Ranking non-synonymous single nucleotide polymorphisms based on disease concepts
As the number of non-synonymous single nucleotide polymorphisms (nsSNPs) identified through whole-exome/whole-genome sequencing programs increases, researchers and clinicians are becoming increasingly reliant upon computational prediction algorithms designed to prioritize potential functional varian...
Gespeichert in:
| Veröffentlicht in: | Human genomics Jg. 8; H. 1; S. 11 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
BioMed Central
30.06.2014
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1479-7364, 1473-9542, 1479-7364 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | As the number of non-synonymous single nucleotide polymorphisms (nsSNPs) identified through whole-exome/whole-genome sequencing programs increases, researchers and clinicians are becoming increasingly reliant upon computational prediction algorithms designed to prioritize potential functional variants for further study. A large proportion of existing prediction algorithms are ‘disease agnostic’ but are nevertheless quite capable of predicting when a mutation is likely to be deleterious. However, most clinical and research applications of these algorithms relate to specific diseases and would therefore benefit from an approach that discriminates between functional variants specifically related to that disease from those which are not. In a whole-exome/whole-genome sequencing context, such an approach could substantially reduce the number of false positive candidate mutations. Here, we test this postulate by incorporating a disease-specific weighting scheme into the Functional Analysis through Hidden Markov Models (FATHMM) algorithm. When compared to traditional prediction algorithms, we observed an overall reduction in the number of false positives identified using a disease-specific approach to functional prediction across 17 distinct disease concepts/categories. Our results illustrate the potential benefits of making disease-specific predictions when prioritizing candidate variants in relation to specific diseases. A web-based implementation of our algorithm is available at
http://fathmm.biocompute.org.uk
. |
|---|---|
| AbstractList | As the number of non-synonymous single nucleotide polymorphisms (nsSNPs) identified through whole-exome/whole-genome sequencing programs increases, researchers and clinicians are becoming increasingly reliant upon computational prediction algorithms designed to prioritize potential functional variants for further study. A large proportion of existing prediction algorithms are ‘disease agnostic’ but are nevertheless quite capable of predicting when a mutation is likely to be deleterious. However, most clinical and research applications of these algorithms relate to specific diseases and would therefore benefit from an approach that discriminates between functional variants specifically related to that disease from those which are not. In a whole-exome/whole-genome sequencing context, such an approach could substantially reduce the number of false positive candidate mutations. Here, we test this postulate by incorporating a disease-specific weighting scheme into the Functional Analysis through Hidden Markov Models (FATHMM) algorithm. When compared to traditional prediction algorithms, we observed an overall reduction in the number of false positives identified using a disease-specific approach to functional prediction across 17 distinct disease concepts/categories. Our results illustrate the potential benefits of making disease-specific predictions when prioritizing candidate variants in relation to specific diseases. A web-based implementation