Ranking non-synonymous single nucleotide polymorphisms based on disease concepts

As the number of non-synonymous single nucleotide polymorphisms (nsSNPs) identified through whole-exome/whole-genome sequencing programs increases, researchers and clinicians are becoming increasingly reliant upon computational prediction algorithms designed to prioritize potential functional varian...

Full description

Saved in:
Bibliographic Details
Published in:Human genomics Vol. 8; no. 1; p. 11
Main Authors: Shihab, Hashem A, Gough, Julian, Mort, Matthew, Cooper, David N, Day, Ian NM, Gaunt, Tom R
Format: Journal Article
Language:English
Published: London BioMed Central 30.06.2014
Springer Nature B.V
Subjects:
ISSN:1479-7364, 1473-9542, 1479-7364
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As the number of non-synonymous single nucleotide polymorphisms (nsSNPs) identified through whole-exome/whole-genome sequencing programs increases, researchers and clinicians are becoming increasingly reliant upon computational prediction algorithms designed to prioritize potential functional variants for further study. A large proportion of existing prediction algorithms are ‘disease agnostic’ but are nevertheless quite capable of predicting when a mutation is likely to be deleterious. However, most clinical and research applications of these algorithms relate to specific diseases and would therefore benefit from an approach that discriminates between functional variants specifically related to that disease from those which are not. In a whole-exome/whole-genome sequencing context, such an approach could substantially reduce the number of false positive candidate mutations. Here, we test this postulate by incorporating a disease-specific weighting scheme into the Functional Analysis through Hidden Markov Models (FATHMM) algorithm. When compared to traditional prediction algorithms, we observed an overall reduction in the number of false positives identified using a disease-specific approach to functional prediction across 17 distinct disease concepts/categories. Our results illustrate the potential benefits of making disease-specific predictions when prioritizing candidate variants in relation to specific diseases. A web-based implementation of our algorithm is available at http://fathmm.biocompute.org.uk .
AbstractList As the number of non-synonymous single nucleotide polymorphisms (nsSNPs) identified through whole-exome/whole-genome sequencing programs increases, researchers and clinicians are becoming increasingly reliant upon computational prediction algorithms designed to prioritize potential functional variants for further study. A large proportion of existing prediction algorithms are ‘disease agnostic’ but are nevertheless quite capable of predicting when a mutation is likely to be deleterious. However, most clinical and research applications of these algorithms relate to specific diseases and would therefore benefit from an approach that discriminates between functional variants specifically related to that disease from those which are not. In a whole-exome/whole-genome sequencing context, such an approach could substantially reduce the number of false positive candidate mutations. Here, we test this postulate by incorporating a disease-specific weighting scheme into the Functional Analysis through Hidden Markov Models (FATHMM) algorithm. When compared to traditional prediction algorithms, we observed an overall reduction in the number of false positives identified using a disease-specific approach to functional prediction across 17 distinct disease concepts/categories. Our results illustrate the potential benefits of making disease-specific predictions when prioritizing candidate variants in relation to specific diseases. A web-based implementation of our algorithm is available at http://fathmm.biocompute.org.uk.
As the number of non-synonymous single nucleotide polymorphisms (nsSNPs) identified through whole-exome/whole-genome sequencing programs increases, researchers and clinicians are becoming increasingly reliant upon computational prediction algorithms designed to prioritize potential functional variants for further study. A large proportion of existing prediction algorithms are 'disease agnostic' but are nevertheless quite capable of predicting when a mutation is likely to be deleterious. However, most clinical and research applications of these algorithms relate to specific diseases and would therefore benefit from an approach that discriminates between functional variants specifically related to that disease from those which are not. In a whole-exome/whole-genome sequencing context, such an approach could substantially reduce the number of false positive candidate mutations. Here, we test this postulate by incorporating a disease-specific weighting scheme into the Functional Analysis through Hidden Markov Models (FATHMM) algorithm. When compared to traditional prediction algorithms, we observed an overall reduction in the number of false positives identified using a disease-specific approach to functional prediction across 17 distinct disease concepts/categories. Our results illustrate the potential benefits of making disease-specific predictions when prioritizing candidate variants in relation to specific diseases. A web-based implementation of our algorithm is available at http://fathmm.biocompute.org.uk.As the number of non-synonymous single nucleotide polymorphisms (nsSNPs) identified through whole-exome/whole-genome sequencing programs increases, researchers and clinicians are becoming increasingly reliant upon computational prediction algorithms designed to prioritize potential functional variants for further study. A large proportion of existing prediction algorithms are 'disease agnostic' but are nevertheless quite capable of predicting when a mutation is likely to be deleterious. However, most clinical and research applications of these algorithms relate to specific diseases and would therefore benefit from an approach that discriminates between functional variants specifically related to that disease from those which are not. In a whole-exome/whole-genome sequencing context, such an approach could substantially reduce the number of false positive candidate mutations. Here, we test this postulate by incorporating a disease-specific weighting scheme into the Functional Analysis through Hidden Markov Models (FATHMM) algorithm. When compared to traditional prediction algorithms, we observed an overall reduction in the number of false positives identified using a disease-specific approach to functional prediction across 17 distinct disease concepts/categories. Our results illustrate the potential benefits of making disease-specific predictions when prioritizing candidate variants in relation to specific diseases. A web-based implementation of our algorithm is available at http://fathmm.biocompute.org.uk.
