Distinct Dopamine Receptor Pathways Underlie the Temporal Sensitivity of Associative Learning

Animals rely on the relative timing of events in their environment to form and update predictive associations, but the molecular and circuit mechanisms for this temporal sensitivity remain incompletely understood. Here, we show that olfactory associations in Drosophila can be written and reversed on...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cell Ročník 178; číslo 1; s. 60
Hlavní autoři: Handler, Annie, Graham, Thomas G W, Cohn, Raphael, Morantte, Ianessa, Siliciano, Andrew F, Zeng, Jianzhi, Li, Yulong, Ruta, Vanessa
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 27.06.2019
Témata:
ISSN:1097-4172, 1097-4172
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Animals rely on the relative timing of events in their environment to form and update predictive associations, but the molecular and circuit mechanisms for this temporal sensitivity remain incompletely understood. Here, we show that olfactory associations in Drosophila can be written and reversed on a trial-by-trial basis depending on the temporal relationship between an odor cue and dopaminergic reinforcement. Through the synchronous recording of neural activity and behavior, we show that reversals in learned odor attraction correlate with bidirectional neural plasticity in the mushroom body, the associative olfactory center of the fly. Two dopamine receptors, DopR1 and DopR2, contribute to this temporal sensitivity by coupling to distinct second messengers and directing either synaptic depression or potentiation. Our results reveal how dopamine-receptor signaling pathways can detect the order of events to instruct opposing forms of synaptic and behavioral plasticity, allowing animals to flexibly update their associations in a dynamic environment.
AbstractList Animals rely on the relative timing of events in their environment to form and update predictive associations, but the molecular and circuit mechanisms for this temporal sensitivity remain incompletely understood. Here, we show that olfactory associations in Drosophila can be written and reversed on a trial-by-trial basis depending on the temporal relationship between an odor cue and dopaminergic reinforcement. Through the synchronous recording of neural activity and behavior, we show that reversals in learned odor attraction correlate with bidirectional neural plasticity in the mushroom body, the associative olfactory center of the fly. Two dopamine receptors, DopR1 and DopR2, contribute to this temporal sensitivity by coupling to distinct second messengers and directing either synaptic depression or potentiation. Our results reveal how dopamine-receptor signaling pathways can detect the order of events to instruct opposing forms of synaptic and behavioral plasticity, allowing animals to flexibly update their associations in a dynamic environment.Animals rely on the relative timing of events in their environment to form and update predictive associations, but the molecular and circuit mechanisms for this temporal sensitivity remain incompletely understood. Here, we show that olfactory associations in Drosophila can be written and reversed on a trial-by-trial basis depending on the temporal relationship between an odor cue and dopaminergic reinforcement. Through the synchronous recording of neural activity and behavior, we show that reversals in learned odor attraction correlate with bidirectional neural plasticity in the mushroom body, the associative olfactory center of the fly. Two dopamine receptors, DopR1 and DopR2, contribute to this temporal sensitivity by coupling to distinct second messengers and directing either synaptic depression or potentiation. Our results reveal how dopamine-receptor signaling pathways can detect the order of events to instruct opposing forms of synaptic and behavioral plasticity, allowing animals to flexibly update their associations in a dynamic environment.
Animals rely on the relative timing of events in their environment to form and update predictive associations, but the molecular and circuit mechanisms for this temporal sensitivity remain incompletely understood. Here, we show that olfactory associations in Drosophila can be written and reversed on a trial-by-trial basis depending on the temporal relationship between an odor cue and dopaminergic reinforcement. Through the synchronous recording of neural activity and behavior, we show that reversals in learned odor attraction correlate with bidirectional neural plasticity in the mushroom body, the associative olfactory center of the fly. Two dopamine receptors, DopR1 and DopR2, contribute to this temporal sensitivity by coupling to distinct second messengers and directing either synaptic depression or potentiation. Our results reveal how dopamine-receptor signaling pathways can detect the order of events to instruct opposing forms of synaptic and behavioral plasticity, allowing animals to flexibly update their associations in a dynamic environment.
