Igneous: Distributed dense 3D segmentation meshing, neuron skeletonization, and hierarchical downsampling
Three-dimensional electron microscopy images of brain tissue and their dense segmentations are now petascale and growing. These volumes require the mass production of dense segmentation-derived neuron skeletons, multi-resolution meshes, image hierarchies (for both modalities) for visualization and a...
Uloženo v:
| Vydáno v: | Frontiers in neural circuits Ročník 16; s. 977700 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
Frontiers Research Foundation
25.11.2022
Frontiers Media S.A |
| Témata: | |
| ISSN: | 1662-5110, 1662-5110 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Three-dimensional electron microscopy images of brain tissue and their dense segmentations are now petascale and growing. These volumes require the mass production of dense segmentation-derived neuron skeletons, multi-resolution meshes, image hierarchies (for both modalities) for visualization and analysis, and tools to manage the large amount of data. However, open tools for large-scale meshing, skeletonization, and data management have been missing. Igneous is a Python-based distributed computing framework that enables economical meshing, skeletonization, image hierarchy creation, and data management using cloud or cluster computing that has been proven to scale horizontally. We sketch Igneous's computing framework, show how to use it, and characterize its performance and data storage. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Mohan Raghavan, Indian Institute of Technology Hyderabad, India; Kevin Boergens, Paradromics, Inc., United States Edited by: Yoshiyuki Kubota, National Institute for Physiological Sciences (NIPS), Japan |
| ISSN: | 1662-5110 1662-5110 |
| DOI: | 10.3389/fncir.2022.977700 |