As the number of non-synonymous single nucleotide polymorphisms (nsSNPs) identified through whole-exome/whole-genome sequencing programs increases, researchers and clinicians are becoming increasingly reliant upon computational prediction algorithms designed to prioritize potential functional variants for further study. A large proportion of existing prediction algorithms are ‘disease agnostic’ but are nevertheless quite capable of predicting when a mutation is likely to be deleterious. However, most clinical and research applications of these algorithms relate to specific diseases and would therefore benefit from an approach that discriminates between functional variants specifically related to that disease from those which are not. In a whole-exome/whole-genome sequencing context, such an approach could substantially reduce the number of false positive candidate mutations. Here, we test this postulate by incorporating a disease-specific weighting scheme into the Functional Analysis through Hidden Markov Models (FATHMM) algorithm. When compared to traditional prediction algorithms, we observed an overall reduction in the number of false positives identified using a disease-specific approach to functional prediction across 17 distinct disease concepts/categories. Our results illustrate the potential benefits of making disease-specific predictions when prioritizing candidate variants in relation to specific diseases. A web-based implementation of our algorithm is available at http://fathmm.biocompute.org.uk .
ArticleNumber 11
Author Cooper, David N
Mort, Matthew
Shihab, Hashem A
Gaunt, Tom R
Day, Ian NM
Gough, Julian
AuthorAffiliation 2 Department of Computer Science, University of Bristol, The Merchant Venturers Building, Bristol BS8 1UB, UK
1 Bristol Centre for Systems Biomedicine and MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
3 Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
AuthorAffiliation_xml – name: 3 Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
– name: 1 Bristol Centre for Systems Biomedicine and MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
– name: 2 Department of Computer Science, University of Bristol, The Merchant Venturers Building, Bristol BS8 1UB, UK
Author_xml – sequence: 1
  givenname: Hashem A
  surname: Shihab
  fullname: Shihab, Hashem A
  organization: Bristol Centre for Systems Biomedicine and MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol
– sequence: 2
  givenname: Julian
  surname: Gough
  fullname: Gough, Julian
  organization: Department of Computer Science, University of Bristol
– sequence: 3
  givenname: Matthew
  surname: Mort
  fullname: Mort, Matthew
  organization: Institute of Medical Genetics, School of Medicine, Cardiff University
– sequence: 4
  givenname: David N
  surname: Cooper
  fullname: Cooper, David N
  organization: Institute of Medical Genetics, School of Medicine, Cardiff University
– sequence: 5
  givenname: Ian NM
  surname: Day
  fullname: Day, Ian NM
  organization: Bristol Centre for Systems Biomedicine and MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol
– sequence: 6
  givenname: Tom R
  surname: Gaunt
  fullname: Gaunt, Tom R
  email: Tom.Gaunt@bristol.ac.uk
  organization: Bristol Centre for Systems Biomedicine and MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24980617$$D View this record in MEDLINE/PubMed
BookMark eNp1UU1r3DAQFWFLsklzzbEYesnFG8mybPkSKCFNAgstpT0LfYx3ldqSI9mB_ffVsttlE9qLNLx57zHz5hzNnHeA0BXBC0J4dUPKuslrWpU5zwk5QfMDMDuqz9B5jM8YU0Lr8hSdFWXDcUXqOfr-Q7rf1q2y5JvHTXo3vZ9iFhPWQeYm3YEfrYFs8F1qhWFtYx8zJSOYzLvM2AipzrR3GoYxfkQfWtlFuNz_F-jX1_ufd4_58tvD092XZa4Za8a85UozRQtigBgqWaWl0YYpzI1UJcatZoVstKRFWzQKtKo5ZVAYViilQGJ6gW53vsOkejAa3BhkJ4Zgexk2wksr3nacXYuVfxUl5rRmVTK43hsE_zJBHEVvo4aukw5SAoKwkjZNRRqeqJ_fUZ_9FFxaTxCOi5RqckysT8cTHUb5G3YiLHYEHXyMAdoDhWCxvabYHkxsDyZ4ApKgfCfQdpSj9duNbPd_2c1OFpO_W0E4Gvffij9d8bRE
CitedBy_id crossref_primary_10_1167_iovs_65_14_31
crossref_primary_10_3390_genes12010080
crossref_primary_10_1038_s41598_020_67796_8
crossref_primary_10_1002_humu_23594
crossref_primary_10_1111_jog_15187
crossref_primary_10_1002_gcc_23037
crossref_primary_10_1097_SCS_0000000000009261
crossref_primary_10_1016_j_jmb_2021_166810
crossref_primary_10_1038_s41698_025_00854_4
crossref_primary_10_1093_bib_bbab131
crossref_primary_10_1093_hmg_ddaa225
crossref_primary_10_3390_ijms24021092
crossref_primary_10_15252_emmm_202012013
crossref_primary_10_1016_j_biopsych_2023_06_025
crossref_primary_10_1093_nar_gkz457
crossref_primary_10_1109_TCBB_2022_3155659
crossref_primary_10_3389_fnmol_2023_1253040
crossref_primary_10_1634_theoncologist_2018_0448
crossref_primary_10_1089_ars_2018_7718
crossref_primary_10_1186_s40246_023_00511_6
crossref_primary_10_1007_s00439_025_02751_z
crossref_primary_10_3390_ijms25179328
crossref_primary_10_1177_20543581231183856
crossref_primary_10_1016_j_jmoldx_2018_03_009
crossref_primary_10_3389_fped_2022_965282
crossref_primary_10_1002_humu_23221
crossref_primary_10_3390_genes12101483
crossref_primary_10_3390_molecules26154653
crossref_primary_10_6061_clinics_2021_e2052
crossref_primary_10_1002_humu_24150
crossref_primary_10_3233_JND_190423
crossref_primary_10_1111_epi_13798
crossref_primary_10_1186_s12881_020_01059_1
crossref_primary_10_1016_j_heliyon_2024_e35428
crossref_primary_10_1016_j_mgene_2019_100626
crossref_primary_10_1038_s44320_024_00055_4
crossref_primary_10_3390_ph16050757
crossref_primary_10_1002_jdn_10236
crossref_primary_10_1038_s41525_022_00287_z
crossref_primary_10_1002_humu_23627
crossref_primary_10_7717_peerj_8106
crossref_primary_10_1016_j_compbiolchem_2020_107416
crossref_primary_10_1159_000448041
crossref_primary_10_1038_s41586_024_07955_3
crossref_primary_10_1038_srep33248
crossref_primary_10_1007_s42000_020_00226_6
crossref_primary_10_1212_NXG_0000000000000568
crossref_primary_10_1016_j_stem_2020_11_013
crossref_primary_10_1093_bib_bbaa065
crossref_primary_10_3389_fgene_2016_00194
crossref_primary_10_1016_j_bbadis_2023_166983
crossref_primary_10_1038_s41598_018_25462_0
crossref_primary_10_1080_17410541_2025_2538424
crossref_primary_10_1016_j_jid_2017_04_028
crossref_primary_10_1186_s12920_018_0375_5
crossref_primary_10_1177_11769343241249916
crossref_primary_10_1186_s40246_024_00663_z
crossref_primary_10_1109_ACCESS_2023_3266983
crossref_primary_10_1210_js_2017_00283
crossref_primary_10_1007_s10875_019_00731_3
crossref_primary_10_1007_s12595_022_00449_y
crossref_primary_10_1016_j_bbapap_2025_141078
crossref_primary_10_1038_s41416_024_02755_y
crossref_primary_10_1002_humu_23883
crossref_primary_10_1146_annurev_biodatasci_030320_041014
crossref_primary_10_1016_j_gpb_2022_07_005
crossref_primary_10_1371_journal_pone_0251289
crossref_primary_10_1007_s10989_020_10121_8
crossref_primary_10_1038_s41598_017_08416_w