of our algorithm is available at http://fathmm.biocompute.org.uk. As the number of non-synonymous single nucleotide polymorphisms (nsSNPs) identified through whole-exome/whole-genome sequencing programs increases, researchers and clinicians are becoming increasingly reliant upon computational prediction algorithms designed to prioritize potential functional variants for further study. A large proportion of existing prediction algorithms are 'disease agnostic' but are nevertheless quite capable of predicting when a mutation is likely to be deleterious. However, most clinical and research applications of these algorithms relate to specific diseases and would therefore benefit from an approach that discriminates between functional variants specifically related to that disease from those which are not. In a whole-exome/whole-genome sequencing context, such an approach could substantially reduce the number of false positive candidate mutations. Here, we test this postulate by incorporating a disease-specific weighting scheme into the Functional Analysis through Hidden Markov Models (FATHMM) algorithm. When compared to traditional prediction algorithms, we observed an overall reduction in the number of false positives identified using a disease-specific approach to functional prediction across 17 distinct disease concepts/categories. Our results illustrate the potential benefits of making disease-specific predictions when prioritizing candidate variants in relation to specific diseases. A web-based implementation of our algorithm is available at http://fathmm.biocompute.org.uk.As the number of non-synonymous single nucleotide polymorphisms (nsSNPs) identified through whole-exome/whole-genome sequencing programs increases, researchers and clinicians are becoming increasingly reliant upon computational prediction algorithms designed to prioritize potential functional variants for further study. A large proportion of existing prediction algorithms are 'disease agnostic' but are nevertheless quite capable of predicting when a mutation is likely to be deleterious. However, most clinical and research applications of these algorithms relate to specific diseases and would therefore benefit from an approach that discriminates between functional variants specifically related to that disease from those which are not. In a whole-exome/whole-genome sequencing context, such an approach could substantially reduce the number of false positive candidate mutations. Here, we test this postulate by incorporating a disease-specific weighting scheme into the Functional Analysis through Hidden Markov Models (FATHMM) algorithm. When compared to traditional prediction algorithms, we observed an overall reduction in the number of false positives identified using a disease-specific approach to functional prediction across 17 distinct disease concepts/categories. Our results illustrate the potential benefits of making disease-specific predictions when prioritizing candidate variants in relation to specific diseases. A web-based implementation of our algorithm is available at http://fathmm.biocompute.org.uk. As the number of non-synonymous single nucleotide polymorphisms (nsSNPs) identified through whole-exome/whole-genome sequencing programs increases, researchers and clinicians are becoming increasingly reliant upon computational prediction algorithms designed to prioritize potential functional variants for further study. A large proportion of existing prediction algorithms are ‘disease agnostic’ but are nevertheless quite capable of predicting when a mutation is likely to be deleterious. However, most clinical and research applications of these algorithms relate to specific diseases and would therefore benefit from an approach that discriminates between functional variants specifically related to that disease from those which are not. In a whole-exome/whole-genome sequencing context, such an approach could substantially reduce the number of false positive candidate mutations. Here, we test this postulate by incorporating a disease-specific weighting scheme into the Functional Analysis through Hidden Markov Models (FATHMM) algorithm. When compared to traditional prediction algorithms, we observed an overall reduction in the number of false positives identified using a disease-specific approach to functional prediction across 17 distinct disease concepts/categories. Our results illustrate the potential benefits of making disease-specific predictions when prioritizing candidate variants in relation to specific diseases. A web-based implementation of our algorithm is available at http://fathmm.biocompute.org.uk . |
| ArticleNumber | 11 |
| Author | Cooper, David N Mort, Matthew Shihab, Hashem A Gaunt, Tom R Day, Ian NM Gough, Julian |
| AuthorAffiliation | 2 Department of Computer Science, University of Bristol, The Merchant Venturers Building, Bristol BS8 1UB, UK 1 Bristol Centre for Systems Biomedicine and MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK 3 Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK |
| AuthorAffiliation_xml | – name: 3 Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK – name: 1 Bristol Centre for Systems Biomedicine and MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK – name: 2 Department of Computer Science, University of Bristol, The Merchant Venturers Building, Bristol BS8 1UB, UK |
| Author_xml | – sequence: 1 givenname: Hashem A surname: Shihab fullname: Shihab, Hashem A organization: Bristol Centre for Systems Biomedicine and MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol – sequence: 2 givenname: Julian surname: Gough fullname: Gough, Julian organization: Department of Computer Science, University of Bristol – sequence: 3 givenname: Matthew surname: Mort fullname: Mort, Matthew organization: Institute of Medical Genetics, School of Medicine, Cardiff University – sequence: 4 givenname: David N surname: Cooper fullname: Cooper, David N organization: Institute of Medical Genetics, School of Medicine, Cardiff University – sequence: 5 givenname: Ian NM surname: Day fullname: Day, Ian NM organization: Bristol Centre for Systems Biomedicine and MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol – sequence: 6 givenname: Tom R surname: Gaunt fullname: Gaunt, Tom R email: Tom.Gaunt@bristol.ac.uk organization: Bristol Centre for Systems Biomedicine and MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24980617$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1UU1r3DAQFWFLsklzzbEYesnFG8mybPkSKCFNAgstpT0LfYx3ldqSI9mB_ffVsttlE9qLNLx57zHz5hzNnHeA0BXBC0J4dUPKuslrWpU5zwk5QfMDMDuqz9B5jM8YU0Lr8hSdFWXDcUXqOfr-Q7rf1q2y5JvHTXo3vZ9iFhPWQeYm3YEfrYFs8F1qhWFtYx8zJSOYzLvM2AipzrR3GoYxfkQfWtlFuNz_F-jX1_ufd4_58tvD092XZa4Za8a85UozRQtigBgqWaWl0YYpzI1UJcatZoVstKRFWzQKtKo5ZVAYViilQGJ6gW53vsOkejAa3BhkJ4Zgexk2wksr3nacXYuVfxUl5rRmVTK43hsE_zJBHEVvo4aukw5SAoKwkjZNRRqeqJ_fUZ_9FFxaTxCOi5RqckysT8cTHUb5G3YiLHYEHXyMAdoDhWCxvabYHkxsDyZ4ApKgfCfQdpSj9duNbPd_2c1OFpO_W0E4Gvffij9d8bRE |
| CitedBy_id | crossref_primary_10_1167_iovs_65_14_31 crossref_primary_10_3390_genes12010080 crossref_primary_10_1038_s41598_020_67796_8 crossref_primary_10_1002_humu_23594 crossref_primary_10_1111_jog_15187 crossref_primary_10_1002_gcc_23037 crossref_primary_10_1097_SCS_0000000000009261 crossref_primary_10_1016_j_jmb_2021_166810 crossref_primary_10_1038_s41698_025_00854_4 crossref_primary_10_1093_bib_bbab131 crossref_primary_10_1093_hmg_ddaa225 crossref_primary_10_3390_ijms24021092 crossref_primary_10_15252_emmm_202012013 crossref_primary_10_1016_j_biopsych_2023_06_025 crossref_primary_10_1093_nar_gkz457 crossref_primary_10_1109_TCBB_2022_3155659 crossref_primary_10_3389_fnmol_2023_1253040 crossref_primary_10_1634_theoncologist_2018_0448 crossref_primary_10_1089_ars_2018_7718 crossref_primary_10_1186_s40246_023_00511_6 crossref_primary_10_1007_s00439_025_02751_z crossref_primary_10_3390_ijms25179328 crossref_primary_10_1177_20543581231183856 crossref_primary_10_1016_j_jmoldx_2018_03_009 crossref_primary_10_3389_fped_2022_965282 crossref_primary_10_1002_humu_23221 crossref_primary_10_3390_genes12101483 crossref_primary_10_3390_molecules26154653 crossref_primary_10_6061_clinics_2021_e2052 crossref_primary_10_1002_humu_24150 crossref_primary_10_3233_JND_190423 crossref_primary_10_1111_epi_13798 crossref_primary_10_1186_s12881_020_01059_1 crossref_primary_10_1016_j_heliyon_2024_e35428 crossref_primary_10_1016_j_mgene_2019_100626 crossref_primary_10_1038_s44320_024_00055_4 crossref_primary_10_3390_ph16050757 crossref_primary_10_1002_jdn_10236 crossref_primary_10_1038_s41525_022_00287_z crossref_primary_10_1002_humu_23627 crossref_primary_10_7717_peerj_8106 crossref_primary_10_1016_j_compbiolchem_2020_107416 crossref_primary_10_1159_000448041 crossref_primary_10_1038_s41586_024_07955_3 crossref_primary_10_1038_srep33248 crossref_primary_10_1007_s42000_020_00226_6 crossref_primary_10_1212_NXG_0000000000000568 crossref_primary_10_1016_j_stem_2020_11_013 crossref_primary_10_1093_bib_bbaa065 crossref_primary_10_3389_fgene_2016_00194 crossref_primary_10_1016_j_bbadis_2023_166983 crossref_primary_10_1038_s41598_018_25462_0 crossref_primary_10_1080_17410541_2025_2538424 crossref_primary_10_1016_j_jid_2017_04_028 crossref_primary_10_1186_s12920_018_0375_5 crossref_primary_10_1177_11769343241249916 crossref_primary_10_1186_s40246_024_00663_z crossref_primary_10_1109_ACCESS_2023_3266983 crossref_primary_10_1210_js_2017_00283 crossref_primary_10_1007_s10875_019_00731_3 crossref_primary_10_1007_s12595_022_00449_y crossref_primary_10_1016_j_bbapap_2025_141078 crossref_primary_10_1038_s41416_024_02755_y crossref_primary_10_1002_humu_23883 crossref_primary_10_1146_annurev_biodatasci_030320_041014 crossref_primary_10_1016_j_gpb_2022_07_005 crossref_primary_10_1371_journal_pone_0251289 crossref_primary_10_1007_s10989_020_10121_8 crossref_primary_10_1038_s41598_017_08416_w crossref_primary_10_3389_fgene_2022_981005 crossref_primary_10_1016_j_pediatrneurol_2021_01_006 crossref_primary_10_15252_msb_20209840 crossref_primary_10_1080_10428194_2018_1542142 crossref_primary_10_1093_nar_gkz320 crossref_primary_10_1002_humu_24218 crossref_primary_10_1038_s41525_022_00288_y crossref_primary_10_1182_bloodadvances_2020003195 crossref_primary_10_1038_s41587_019_0055_9 crossref_primary_10_1186_s12944_023_01782_7 crossref_primary_10_1016_j_ajhg_2018_08_005 crossref_primary_10_1038_s10038_025_01316_2 crossref_primary_10_1038_s41598_022_12866_2 crossref_primary_10_3390_cancers15041118 crossref_primary_10_1093_bib_bbaa083 crossref_primary_10_3892_ijmm_2020_4501 crossref_primary_10_3390_genes12060945 crossref_primary_10_1042_BSR20220998 crossref_primary_10_1111_ahg_12231 crossref_primary_10_1155_2015_271458 crossref_primary_10_1007_s11845_020_02174_x crossref_primary_10_1186_s40360_021_00512_y crossref_primary_10_3390_ijms24054262 crossref_primary_10_1371_journal_pone_0185237 crossref_primary_10_1093_nar_gkab428 crossref_primary_10_1186_s12887_022_03822_0 crossref_primary_10_1007_s12672_024_01199_3 crossref_primary_10_1016_j_ajhg_2021_06_004 crossref_primary_10_1182_blood_2019003382 