Author Zeng, Jianzhi
Li, Yulong
Handler, Annie
Siliciano, Andrew F
Morantte, Ianessa
Graham, Thomas G W
Cohn, Raphael
Ruta, Vanessa
Author_xml – sequence: 1
  givenname: Annie
  surname: Handler
  fullname: Handler, Annie
  organization: Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA
– sequence: 2
  givenname: Thomas G W
  surname: Graham
  fullname: Graham, Thomas G W
  organization: Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA
– sequence: 3
  givenname: Raphael
  surname: Cohn
  fullname: Cohn, Raphael
  organization: Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA
– sequence: 4
  givenname: Ianessa
  surname: Morantte
  fullname: Morantte, Ianessa
  organization: Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA
– sequence: 5
  givenname: Andrew F
  surname: Siliciano
  fullname: Siliciano, Andrew F
  organization: Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA
– sequence: 6
  givenname: Jianzhi
  surname: Zeng
  fullname: Zeng, Jianzhi
  organization: State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China
– sequence: 7
  givenname: Yulong
  surname: Li
  fullname: Li, Yulong
  organization: State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China
– sequence: 8
  givenname: Vanessa
  surname: Ruta
  fullname: Ruta, Vanessa
  email: ruta@rockefeller.edu
  organization: Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA. Electronic address: ruta@rockefeller.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31230716$$D View this record in MEDLINE/PubMed
BookMark eNpNkM1KAzEYRYNU7I--gAvJ0s2MyTdJ2i5L6x8UFG2XMmSSb2zKTGacpErf3ooVXN3L5XAXZ0h6vvFIyCVnKWdc3WxTg1WVAuPTlMmUCXZCBpxNx4ngY-j9630yDGHLGJtIKc9IP-OQsTFXA_K2cCE6byJdNK2unUf6ggbb2HT0WcfNl94HuvYWu8ohjRukK6zbptMVfUUfXHSfLu5pU9JZCI1x-jAgXaLuvPPv5-S01FXAi2OOyPrudjV_SJZP94_z2TIxUoqYGEAwqFhhbZmJwpaCTwzHCarSWlFKOwWroMyUEmCE1FqDnELJlS0AMg0wIte_v23XfOwwxLx24UeO9tjsQg4gFAieyckBvTqiu6JGm7edq3W3z_-UwDeAJ2eo
CitedBy_id crossref_primary_10_1523_JNEUROSCI_2310_22_2023
crossref_primary_10_1016_j_neubiorev_2022_104570
crossref_primary_10_7554_eLife_94168
crossref_primary_10_3390_brainsci14090902
crossref_primary_10_7554_eLife_79042
crossref_primary_10_3389_fncel_2021_618393
crossref_primary_10_1038_s41586_023_06013_8
crossref_primary_10_1093_genetics_iyad064
crossref_primary_10_1038_s42256_023_00747_w
crossref_primary_10_1016_j_cub_2023_04_041
crossref_primary_10_1016_j_cub_2021_09_039
crossref_primary_10_7554_eLife_80445
crossref_primary_10_1016_j_tins_2024_01_001
crossref_primary_10_7554_eLife_81535
crossref_primary_10_1016_j_apsb_2025_07_034
crossref_primary_10_1146_annurev_neuro_102119_103452
crossref_primary_10_7554_eLife_54530
crossref_primary_10_1126_science_abm1670
crossref_primary_10_7554_eLife_98358
crossref_primary_10_1111_ejn_15766
crossref_primary_10_1002_jnr_24587
crossref_primary_10_1523_JNEUROSCI_2152_22_2023
crossref_primary_10_1038_s41467_021_22592_4
crossref_primary_10_1016_j_cub_2020_05_077
crossref_primary_10_1016_j_biopha_2023_114647
crossref_primary_10_1523_ENEURO_0123_25_2025
crossref_primary_10_1038_s41586_024_07819_w
crossref_primary_10_7554_eLife_99368_3
crossref_primary_10_1038_s41467_021_21388_w
crossref_primary_10_1038_s41598_020_77910_5
crossref_primary_10_1162_imag_a_00137
crossref_primary_10_1146_annurev_neuro_110920_032645
crossref_primary_10_1016_j_cub_2022_08_058
crossref_primary_10_1038_s41593_020_0607_9
crossref_primary_10_1016_j_cub_2022_09_007
crossref_primary_10_1177_20416695211009552
crossref_primary_10_3389_fnins_2020_00816
crossref_primary_10_1080_01677063_2020_1715973
crossref_primary_10_1080_01677063_2020_1715971
crossref_primary_10_1038_s41592_020_00981_9
crossref_primary_10_7554_eLife_61339
crossref_primary_10_1016_j_neuron_2022_06_019
crossref_primary_10_1093_genetics_iyad085
crossref_primary_10_1038_s41586_022_05485_4
crossref_primary_10_1038_s41467_024_54778_x
crossref_primary_10_1242_jeb_200261
crossref_primary_10_1038_s41467_022_35373_4
crossref_primary_10_3389_fncel_2020_00067
crossref_primary_10_1016_j_cub_2021_10_020
crossref_primary_10_7554_eLife_77578
crossref_primary_10_7554_eLife_85756
crossref_primary_10_1113_JP285745
crossref_primary_10_3389_fnbeh_2020_607700
crossref_primary_10_7554_eLife_62770
crossref_primary_10_1038_s41467_023_43970_0
crossref_primary_10_1371_journal_pcbi_1009205
crossref_primary_10_1016_j_neuron_2020_03_013
crossref_primary_10_1016_j_conb_2019_11_017
crossref_primary_10_1016_j_conb_2020_12_003
crossref_primary_10_7554_eLife_98358_3
crossref_primary_10_1038_s41380_024_02521_9
crossref_primary_10_3389_fncel_2020_00258
crossref_primary_10_3390_molecules27134252
crossref_primary_10_1016_j_cub_2022_11_039
crossref_primary_10_1371_journal_pgen_1008331
crossref_primary_10_1016_j_neuron_2021_09_010
crossref_primary_10_1016_j_cub_2021_05_056
crossref_primary_10_1371_journal_pgen_1011458
crossref_primary_10_1242_jeb_244565
crossref_primary_10_1016_j_neubiorev_2020_12_032
crossref_primary_10_1073_pnas_2221415120
crossref_primary_10_1093_cercor_bhaa354
crossref_primary_10_1523_JNEUROSCI_1498_24_2024
crossref_primary_10_1523_JNEUROSCI_1734_22_2023
crossref_primary_10_7554_eLife_52278
crossref_primary_10_1523_JNEUROSCI_0144_22_2022
crossref_primary_10_7554_eLife_99368
crossref_primary_10_7554_eLife_75611
crossref_primary_10_1016_j_cub_2022_09_054
crossref_primary_10_1016_j_conb_2021_12_001
crossref_primary_10_1038_s41583_022_00577_6
crossref_primary_10_7554_eLife_80923
crossref_primary_10_1523_JNEUROSCI_1572_19_2020
crossref_primary_10_1016_j_cophys_2020_06_001
crossref_primary_10_1016_j_neuron_2019_10_023
crossref_primary_10_1038_s41583_024_00822_0
crossref_primary_10_1126_sciadv_adq9893
crossref_primary_10_1146_annurev_neuro_080317_0621333
crossref_primary_10_1016_j_neuron_2020_06_022
crossref_primary_10_1038_s41598_021_99531_2
crossref_primary_10_1038_s41583_022_00561_0
crossref_primary_10_1007_s00359_022_01611_9
crossref_primary_10_1016_j_ceca_2021_102433
crossref_primary_10_1016_j_cub_2021_09_008
crossref_primary_10_1016_j_neuron_2020_07_029
crossref_primary_10_1038_s41593_024_01823_z
crossref_primary_10_1073_pnas_2102158118
crossref_primary_10_7554_eLife_49257
crossref_primary_10_7554_eLife_77643
crossref_primary_10_1016_j_tins_2022_12_005
crossref_primary_10_1016_j_neuron_2020_09_036
crossref_primary_10_1371_journal_pbio_3002843
crossref_primary_10_1038_s41467_022_33577_2
crossref_primary_10_1016_j_neuroscience_2023_06_025
crossref_primary_10_1016_j_celrep_2025_115593
crossref_primary_10_1007_s00441_020_03386_4
crossref_primary_10_7554_eLife_76712
crossref_primary_10_1016_j_cub_2022_10_017
crossref_primary_10_1134_S0006297924030015
crossref_primary_10_1038_s41586_023_07006_3
crossref_primary_10_1002_cne_25037
crossref_primary_10_1016_j_cub_2020_12_032
crossref_primary_10_1016_j_cub_2023_05_064
crossref_primary_10_7554_eLife_62297
crossref_primary_10_1016_j_cell_2019_06_010
crossref_primary_10_1016_j_neubiorev_2022_104816
crossref_primary_10_7554_eLife_62576
crossref_primary_10_1038_s41593_021_00929_y
crossref_primary_10_1126_sciadv_ado4112
crossref_primary_10_7554_eLife_94168_4
crossref_primary_10_1016_j_cobeha_2024_101443
crossref_primary_10_3389_fnbeh_2021_821680
crossref_primary_10_1016_j_neuron_2022_12_034
crossref_primary_10_1016_j_cub_2023_08_016
crossref_primary_10_1038_s41586_023_06671_8
ContentType Journal Article
Copyright Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cell.2019.05.040
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
ExternalDocumentID 31230716
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: DP2 NS087942
– fundername: NIDCD NIH HHS
  grantid: F31 DC016844
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6J9
7-5
85S
AAEDT
AAEDW
AAFWJ
AAHBH
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
AAYWO
ABCQX
ABDGV
ABJNI
ABMAC
ABOCM
ACGFO
ACGFS
ACNCT
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
ADXHL
AEFWE
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGCQF
AGHSJ
AGKMS
AHHHB
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EFKBS
EIF
EJD
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NPM
O-L
O9-
OK1
P2P
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
WH7
YZZ
ZCA
7X8
ID FETCH-LOGICAL-c554t-c2e2ce60bddf34bdf418c1e8e6fdd4f5d92d62f36642c45aaa2592f16db223a22
IEDL.DBID 7X8
ISICitedReferencesCount 144
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473002700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4172
IngestDate Thu Oct 02 12:08:27 EDT 2025
Mon Jul 21 06:00:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords associative learning
memory
Drosophila
mushroom body
G-protein second messengers
olfaction
synaptic plasticity
dopamine
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-c2e2ce60bddf34bdf418c1e8e6fdd4f5d92d62f36642c45aaa2592f16db223a22
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cell.com/article/S0092867419306117/pdf
PMID 31230716
PQID 2246241358
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2246241358
pubmed_primary_31230716
PublicationCentury 2000
PublicationDate 2019-06-27
PublicationDateYYYYMMDD 2019-06-27
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2019
References 31251917 - Cell. 2019 Jun 27;178(1):5-7
References_xml – reference: 31251917 - Cell. 2019 Jun 27;178(1):5-7
SSID ssj0008555
Score 2.6286402
Snippet Animals rely on the relative timing of events in their environment to form and update predictive associations, but the molecular and circuit mechanisms for...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 60
SubjectTerms Animals
Association Learning - physiology
Behavior, Animal - physiology
Conditioning, Classical - physiology
Dopamine - metabolism
Dopaminergic Neurons - metabolism
Drosophila - physiology
Drosophila Proteins - metabolism
Mushroom Bodies - physiology
Neuronal Plasticity
Odorants
Receptors, Dopamine - metabolism
Receptors, Dopamine D1 - metabolism
Reward
Smell - physiology
Synaptic Potentials - physiology
Time Factors
Title Distinct Dopamine Receptor Pathways Underlie the Temporal Sensitivity of Associative Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/31230716
https://www.proquest.com/docview/2246241358
Volume 178
WOSCitedRecordID wos000473002700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UKnjx_agvVvAa7D6SbE4i1uLFUrBCLxI2-xBBk2pqpf_emSS1J0HwkltCmJnd_Wbm2_kIuXCaqUiGLFCRDQMJjg0yniH_SSRMatuxzFZiE3G_r0ajZNAU3MqGVjnfE6uN2hYGa-SXOPgMe0Chuhq_B6gahd3VRkJjmbQEfByjOh4tpoWrsFI9xSZrIOGkbi7N1PwuLIwjtSupJnfKzu8Qszpqepv__cktstGATHpdR8U2WXL5DlmrZSdnu-Spiws7NxPahZT5DXAmBfToxpB-0wEgwi89K2kliAQAlQJCpMN6gNUrfUC-ey04QQtPf5w7dbSZ1Pq8Rx57t8Obu6CRWQgMYIlJYLjjxkWdzFovZGa9ZMowp1zkrZU-tAm3EfciglTFyFBrDSkT9wyVqLjQnO-TlbzI3SGhynWMUM5LAzBLaKdiKwAROkR1mWBhm5zP7ZZCGKMLdO6KzzJdWK5NDmrjp-N63kYqGLLVWXT0h7ePyTr6FMlcPD4hLQ-L2J2SVTOdvJQfZ1V8wLM_uP8GN-3FnQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinct+Dopamine+Receptor+Pathways+Underlie+the+Temporal+Sensitivity+of+Associative+Learning&rft.jtitle=Cell&rft.au=Handler%2C+Annie&rft.au=Graham%2C+Thomas+G+W&rft.au=Cohn%2C+Raphael&rft.au=Morantte%2C+Ianessa&rft.date=2019-06-27&rft.issn=1097-4172&rft.eissn=1097-4172&rft.volume=178&rft.issue=1&rft.spage=60&rft_id=info:doi/10.1016%2Fj.cell.2019.05.040&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4172&client=summon