crossref_primary_10_3389_fgene_2022_981005
crossref_primary_10_1016_j_pediatrneurol_2021_01_006
crossref_primary_10_15252_msb_20209840
crossref_primary_10_1080_10428194_2018_1542142
crossref_primary_10_1093_nar_gkz320
crossref_primary_10_1002_humu_24218
crossref_primary_10_1038_s41525_022_00288_y
crossref_primary_10_1182_bloodadvances_2020003195
crossref_primary_10_1038_s41587_019_0055_9
crossref_primary_10_1186_s12944_023_01782_7
crossref_primary_10_1016_j_ajhg_2018_08_005
crossref_primary_10_1038_s10038_025_01316_2
crossref_primary_10_1038_s41598_022_12866_2
crossref_primary_10_3390_cancers15041118
crossref_primary_10_1093_bib_bbaa083
crossref_primary_10_3892_ijmm_2020_4501
crossref_primary_10_3390_genes12060945
crossref_primary_10_1042_BSR20220998
crossref_primary_10_1111_ahg_12231
crossref_primary_10_1155_2015_271458
crossref_primary_10_1007_s11845_020_02174_x
crossref_primary_10_1186_s40360_021_00512_y
crossref_primary_10_3390_ijms24054262
crossref_primary_10_1371_journal_pone_0185237
crossref_primary_10_1093_nar_gkab428
crossref_primary_10_1186_s12887_022_03822_0
crossref_primary_10_1007_s12672_024_01199_3
crossref_primary_10_1016_j_ajhg_2021_06_004
crossref_primary_10_1182_blood_2019003382
crossref_primary_10_1038_srep31531
crossref_primary_10_1002_mgg3_291
crossref_primary_10_1007_s00726_017_2480_8
crossref_primary_10_1002_humu_23822
crossref_primary_10_1007_s11033_021_06434_6
crossref_primary_10_1038_s41598_020_60704_0
crossref_primary_10_1002_humu_23173
crossref_primary_10_1111_jdv_17873
crossref_primary_10_1038_s41698_023_00435_3
crossref_primary_10_1016_j_gene_2023_147428
crossref_primary_10_1038_s41598_021_81670_1
crossref_primary_10_1007_s11033_020_05534_z
crossref_primary_10_1016_j_ebiom_2024_105129
crossref_primary_10_3390_cancers16132482
crossref_primary_10_3390_genes13040569
crossref_primary_10_3390_ph16050726
crossref_primary_10_1038_s41598_017_11746_4
crossref_primary_10_1007_s00535_018_1466_y
crossref_primary_10_1016_j_gene_2024_149088
crossref_primary_10_1002_humu_23858
crossref_primary_10_1186_s12887_021_02582_7
crossref_primary_10_1186_s12881_018_0709_3
crossref_primary_10_3390_v17091198
crossref_primary_10_1016_j_neuron_2018_06_019
crossref_primary_10_1186_s13059_016_0974_4
crossref_primary_10_1007_s00439_024_02649_2
crossref_primary_10_1080_03630269_2020_1790384
crossref_primary_10_1038_s41467_020_20847_0
crossref_primary_10_3389_fmed_2023_1237246
crossref_primary_10_1038_s41576_021_00389_x
crossref_primary_10_1177_1535370220931035
crossref_primary_10_1371_journal_pone_0274354
crossref_primary_10_1038_s41593_021_01006_0
crossref_primary_10_3389_fonc_2020_01467
crossref_primary_10_1186_s12885_019_5474_y
crossref_primary_10_3389_fgene_2023_1290624
crossref_primary_10_3390_jcm8040455
Cites_doi 10.1186/gm13
10.1093/nar/gkr407
10.1002/humu.22204
10.1006/jmbi.2001.5080
10.1093/bioinformatics/btt182
10.1158/0008-5472.CAN-06-1736
10.1038/nrg3031
10.1186/gm390
10.1002/humu.22038
10.1101/gr.176601
10.1158/0008-5472.CAN-09-1133
10.1002/(SICI)1097-0134(199707)28:3<405::AID-PROT10>3.0.CO;2-L
10.1093/bioinformatics/bti623
10.1093/nar/gkh131
10.1214/aoms/1177729694
10.1038/75556
10.1055/s-0038-1634945
10.1002/humu.21445
10.1002/humu.22253
10.1002/humu.22225
10.1093/nar/gkm405
10.1038/nmeth0410-248
10.1002/humu.21192
10.1002/humu.22214
ContentType Journal Article
Copyright Shihab et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated.
