Calcium detection, its quantification, and grayscale morphology-based risk stratification using machine learning in multimodality big data coronary and carotid scans: A review
Atherosclerosis is the leading cause of cardiovascular disease (CVD) and stroke. Typically, atherosclerotic calcium is found during the mature stage of the atherosclerosis disease. It is therefore often a challenge to identify and quantify the calcium. This is due to the presence of multiple compone...
Saved in:
| Published in: | Computers in Biology and Medicine Vol. 101; pp. 184 - 198 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Ltd
01.10.2018
Elsevier BV Elsevier Limited |
| Subjects: | |
| ISSN: | 0010-4825, 1879-0534, 1879-0534 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Atherosclerosis is the leading cause of cardiovascular disease (CVD) and stroke. Typically, atherosclerotic calcium is found during the mature stage of the atherosclerosis disease. It is therefore often a challenge to identify and quantify the calcium. This is due to the presence of multiple components of plaque buildup in the arterial walls. The American College of Cardiology/American Heart Association guidelines point to the importance of calcium in the coronary and carotid arteries and further recommend its quantification for the prevention of heart disease. It is therefore essential to stratify the CVD risk of the patient into low- and high-risk bins.
Calcium formation in the artery walls is multifocal in nature with sizes at the micrometer level. Thus, its detection requires high-resolution imaging. Clinical experience has shown that even though optical coherence tomography offers better resolution, intravascular ultrasound still remains an important imaging modality for coronary wall imaging. For a computer-based analysis system to be complete, it must be scientifically and clinically validated. This study presents a state-of-the-art review (condensation of 152 publications after examining 200 articles) covering the methods for calcium detection and its quantification for coronary and carotid arteries, the pros and cons of these methods, and the risk stratification strategies. The review also presents different kinds of statistical models and gold standard solutions for the evaluation of software systems useful for calcium detection and quantification. Finally, the review concludes with a possible vision for designing the next-generation system for better clinical outcomes.
•Different modalities were presented for calcium detection and its quantification.•Speed issues were presented in the form of multiresolution paradigms.•Learning-based risk stratification studies were discussed.•Different methods were presented for performance evaluation and validation. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ISSN: | 0010-4825 1879-0534 1879-0534 |
| DOI: | 10.1016/j.compbiomed.2018.08.017 |