Computational approaches in target identification and drug discovery

In the big data era, voluminous datasets are routinely acquired, stored and analyzed with the aim to inform biomedical discoveries and validate hypotheses. No doubt, data volume and diversity have dramatically increased by the advent of new technologies and open data initiatives. Big data are used a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational and structural biotechnology journal Ročník 14; číslo C; s. 177 - 184
Hlavní autoři: Katsila, Theodora, Spyroulias, Georgios A., Patrinos, George P., Matsoukas, Minos-Timotheos
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.01.2016
Research Network of Computational and Structural Biotechnology
Elsevier
Témata:
ISSN:2001-0370, 2001-0370
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the big data era, voluminous datasets are routinely acquired, stored and analyzed with the aim to inform biomedical discoveries and validate hypotheses. No doubt, data volume and diversity have dramatically increased by the advent of new technologies and open data initiatives. Big data are used across the whole drug discovery pipeline from target identification and mechanism of action to identification of novel leads and drug candidates. Such methods are depicted and discussed, with the aim to provide a general view of computational tools and databases available. We feel that big data leveraging needs to be cost-effective and focus on personalized medicine. For this, we propose the interplay of information technologies and (chemo)informatic tools on the basis of their synergy.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
These authors contributed equally to this work.
ISSN:2001-0370
2001-0370
DOI:10.1016/j.csbj.2016.04.004