Copyright BioMed Central 2014
Copyright © 2014 Shihab et al.; licensee BioMed Central Ltd. 2014 Shihab et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Shihab et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated.
– notice: Copyright BioMed Central 2014
– notice: Copyright © 2014 Shihab et al.; licensee BioMed Central Ltd. 2014 Shihab et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1186/1479-7364-8-11
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1479-7364
EndPage 11
ExternalDocumentID PMC4083756
4110736141
24980617
10_1186_1479_7364_8_11
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_UU_12013/2
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/G022771/1
– fundername: Medical Research Council
  grantid: G1000427
– fundername: Medical Research Council
  grantid: G1000427/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/G022771
– fundername: Medical Research Council
  grantid: MC_UU_12013/8
GroupedDBID ---
0R~
2JY
36B
4.4
53G
5GY
5VS
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABUWG
ACGFS
ACPRK
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EJD
EMB
EMOBN
F5P
FYUFA
GROUPED_DOAJ
H13
HCIFZ
HMCUK
HYE
IAO
IHR
IHW
INH
ISR
ITC
KQ8
LK8
M1P
M48
M7P
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SJN
SOJ
SV3
UKHRP
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c559t-f8bc5b321de1d3a56cadcd5b08dab400fc52a9ca32f29becb7835e2d52bbbea03
IEDL.DBID M7P
ISICitedReferencesCount 160
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000338458000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1479-7364
1473-9542
IngestDate Tue Nov 04 01:55:59 EST 2025
Thu Sep 04 18:57:05 EDT 2025
Wed Oct 15 14:20:57 EDT 2025
Mon Jul 21 06:05:54 EDT 2025
Tue Nov 18 21:54:41 EST 2025
Sat Nov 29 05:56:16 EST 2025
Sat Sep 06 07:26:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords FATHMM
PolyPhen
SIFT
nsSNPs
Disease-causing
SNV
HMMs
Bioinformatics
Disease-specific
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c559t-f8bc5b321de1d3a56cadcd5b08dab400fc52a9ca32f29becb7835e2d52bbbea03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1802313375?pq-origsite=%requestingapplication%
PMID 24980617
PQID 1802313375
PQPubID 27863
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4083756
proquest_miscellaneous_1543996198
proquest_journals_1802313375
pubmed_primary_24980617
crossref_primary_10_1186_1479_7364_8_11
crossref_citationtrail_10_1186_1479_7364_8_11
springer_journals_10_1186_1479_7364_8_11
PublicationCentury 2000
PublicationDate 2014-06-30
PublicationDateYYYYMMDD 2014-06-30
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-30
  day: 30
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Human genomics
PublicationTitleAbbrev Hum Genomics
PublicationTitleAlternate Hum Genomics
PublicationYear 2014
Publisher BioMed Central
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
References J Thusberg (66_CR2) 2011; 32
JS Kaminker (66_CR5) 2007; 67
J Gough (66_CR18) 2001; 313
M Mort (66_CR23) 2010; 31
PD Stenson (66_CR21) 2009; 1
HA Shihab (66_CR3) 2013; 34
M Ashburner (66_CR15) 2000; 25
H Carter (66_CR9) 2009; 69
