFrE4GL85O_ewghR-aV2X06ghMnU_vkP4Vr6eHMBeP2NsfHg8euc1FQY8C37DytNpwBKMQDQbapit4KETqfCdb7hUmiV-kqRDrrUz0nJjZYhnCR8YJ9QwTQMYd5tckUhaXqUNLtr3O34AllnImk0oCEK_b3EblyWYWMU5msMNQ9iYg-08yzqubjdRc8PyjW_8z2t2k1xv_G0a1QJyi2y5_DbZfd9kFNwh55O2LCzNchqB-s8zS6fINV2UWUmjlrr0VTVKzbhBJxtUpt5bcAUSGjX07HRV0NnIOxod08WHI_oRiULpYcuqfpecXMoD3yM7eZG7-4Ri8GmkGRhs1yZUoVC-1FI5GfrcsB55ucZEbBuOdiwV8jWGWA1BFP8Boh550V5wVtOT_L3rcwRZjIoLxrS6-f8CZoYUYHEkBaAFGdB6ZK_TExSO7TTvA0xhfngcKBnghzwBYQSoel8wvHyNxrhRiGX8G4o98qRtxpExyS93xQX2kRiwcw7roDrAb58NydC7LXn2pSJFhzgBPHEhHvz77o_JLohAPJvMpw_JNQYea5UwKPfIzmp54fbJVfttlZXLR5U0U_L5skXhFxIDj38
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovation+in+Actinic+Keratosis+Assessment%3A+Artificial+Intelligence-Based+Approach+to+LC-OCT+PRO+Score+Evaluation&rft.jtitle=Cancers&rft.au=Daxenberger%2C+Fabia&rft.au=Deu%C3%9Fing%2C+Maximilian&rft.au=Eijkenboom%2C+Quirine&rft.au=Gust%2C+Charlotte&rft.date=2023-09-07&rft.pub=MDPI&rft.eissn=2072-6694&rft.volume=15&rft.issue=18&rft_id=info:doi/10.3390%2Fcancers15184457&rft.externalDocID=PMC10527366
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon