Igneous: Distributed dense 3D segmentation meshing, neuron skeletonization, and hierarchical downsampling

Three-dimensional electron microscopy images of brain tissue and their dense segmentations are now petascale and growing. These volumes require the mass production of dense segmentation-derived neuron skeletons, multi-resolution meshes, image hierarchies (for both modalities) for visualization and a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in neural circuits Ročník 16; s. 977700
Hlavní autoři: Silversmith, William, Zlateski, Aleksandar, Bae, J. Alexander, Tartavull, Ignacio, Kemnitz, Nico, Wu, Jingpeng, Seung, H. Sebastian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Research Foundation 25.11.2022
Frontiers Media S.A
Témata:
ISSN:1662-5110, 1662-5110
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Three-dimensional electron microscopy images of brain tissue and their dense segmentations are now petascale and growing. These volumes require the mass production of dense segmentation-derived neuron skeletons, multi-resolution meshes, image hierarchies (for both modalities) for visualization and analysis, and tools to manage the large amount of data. However, open tools for large-scale meshing, skeletonization, and data management have been missing. Igneous is a Python-based distributed computing framework that enables economical meshing, skeletonization, image hierarchy creation, and data management using cloud or cluster computing that has been proven to scale horizontally. We sketch Igneous's computing framework, show how to use it, and characterize its performance and data storage.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Mohan Raghavan, Indian Institute of Technology Hyderabad, India; Kevin Boergens, Paradromics, Inc., United States
Edited by: Yoshiyuki Kubota, National Institute for Physiological Sciences (NIPS), Japan
ISSN:1662-5110
1662-5110
DOI:10.3389/fncir.2022.977700