DA Lindberg (66_CR22) 1993; 32
M Vihinen (66_CR24) 2013; 34
HA Shihab (66_CR12) 2013; 29
R Apweiler (66_CR16) 2004; 32
H Ali (66_CR6) 2012; 33
JS Kaminker (66_CR8) 2007; 35
MJ Bamshad (66_CR1) 2011; 12
EL Sonnhammer (66_CR19) 1997; 28
IA Adzhubei (66_CR14) 2010; 7
P Sasidharan Nair (66_CR4) 2013; 34
SR Eddy (66_CR17) 2009; 23
A Gonzalez-Perez (66_CR11) 2012; 4
B Reva (66_CR10) 2011; 39
T Sing (66_CR25) 2005; 21
BA Thompson (66_CR7) 2013; 34
PC Ng (66_CR13) 2001; 11
S Kullback (66_CR20) 1951; 22
References_xml – volume: 1
  start-page: 13
  year: 2009
  ident: 66_CR21
  publication-title: Genome Med
  doi: 10.1186/gm13
– volume: 39
  start-page: e118
  year: 2011
  ident: 66_CR10
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr407
– volume: 34
  start-page: 42
  year: 2013
  ident: 66_CR4
  publication-title: Hum Mutat
  doi: 10.1002/humu.22204
– volume: 313
  start-page: 903
  year: 2001
  ident: 66_CR18
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2001.5080
– volume: 29
  start-page: 1504
  year: 2013
  ident: 66_CR12
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt182
– volume: 67
  start-page: 465
  year: 2007
  ident: 66_CR5
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-1736
– volume: 12
  start-page: 745
  year: 2011
  ident: 66_CR1
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3031
– volume: 4
  start-page: 89
  year: 2012
  ident: 66_CR11
  publication-title: Genome Med
  doi: 10.1186/gm390
– volume: 33
  start-page: 642
  year: 2012
  ident: 66_CR6
  publication-title: Hum Mutat
  doi: 10.1002/humu.22038
– volume: 11
  start-page: 863
  year: 2001
  ident: 66_CR13
  publication-title: Genome Res
  doi: 10.1101/gr.176601
– volume: 69
  start-page: 6660
  year: 2009
  ident: 66_CR9
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-09-1133
– volume: 28
  start-page: 405
  year: 1997
  ident: 66_CR19
  publication-title: Proteins
  doi: 10.1002/(SICI)1097-0134(199707)28:3<405::AID-PROT10>3.0.CO;2-L
– volume: 21
  start-page: 3940
  year: 2005
  ident: 66_CR25
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti623
– volume: 32
  start-page: D115
  year: 2004
  ident: 66_CR16
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh131
– volume: 22
  start-page: 79
  year: 1951
  ident: 66_CR20
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729694
– volume: 25
  start-page: 25
  year: 2000
  ident: 66_CR15
  publication-title: Nat Genet
  doi: 10.1038/75556
– volume: 32
  start-page: 281
  year: 1993
  ident: 66_CR22
  publication-title: Methods Inf Med
  doi: 10.1055/s-0038-1634945
– volume: 32
  start-page: 358
  year: 2011
  ident: 66_CR2
  publication-title: Hum Mutat
  doi: 10.1002/humu.21445
– volume: 34
  start-page: 275
  year: 2013
  ident: 66_CR24
  publication-title: Hum Mutat
  doi: 10.1002/humu.22253
– volume: 23
  start-page: 205
  year: 2009
  ident: 66_CR17
  publication-title: Genome Inform
– volume: 34
  start-page: 57
  year: 2013
  ident: 66_CR3
  publication-title: Hum Mutat
  doi: 10.1002/humu.22225
– volume: 35
  start-page: W595
  year: 2007
  ident: 66_CR8
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm405