crossref_primary_10_1038_srep31531 crossref_primary_10_1002_mgg3_291 crossref_primary_10_1007_s00726_017_2480_8 crossref_primary_10_1002_humu_23822 crossref_primary_10_1007_s11033_021_06434_6 crossref_primary_10_1038_s41598_020_60704_0 crossref_primary_10_1002_humu_23173 crossref_primary_10_1111_jdv_17873 crossref_primary_10_1038_s41698_023_00435_3 crossref_primary_10_1016_j_gene_2023_147428 crossref_primary_10_1038_s41598_021_81670_1 crossref_primary_10_1007_s11033_020_05534_z crossref_primary_10_1016_j_ebiom_2024_105129 crossref_primary_10_3390_cancers16132482 crossref_primary_10_3390_genes13040569 crossref_primary_10_3390_ph16050726 crossref_primary_10_1038_s41598_017_11746_4 crossref_primary_10_1007_s00535_018_1466_y crossref_primary_10_1016_j_gene_2024_149088 crossref_primary_10_1002_humu_23858 crossref_primary_10_1186_s12887_021_02582_7 crossref_primary_10_1186_s12881_018_0709_3 crossref_primary_10_3390_v17091198 crossref_primary_10_1016_j_neuron_2018_06_019 crossref_primary_10_1186_s13059_016_0974_4 crossref_primary_10_1007_s00439_024_02649_2 crossref_primary_10_1080_03630269_2020_1790384 crossref_primary_10_1038_s41467_020_20847_0 crossref_primary_10_3389_fmed_2023_1237246 crossref_primary_10_1038_s41576_021_00389_x crossref_primary_10_1177_1535370220931035 crossref_primary_10_1371_journal_pone_0274354 crossref_primary_10_1038_s41593_021_01006_0 crossref_primary_10_3389_fonc_2020_01467 crossref_primary_10_1186_s12885_019_5474_y crossref_primary_10_3389_fgene_2023_1290624 crossref_primary_10_3390_jcm8040455 |
| Cites_doi | 10.1186/gm13 10.1093/nar/gkr407 10.1002/humu.22204 10.1006/jmbi.2001.5080 10.1093/bioinformatics/btt182 10.1158/0008-5472.CAN-06-1736 10.1038/nrg3031 10.1186/gm390 10.1002/humu.22038 10.1101/gr.176601 10.1158/0008-5472.CAN-09-1133 10.1002/(SICI)1097-0134(199707)28:3<405::AID-PROT10>3.0.CO;2-L 10.1093/bioinformatics/bti623 10.1093/nar/gkh131 10.1214/aoms/1177729694 10.1038/75556 10.1055/s-0038-1634945 10.1002/humu.21445 10.1002/humu.22253 10.1002/humu.22225 10.1093/nar/gkm405 10.1038/nmeth0410-248 10.1002/humu.21192 10.1002/humu.22214 |
| ContentType | Journal Article |
| Copyright | Shihab et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated. Copyright BioMed Central 2014 Copyright © 2014 Shihab et al.; licensee BioMed Central Ltd. 2014 Shihab et al.; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Shihab et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated. – notice: Copyright BioMed Central 2014 – notice: Copyright © 2014 Shihab et al.; licensee BioMed Central Ltd. 2014 Shihab et al.; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.1186/1479-7364-8-11 |
| DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: ProQuest - Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1479-7364 |
| EndPage | 11 |
| ExternalDocumentID | PMC4083756 4110736141 24980617 10_1186_1479_7364_8_11 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Medical Research Council grantid: MC_UU_12013/2 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/G022771/1 – fundername: Medical Research Council grantid: G1000427 – fundername: Medical Research Council grantid: G1000427/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/G022771 – fundername: Medical Research Council grantid: MC_UU_12013/8 |
| GroupedDBID | --- 0R~ 2JY 36B 4.4 53G 5GY 5VS 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AASML ABUWG ACGFS ACPRK ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EJD EMB EMOBN F5P FYUFA GROUPED_DOAJ H13 HCIFZ HMCUK HYE IAO IHR IHW INH ISR ITC KQ8 LK8 M1P M48 M7P OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SJN SOJ SV3 UKHRP AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c559t-f8bc5b321de1d3a56cadcd5b08dab400fc52a9ca32f29becb7835e2d52bbbea03 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 160 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000338458000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1479-7364 1473-9542 |