– volume: 7
  start-page: 248
  year: 2010
  ident: 66_CR14
  publication-title: Nat Methods
  doi: 10.1038/nmeth0410-248
– volume: 31
  start-page: 335
  year: 2010
  ident: 66_CR23
  publication-title: Hum Mutat
  doi: 10.1002/humu.21192
– volume: 34
  start-page: 255
  year: 2013
  ident: 66_CR7
  publication-title: Hum Mutat
  doi: 10.1002/humu.22214
SSID ssj0031374
Score 2.4324124
Snippet As the number of non-synonymous single nucleotide polymorphisms (nsSNPs) identified through whole-exome/whole-genome sequencing programs increases, researchers...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11
SubjectTerms Algorithms
Amino Acid Substitution - genetics
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Cancer
Computational Biology
Human Genetics
Humans
Internet
Markov Chains
Metabolic disorders
Mutation
Mutation - genetics
Phenotype
Polymorphism, Single Nucleotide - genetics
Primary Research
Proteins
Proteomics
Software
Studies
Training
SummonAdditionalLinks – databaseName: SpringerLink Contemporary (1997 - Present)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_EKvjSVq02rZUVCvZlMcluspvHIhUfioha8S3sJx6cOTGn4H_f2U1yeJ6CvmYnZDMfO7_Z2Z0B-FnaAnGFtxTdm6dcSE4rnXIqEI3oUG1FxH3Iy7_i5EReXVWnS5AOd2HiafchJRlX6mjWsjzIuKioYCWnGPZgvPMBXZ0Mpnh2fjmsvSxjgvelGRffmXc9C3hy8Vjks9xodDlHn94_2c_wsYeX5HenD-uw5JoNWO0aTj5uwumZiq0SCAb9tH0cQn8SNgzGjjShuPFkOrKO3E7GOIRCGLU3LQm-zpJJQ_p8DjHdbcf2C_w7-nNxeEz7ngrUYOwwpV5qU2iWZ9ZllqmiNMoaW-hUWqXRnr0pclUZxXKfVyhfHXaGXG6LXGvtVMq2YBkn574CyfCpNKr0qffcKq-1kZIZnuq8zLlIE6ADu2vTFxwPfS_GdQw8ZFkHLtWBS7XEBwnsz-hvu1Ibr1LuDNKre5Nr666UHWOiSGBvNozGEjIgqnHIzRrxIgIyjBllAtudsGefwjhUBjyXgJhTgxlBKMQ9P9KMrmNBbo44VhRlAr8GZXgyrRf_4NvbSb_DGoI03p1R3IHl6d29-wEr5mE6au92o_r_B_JSA-A
  priority: 102
  providerName: Springer Nature
Title Ranking non-synonymous single nucleotide polymorphisms based on disease concepts
URI https://link.springer.com/article/10.1186/1479-7364-8-11
https://www.ncbi.nlm.nih.gov/pubmed/24980617
https://www.proquest.com/docview/1802313375
https://www.proquest.com/docview/1543996198
https://pubmed.ncbi.nlm.nih.gov/PMC4083756
Volume 8
WOSCitedRecordID wos000338458000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1479-7364
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031374
  issn: 1479-7364
  databaseCode: RBZ
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1479-7364
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031374
  issn: 1479-7364
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1479-7364
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031374
  issn: 1479-7364
  databaseCode: M7P
  dateStart: 20031101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1479-7364
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031374
  issn: 1479-7364
  databaseCode: 7X7
  dateStart: 20031101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1479-7364
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031374
  issn: 1479-7364
  databaseCode: BENPR
  dateStart: 20031101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1479-7364
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031374