| IngestDate | Tue Nov 04 01:55:59 EST 2025 Thu Sep 04 18:57:05 EDT 2025 Wed Oct 15 14:20:57 EDT 2025 Mon Jul 21 06:05:54 EDT 2025 Tue Nov 18 21:54:41 EST 2025 Sat Nov 29 05:56:16 EST 2025 Sat Sep 06 07:26:16 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | FATHMM PolyPhen SIFT nsSNPs Disease-causing SNV HMMs Bioinformatics Disease-specific |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c559t-f8bc5b321de1d3a56cadcd5b08dab400fc52a9ca32f29becb7835e2d52bbbea03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/1802313375?pq-origsite=%requestingapplication% |
| PMID | 24980617 |
| PQID | 1802313375 |
| PQPubID | 27863 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4083756 proquest_miscellaneous_1543996198 proquest_journals_1802313375 pubmed_primary_24980617 crossref_primary_10_1186_1479_7364_8_11 crossref_citationtrail_10_1186_1479_7364_8_11 springer_journals_10_1186_1479_7364_8_11 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-06-30 |
| PublicationDateYYYYMMDD | 2014-06-30 |
| PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-30 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Human genomics |
| PublicationTitleAbbrev | Hum Genomics |
| PublicationTitleAlternate | Hum Genomics |
| PublicationYear | 2014 |
| Publisher | BioMed Central Springer Nature B.V |
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V |
| References | J Thusberg (66_CR2) 2011; 32 JS Kaminker (66_CR5) 2007; 67 J Gough (66_CR18) 2001; 313 M Mort (66_CR23) 2010; 31 PD Stenson (66_CR21) 2009; 1 HA Shihab (66_CR3) 2013; 34 M Ashburner (66_CR15) 2000; 25 H Carter (66_CR9) 2009; 69 DA Lindberg (66_CR22) 1993; 32 M Vihinen (66_CR24) 2013; 34 HA Shihab (66_CR12) 2013; 29 R Apweiler (66_CR16) 2004; 32 H Ali (66_CR6) 2012; 33 JS Kaminker (66_CR8) 2007; 35 MJ Bamshad (66_CR1) 2011; 12 EL Sonnhammer (66_CR19) 1997; 28 IA Adzhubei (66_CR14) 2010; 7 P Sasidharan Nair (66_CR4) 2013; 34 SR Eddy (66_CR17) 2009; 23 A Gonzalez-Perez (66_CR11) 2012; 4 B Reva (66_CR10) 2011; 39 T Sing (66_CR25) 2005; 21 BA Thompson (66_CR7) 2013; 34 PC Ng (66_CR13) 2001; 11 S Kullback (66_CR20) 1951; 22 |
| References_xml | – volume: 1 start-page: 13 year: 2009 ident: 66_CR21 publication-title: Genome Med doi: 10.1186/gm13 – volume: 39 start-page: e118 year: 2011 ident: 66_CR10 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr407 – volume: 34 start-page: 42 year: 2013 ident: 66_CR4 publication-title: Hum Mutat doi: 10.1002/humu.22204 – volume: 313 start-page: 903 year: 2001 ident: 66_CR18 publication-title: J Mol Biol doi: 10.1006/jmbi.2001.5080 – volume: 29 start-page: 1504 year: 2013 ident: 66_CR12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt182 – volume: 67 start-page: 465 year: 2007 ident: 66_CR5 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-1736 – volume: 12 start-page: 745 year: 2011 ident: 66_CR1 publication-title: Nat Rev Genet doi: 10.1038/nrg3031 – volume: 4 start-page: 89 year: 2012 ident: 66_CR11 publication-title: Genome Med doi: 10.1186/gm390 – volume: 33 start-page: 642 year: 2012 ident: 66_CR6 publication-title: Hum Mutat doi: 10.1002/humu.22038 – volume: 11 start-page: 863 year: 2001 ident: 66_CR13 publication-title: Genome Res doi: 10.1101/gr.176601 – volume: 69 start-page: 6660 year: 2009 ident: 66_CR9 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-1133 – volume: 28 start-page: 405 year: 1997 ident: 66_CR19 publication-title: Proteins doi: 10.1002/(SICI)1097-0134(199707)28:3<405::AID-PROT10>3.0.CO;2-L – volume: 21 start-page: 3940 year: 2005 ident: 66_CR25 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti623 – volume: 32 start-page: D115 year: 2004 ident: 66_CR16 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh131 – volume: 22 start-page: 79 year: 1951 ident: 66_CR20 publication-title: Ann Math Stat doi: 10.1214/aoms/1177729694 – volume: 25 start-page: 25 year: 2000 ident: 66_CR15 publication-title: Nat Genet doi: 10.1038/75556 – volume: 32 start-page: 281 year: 1993 ident: 66_CR22 publication-title: Methods Inf Med doi: 10.1055/s-0038-1634945 – volume: 32 start-page: 358 year: 2011 ident: 66_CR2 publication-title: Hum Mutat doi: 10.1002/humu.21445 – volume: 34 start-page: 275 year: 2013 ident: 66_CR24 publication-title: Hum Mutat doi: 10.1002/humu.22253 – volume: 23 start-page: 205 year: 2009 ident: 66_CR17 publication-title: Genome Inform – volume: 34 start-page: 57 year: 2013 ident: 66_CR3 publication-title: Hum Mutat doi: 10.1002/humu.22225 – volume: 35 start-page: W595 year: 2007 ident: 66_CR8 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm405 – volume: 7 start-page: 248 year: 2010 ident: 66_CR14 publication-title: Nat Methods doi: 10.1038/nmeth0410-248 – volume: 31 start-page: 335 year: 2010 ident: 66_CR23 publication-title: Hum Mutat doi: 10.1002/humu.21192 – volume: 34 start-page: 255 year: 2013 ident: 66_CR7 publication-title: Hum Mutat doi: 10.1002/humu.22214 |
| SSID | ssj0031374 |
| Score | 2.4324124 |
| Snippet | As the number of non-synonymous single nucleotide polymorphisms (nsSNPs) identified through whole-exome/whole-genome sequencing programs increases, researchers... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 11 |
| SubjectTerms | Algorithms Amino Acid Substitution - genetics Bioinformatics Biomedical and Life Sciences Biomedicine Cancer Computational Biology Human Genetics Humans Internet Markov Chains Metabolic disorders Mutation Mutation - genetics Phenotype Polymorphism, Single Nucleotide - genetics Primary Research Proteins Proteomics Software Studies Training |
| SummonAdditionalLinks | – databaseName: Springer LINK Contemporary dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hSiUuFNoCoYBcCYleLBI_YudYVSBOCAFF3CK_oq60ZFdkQeLfM85j1WVbCS45xJPEmYc9n8eeATiyMUc6946qSgQqGF6M0J4G7zk3Nq207YpNqIsLfXdXXK5AOpyFaXe7DyHJdqRuzVrnJ5lQBVU8FxRhD-KdDzjV6WiKV9e3w9jLM65En5px-ZnFqWfJn1zeFvkqNtpOOWef3t_ZTdjo3Uvys9OHLVgJ9Wf42BWcfP4Cl1emLZVAEPTT5nmA_iQuGIwDqWNy48ls5AOZTsbYhEIYNfcNiXOdJ5Oa9PEc4rrTjs1X-H12evPrnPY1FahD7DCjyHsnLWeZD5nnRubOeOelTbU3Fu25cpKZwhnOKlagfG1cGQrMS2atDSbl27CKnQu7QKQ2VrJKuMwwIYM2ObNFhW9QkqW2MgnQgd2l6xOOx7oX47IFHjovI5fKyKVS440Ejuf00y7Vxn8p9wfplb3JNWWXyo5zJRP4Pm9GY4kREFMH5GaJ_iI6ZIgZdQI7nbDnn0IcqqM_l4BaUIM5QUzEvdhSj_60CbkF-rFK5gn8GJThr2798w_23k76DdbRSRPdHsV9WJ09PIYDWHNPs1HzcNiq_wtQigV- priority: 102 providerName: Springer Nature |
| Title | Ranking non-synonymous single nucleotide polymorphisms based on disease concepts |
| URI | https://link.springer.com/article/10.1186/1479-7364-8-11 https://www.ncbi.nlm.nih.gov/pubmed/24980617 https://www.proquest.com/docview/1802313375 https://www.proquest.com/docview/1543996198 https://pubmed.ncbi.nlm.nih.gov/PMC4083756 |
| Volume | 8 |
| WOSCitedRecordID | wos000338458000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 1479-7364 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031374 issn: 1479-7364 databaseCode: RBZ dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1479-7364 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031374 issn: 1479-7364 databaseCode: DOA dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1479-7364 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031374 issn: 1479-7364 databaseCode: M7P dateStart: 20031101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1479-7364 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031374 issn: 1479-7364 databaseCode: 7X7 dateStart: 20031101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest - Publicly Available Content Database customDbUrl: eissn: 1479-7364 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031374 issn: 1479-7364 databaseCode: PIMPY dateStart: 20031101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1479-7364 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031374 issn: 1479-7364 databaseCode: BENPR dateStart: 20031101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1479-7364 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031374 issn: 1479-7364 databaseCode: RSV dateStart: 20031201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH6iLUi9sC-BMgoSElysTrzEzgkBagUHRtGwaDhF3iJGGpJpMyD13_PsJANDgQsXS7GfEtvPy9vyPYCnJmCkM2eJrLknnGKhuXLEO8eYNtNamT7ZhJzN1GJRlIPBrRvCKsczMR7UrrXBRn7cI5UxJsWL9RkJWaOCd3VIobEHBwElgcXQvXI8iZE8ojBnXDJSCE4H0MZM5cdYVxDJck5Qicp2L6VLkublgMnfvKbxMjq98b_DuAnXBzE0fdmvm1twxTe34VqfmPLiDpRzHVMqpE3bkO5iNBGkwbCw8mkTQJDbzdL5dN2usAmZtey-dmm4E13aNung90lt_1dkdxc-np58eP2GDLkXiEUdY0OQR1YYRjPnM8e0yK121gkzVU4b3Pe1FVQXVjNa0wLXgQkWJE-doMYYr6fsHuxj5_wDSIXSRtCa20xTLrzSOTVFjW-Qgk5NrRMg4-RXdgAmD_kxVlVUUFReBWZVgVmVwooEnm3p1z0kx18pj0YmVMPW7KqfHEjgybYZN1XwlOjG42xWKFei4Ia6pUrgfs_67adQX1VB7ktA7iyKLUEA7N5taZZfInA3R3lXijyB5-Py-aVbfxzBw3-P4BEcogDH-_jFI9jfnH_zj-Gq_b5ZducT2JMLGUs1gYNXJ7NyPok2h0ncJlhXvn1Xfsan-ftPPwANwBtb |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9iVQwEgguFideEmcA0IIqFq1jEaoSL253iJGGpKhGUDzp_iNPGcZGArceuCSg20lXj4_f892vgfwxEaNdO4dzUsRqGD4MEJ5Grzn3NhRqWwXbCIfj9XRUTHZgO_DvzDxWuVgE1tD7WsX98i3O6UyznP5cv6ZxqhR8XR1CKHRwWI_LL-hy9a82HuD4_uUsZ23h693aR9VgDpkzwuKX3fScpb6kHpuZOaMd17akfLGIqJLJ5kpnOGsZAW20Ma9kcC8ZNbaYEYc33sOziONYKq9KjgZLD9Wr1V9TkXOaSEF60UiU5VtY1pBc54Jik5bur4InmK2py9o_nZK2y5-O1f_t267Bld6mk1edfPiOmyE6gZc7AJvLm_C5L1pQ0aQqq5osxy2QEjcOJkFUkWR53ox9YHM6xlmIRinzaeGxDXfk7oi_bkWcd1fn80t-HAmzbkNm1i5cBeIVMZKVgqXGiZkUCZjtijxDblkI1uaBOgw2Nr1wusx_sdMtw6YynQEh47g0AoTEni2Kj_vJEf-WnJrGHTdm55G_xzxBB6vstFoxJMgUwXsTY28GYkp-s4qgTsd1FafQn9cRV6bQL4GwlWBKEi-nlNNP7bC5AL5fC6zBJ4PcP2lWn9swb1_t-ARXNo9fHegD_bG-_fhMpJV0d3V3ILNxcmX8AAuuK-LaXPysJ2IBI7PGsI_AJKXdgY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFH4ahkVc2JfAAEYCwcVq4yV2DgghhorRoKpCIM0teIuoVJIyKaD-NX4dz1kKZYDbHLjkYFuJl8_29-yX7wE8slEjnXtHVSkCFQwfRmhPg_ecGzsute2CTajpVB8d5bMd-D78CxPdKoc1sV2ofe3iGfmoUyrjXMlR2btFzPYnz5efaYwgFW9ah3AaHUQOw_obmm_Ns4N9HOvHjE1evXv5mvYRBqhDJr2iWBMnLWepD6nnRmbOeOelHWtvLKK7dJKZ3BnOSpZja208JwnMS2atDWbM8b1n4KyKouWt2-Bs2AWwqq0CdCoUp7kUrBeMTHU2wrScKp4JigZcur0hnmC5J501f7uxbTfCyeX_uQuvwKWefpMX3Xy5Cjuhugbnu4Cc6-swe2vaUBKkqivarIejERIPVBaBVFH8uV7NfSDLeoFZCNJ586khkQt4Ulekv-8irvsbtLkB70-lOTdhFysXbgOR2ljJSuFSw4QM2mTM5iW-QUk2tqVJgA4DX7hekD3GBVkUrWGmsyICpYhAKTQmJPBkU37ZSZH8teTeAICiX5Ka4ufoJ_Bwk42LSbwhMlXA3iyQTyNhRZtaJ3Crg93mU2in68h3E1BbgNwUiELl2znV_GMrWC6Q5yuZJfB0gO4v1fpjC-78uwUP4AIit3hzMD28CxeRw4rOhXMPdlfHX8I9OOe-rubN8f12ThL4cNoI_gGHY37D |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ranking+non-synonymous+single+nucleotide+polymorphisms+based+on+disease+concepts&rft.jtitle=Human+genomics&rft.au=Shihab%2C+Hashem+A&rft.au=Gough%2C+Julian&rft.au=Mort%2C+Matthew&rft.au=Cooper%2C+David+N&rft.date=2014-06-30&rft.issn=1479-7364&rft.eissn=1479-7364&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1186%2F1479-7364-8-11&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_1479_7364_8_11 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-7364&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-7364&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-7364&client=summon |