  issn: 1479-7364
  databaseCode: PIMPY
  dateStart: 20031101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1479-7364
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031374
  issn: 1479-7364
  databaseCode: RSV
  dateStart: 20031201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB-8OwVfPD_PeucSQdCXcG2TNOmTqNyhoEtZ9VifSj5aXNhr1-sq3H_vJG1X11NffCk0GWiSmSS_maS_AXiaOYG4onYUt7eacqk4zU3MqUQ0YjzbigxxyLN3cjpV83leDAG3brhWOa6JYaF2rfUx8uOeqYwxKV6svlKfNcqfrg4pNHZgz7MksHB1rxhXYhQPLMwJl4zmgqcDaWOismMsy6lkGafoRCXbm9IVpHn1wuRvp6ZhMzrd_99u3IZbAwwlL3u7uQPXquYu3OgTU17eg2KmQ0oF0rQN7S7HEAHxgYVlRRpPgtyuF64iq3aJVaisRXfeEb8nOtI2ZDj3Ibb_K7K7D59OTz6-fkOH3AvUoo-xprUyVhiWJq5KHNMis9pZJ0ysnDY472srUp1bzdI6zdEOjI8gVakTqTGm0jF7ALvYuOohkARLldVZHdc1d7o2xirFLI9NmqVcxhHQcfBLOxCT-_wYyzI4KCorvbJKr6xSYUEEzzbyq56S46-SR6MSymFqduVPDUTwZFONk8qflOimwtEsEVcicEPfUkVw0Kt-8yn0V5XHfRHILaPYCHjC7u2aZvElEHdzxLtSZBE8H83nl2b9sQeP_t2DQ7iJAI739xePYHd98a16DNft9_Wiu5jAjpzL8FQT2Ht1Mi1mkxBzmIRpgmXF2_fFZ3ybfTj7AUG4Gb0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb0qggJFAcLGaOE7sHBBCQNWqy2qFCuot-ClW2iZLs4D2T_EbGeexsBS49cDVthI_voy_GTvfADzObYa8wluK25unXEhOCx1zKpCN6KC2Ito45IeRGI_l0VEx2YDvw78w4VrlYBNbQ21rE2LkO51SWZqK7MX8Mw1Zo8Lp6pBCo4PFgVt-Q5eteb7_Gtf3CWO7bw5f7dE-qwA1yJ4X1EttMp2yxLrEpirLjbLGZjqWVmlEtDcZU4VRKfOswBHqEBtxzGZMa-1UnOJzz8F5pBFMtlcFJ4Plx-61qs8JFyktMs56kchE5jtYVlCR5pyi05asb4KnmO3pC5q_ndK2m9_u1f9t2q7BlZ5mk5fdd3EdNlx1Ay52iTeXN2HyTrUpI0hVV7RZDiEQEgInM0eqIPJcL6bWkXk9wyoE47Q5bkjY8y2pK9KfaxHT_fXZ3IL3ZzKc27CJnXN3gCRYKo3Kfew9t8prbaRMDY81yxkXcQR0WOzS9MLrIf_HrGwdMJmXARxlAEcpsSCCp6v2805y5K8tt4dFL3vT05Q_VzyCR6tqNBrhJEhVDmezRN6MxBR9ZxnBVge11avQH5eB10Yg1kC4ahAEyddrqumnVpicI58XWR7BswGuv3TrjyO4--8RPIRLe4dvR-Vof3xwDy4jWeXdXc1t2FycfHH34YL5upg2Jw_aD5HAx7OG8A_qP3Ro
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3pRAASOB4GJt4jixc0AIUVZUrVYrBKi34KdYaZsszQLav8avY5zHwlLg1gNX20r8-GJ_M558A_A4txnyCm8pHm-eciE5LXTMqUA2ooPaimj9kB8OxWQij46K6RZ8H_6FCWGVw57YbtS2NsFHPuqUytJUZCPfh0VM98YvFp9pyCAVblqHdBodRA7c6huab83z_T1c6yeMjV-_e_WG9hkGqEEmvaReapPplCXWJTZVWW6UNTbTsbRKI7q9yZgqjEqZZwWOVgc_iWM2Y1prp-IUn3sOzosgWt6GDU6HUwC72ipAJ1yktMg46wUjE5mPsKygIs05RQMu2TwQT7Hc08Gav93Ytgfh-Or_PIXX4EpPv8nL7nu5DluuugEXu4Scq5swfavaVBKkqivarAbXCAkOlbkjVRB_rpcz68iinmMVgnTWHDckcAFL6or0913EdH-DNrfg_ZkM5zZsY-fcHSAJlkqjch97z63yWhspU8NjzXLGRRwBHRa-NL0ge8gLMi9bw0zmZQBKGYBSSiyI4Om6_aKTIvlry90BAGW_JTXlz9WP4NG6GjeTcEOkKoezWSKfRsKKNrWMYKeD3fpVaKfLwHcjEBuAXDcIQuWbNdXsUytYzpHniyyP4NkA3V-69ccR3P33CB7CJURuebg_ObgHl5HD8i6Ecxe2lydf3H24YL4uZ83Jg_abJPDxrBH8A7nxfSU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ranking+non-synonymous+single+nucleotide+polymorphisms+based+on+disease+concepts&rft.jtitle=Human+genomics&rft.au=Shihab%2C+Hashem+A&rft.au=Gough%2C+Julian&rft.au=Mort%2C+Matthew&rft.au=Cooper%2C+David+N&rft.date=2014-06-30&rft.eissn=1479-7364&rft.volume=8&rft.spage=11&rft_id=info:doi/10.1186%2F1479-7364-8-11&rft_id=info%3Apmid%2F24980617&rft.externalDocID=24980617
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-7364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-7364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-7364&client=summon